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It is shown that the Green's function of an electron in a homogeneous and isotropic system, placed in 
a magnetic field, is diagonal with respect to all quantum numbers in the Landau representation and 
only depends on those quantum numbers on which the electron energy depends. A diagram technique 
can be developed for this Green's function in such a way that it does not contain any quantum numbers 
which depend on the gauge of the vector potential. 

INTRODUCTION 

THE diagram technique for the calculation of the elec
tron Green's function simplifies appreciably in spatially
homogeneous systems (after changing to the momentum 
representation). However, if the system is in a magnetic 
field H, then even in the case of a homogeneous field the 
dependence of the vector potential on the coordinates 
formally makes the system inhomogeneous. The Landau 
representation, in which the zero-order Green's func
tion G0 is diagonal, is the most natural representation 
to use in the presence of a homogeneous magnetic field; 
the diagram technique is therefore formulated in this 
representation. l1 ' 21 In this connection the gauge- invar
iant quantum numbers l and Pz appear along with a 
single nongauge-invariant quantum number depending 
on the gauge of the vector potential, for example, Px· 

In the present article a gauge- invariant formulation 
of the diagram technique is proposed in which only the 
quantum numbers l and Pz appear. This technique is 
based on considerations about translational invariance 
in a magnetic field, which were investigated in an arti
cle by one of the authors. l3 J It is shown below that in a 
system which is homogeneous and axially symmetric 
around H, not only the zero-order Green's function G0 

but also the exact Green's function G is diagonal in the 
Landau representation. This important property makes 
it possible to preserve the rules of the diagram tech
nique during the transition from "thin" lines to "fat" 
lines in the same way in which this occurs in the mo
mentum representation in a homogeneous system. 

The diagram technique is formulated for electrons 
interacting with phonons; however, the technique is 
obviously also applicable to the electron- electron inter
action after replacing the phonon lines by Coulomb lines. 

1. DIAGONAL NATURE OF THE GREEN'S FUNCTION 

Let us demonstrate that if the system of electrons, 
placed in a magnetic field, is found in a state which is 
spatially homogeneous and axially symmetric around 
the direction of H, then the electron Green's function is 
diagonal with respect to all quantum numbers A in the 
Landau representation and only depends on those quan
tum numbers on which the energy depends, i.e., on the 
number l of the level and on the longitudinal momen
tum pz: 

For the proof, first let us change to the coordinate 
representation 

(1.1) 

Gw(e) = J dx J dx''IJ>(x)\jl.,(x')G(e; x, x'), (1.2) 

where the IJIA (x) are the wave functions of the electron 
in the presence of the magnetic field. Let us replace 
the integration variables x and x' by r = (1/2)(x' + x) 
and s = x' - x, and in G let us take the Fourier trans
form with respect to s. Then we find 

Gw(e)= J dr JastjJ>(r-'/,s)tjJ,.(r+'f,s) J dpe-'•'G(e;r,,p). (1.3) 

Here G(E; r, p) is the Green's function in the Wigner 
representation; its connection with the coordinate 
representation is the same as for the density matrix. l31 

If the system is spatially homogeneous, then by ap
plying to the Green's function literally the same con
siderations which were applied to the density matrix 
inl3 J, one can show that 

G (e; r, p) = G(e; k), k == p- eA(r) / c, (1.4) 

that is, one can show that the Green's function does not 
depend on the coordinate r and on the canonical momen
tum p independently, but only through the kinetic mo
mentum k. Using (1.4), in (1.3) one can change from an 
integration over p to an integration over k. After this 
the integration over r and s is not coupled to the Green's 
function and may be carried out explicitly. For exam
ple, using the gauge A= (-Hy, 0, 0), A = lP.xPz• after 
direct integration of the known wave functions we find: 

Gw(e) = (2n)'6 (Px- px')b(p,- p,') · 

· 2a(-1)'J dkJ.G(e,k) 1•,-P,A,:.(kJ.)· 
(1.5) 

Here a= (c/leiH) 112 is the magnetic length (11. = 1), kl. 
is the component of k perpendicular to H; then 

[ 21ll ] 'h ' ( 1 ) A , (k ) = e-'••.'-''l -· yj'-' e-'1•• L ,,_, - x' 
ll J. 21' l'! l 2 

(1.6) 

where K = k l. a, L? are the Laguerre polynomials de
fined according tol 4 J, and k 1 and cp denote the magnitude 
of k 1 and its azimuthal angle with respect to H, meas
ured from kx. 
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From Eq. (1.5) it is seen that spatial homogeneity 
leads to the result that G does not depend on Px• a re
sult which is quite easy to understand because Px deter
mines the position of the center of the Larmor oscilla
tor, which is not important in a homogeneous system. 
If we also assume axial symmetry in the system, then 
G( E, k) does not depend on cp; in this connection the 
integration over cp gives 6zz', which also proves Eq. 
(1.1). 

Thus, for a spatially homogeneous and axially sym
metric system we have 

G..-(e) = {j(p,- p,'){j(p,- p.'){j"'G,(e, p,). (1. 7) 

The quantum number Px is related to the gauge of 
the vector potential. The diagonality with respect to Px 
and the fact that the diagonal elements do not depend on 
Px means that the diagonal part Gz(E, Pz) is gauge in
variant. It is natural to expect that rules for a diagram 
technique can be formulated for it, said rules not con
taining the quantum number associated with the gauge. 

We note that although the diagonality with respect to 
l follows from axial symmetry, this connection is very 
nontrivial since the quantum number l does not have 
any direct relation to axial symmetry. The latter is 
clear even from the fact that in the axial gauge 
A = (1/2)H x x the transformation properties of the 
electron's wave functions associated with a rotation 
around H are determined not by the quantum number l 
but by a different quantum number m which appears in
stead of Px· 

Let us indicate that considerations about the diagonal 
nature of the scattering matrix of an electron, interact
ing with phonons, with respect to the quantum number l 
are given in articlel5 J, based on a direct calculation 
according to perturbation theory. 

The definition of Azl'(k 1) given in Eq. (1.6) holds in 
the case of an electron (e < 0). For a positive particle 
(hole) it is necessary to change the direction of rotation 
of the azimuthal angle and measure it from the -kx 
axis, i.e., make the substitution cp- 7T- cp. 

2. ELIMINATION OF THE QUANTUM NUMBERS THAT 
ARE NOT GAUGE INVARIANT 

The rules of the diagram technique in the Landau 
representation for the quantity Gz(E, Pz) can be obtained 
by a transition from the coordinate representation to the 
Landau representation just like this is done for spatially 
homogeneous systems by changing to the momentum 
representation. The only difference consists in the fact 
that upon integration over the spatial coordinates of a 
site, a delta-function of the sum of the momenta does 
not arise, but instead the matrix element 

J dx.p;(x) e'•'ljl,.(x) = /j (p,- p,'- q,){j(p,- px'- q,) 

X exp{- i_!._c_q,(p, + px') }Aw(q,_). (2.1) 
· 2 eH 

Here the unprimed quantum numbers of the electron 
correspond to incoming electron lines, and the primed 
quantum numbers correspond to outgoing electron lines. 
The phonon line is assumed to be outgoing; for an in
coming phonon line it is necessary to change the sign 
of q. 

The formulation of the gauge-invariant technique 
consists in the fact that one can perform the integration 
over Px• corresponding to internal electron lines, in 
general form. For this we note that the electron lines 
of diagram G form several "paths." One of the paths 
begins and ends on the two free ends of the diagram, the 
remaining paths form closed loops. It is obvious that 
one can perform the integration over Px• which includes 
the delta- function and phase factors from (2.1), for each 
path separately. It is convenient to separate the phonon 
lines into two groups: the lines u which begin and end 
on a single path, and the lines v which begin and end on 
different paths. 

First let us consider a loop without any u lines (see 
Fig. 1). Its contribution is given by 

C = J dp,, . .. J dp.,{j (p1,- p 2,- v,,) 6 (p2, - p3, - v,) 

... 6 (Pn-IX- Pnx- v._,) /j (p.,- p,,- v.,) e'"' 
a= c/2eH, (2.2) 

X= -v,,(p., + p,) - v,,(p, + P>x) 

.•. - Vn-tu(Pn-tx + Pnx) - v •• (p., + p,,). (2.3) 

Using the delta-function, one can transform the phase 
to the form 

n w-i (-l n-1 

X=- 2p, Ev,,+ 2 E Ev,,v;, + Ev,,v,,- v,.v.,. (2.4) 

After this one can carry out the integration and one finds 

(2.5) 

where x' denotes the last three terms in expression 
(2.4) for X· Using the delta-function which appears in 
(2.5), one can transform the phase one more time: 

ft 

x' = r [v;, v.], (2.6) 
i<i=l 

where the notation 

(2.7) 

has been introduced. It is clear that a sum over all 
pairs of phonon lines, emerging from a given loop, ap
pears in x', where the order of the sequence inside the 
square brackets is determined by the direction of the 
electron lines along the loop. 

Let us go on to loops containing u lines. The appear
ance of a single u line can be represented in the follow
ing manner. Let us single out two v lines, Va and vb 
(a< b), we set va = u, vb = -u, and we "close" them 
(see Fig. 2). In this connection Va and vb drop out of the 
sums in the delta-functions in (2.5). In connection with 
the computation of the phase x', the bracket [va, vb] 

[u, -u] = 0, and the brackets containing va and vi 
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with i < a or i > b are cancelled by the corresponding 
brackets containing vb and vi; on the other hand, the 
brackets containing va and vi with a< i <bare doubled. 
.Thus, as is evident from the figure, the contribution of 
the u line to the phase is determined by its intersection 
with the other lines. If the process of "closure'' is 
continued for the formation of new u lines, then one can 
verify that the phase has the following form: 

Xc = E [v, v'J+2 E [u, u'J+2 E [u,v]. (2.8) 

Here the first term is the sum over pairs of all the v 
lines of a given loop, the second term is the sum over 
the intersections of two u lines (see Fig. 3 a), and the 
third term is the sum over the intersections of u lines 
with v lines (Fig. 3 b). It is assumed that all phonon 
lines are drawn from one side of the electron lines. It 
is also assumed that the u lines go in the same direc
tion as the electron loop, but the v lines emerge from 
the loop; if the direction of the phonon lines is different, 
then the corresponding u or v appears in the brackets 
with a minus sign. 

Finally the contribution from the loop is obtained in 
the following form: 

C - 2n 6 (~ ) ~axe -ao- ~v.L e 1 (2.9) 

where the summation inside the argument of the delta
function is taken over all v lines of the loop. 

The contribution from unclosed paths (see Fig. 4) 
remains to be considered; first let us consider those 
without u lines 

X 6 (p •• - P•+••- v •• ) e""', 

a = -v,,(p,. +·p,.)- ... - Vn-tr(Pn-t• + p .. ) 
- v.,(p.,. + Pn+tz), 

(2.11) 

The quantity L differs from C by the absence of 
J dp1x and by the substitution -p 1x - Pn + 1x in the last 
delta- function and in the last term of the phase. Fur
ther, according to Eq. (2.9) the sum of the transverse 
phonon momenta originating from a single loop is equal 
to zero. If such equalities are put together for all loops, 
then the momenta of the lines beginning on one loop and 
ending on another cancel. Only the momenta of the lines 
joining the loops with unclosed paths are left, that is, 
~ v x = 0 and ~ v Y = 0. From here it follows that p1x 
= Pn + 1x, i.e., not only the total function G is diagonal in 
Px but also each component part of its diagram. Taking 
all of these diagonalities into consideration, we have 
a = X = x'. Now performing the integration, we find 

L = 6(p,.- Pn+tz)e"'"'· (2.12) 

If an unclosed path contains u lines, then one can 
treat them just like in a loop. Therefore we finally ob
tain 

iaXL 
L = 6 (p1x - Pn+l%) e , (2.13) 

where XL is calculated in the same way as Xc· 
We note that the presence of a delta-function in (2.9) 
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agrees with the results of articlersJ because the loop is 
the contribution to the average value of a certain num
ber of phonon operators (without electron lines). 

Now let us turn our attention to the "vertex'' dia
gram r containing two external electron lines- the 
entering line ElPzPx and the outgoing line t:'l'p~p~, and 
containing an arbitrary number of external (outgoing) 
phonon lines w1<u, w2q2, .... It is not difficult to verify 
that if in such a diagram one carries out the integration 
over Px of the internal electron lines, then from each 
loop appears the same contribution as in the diagram 
for G, but the contribution from an unclosed path will 
contain an additional phase factor associated with the 
presence of external phonon end points. If this factor is 
separated out, and the vertex function is written in the 
following form: 

r(slp,p., e'l'p,'p.'; ro,q,, w,q,, ... ) 

= 6(p.- p.'- q .. - q,.-- .. . ) exp {-ia(q,.+ q,.+ ... ) (Px+P.')} 

(2.14) 

then the quantity r ll' does not depend on Px or p~ and it 
is gauge invariant; for it, the result of the integration 
over Px of the internal lines will be calculated accord
ing to the same rules as for G. 

Physically it is easy to understand the fact that the 
dependence of r on Px and p~ turns out to be unimpor
tant (only in terms of the phase factor). The quantities 
Px and p~ determine the positions Yo andy~ of the cen
ters of the Larmor oscillator before and after the scat
tering of the electron by the phonons q1, q2, .... It is 
obvious that in view of the homogeneity of space the 
probability of this scattering can only depend on the 
relative position of the centers. Therefore 1r 12 may 
depend on Yo- y~, that is, on Px- p~ but it cannot de
pend on (1/2)(yo + y~), i.e., it cannot depend on Px + p~. 
On the other hand, Px- p~ = q1x + q2x + .•.• Therefore, 
one can assume that 1r 12 depends only on q11 qz, ... and 
does not depend on Px or p~. 

However, if we turn our attention to diagrams con
taining a large number of external electron lines, then 
one can easily see that the dependence of these dia
grams on Px of the external lines is essential. One can 
also understand this physically. Let us consider a dia
gram with two incoming electron lines (P1x and P2x) and 
two outgoing lines (P~x and P~x)· Such a diagram des
cribes the scattering of two electrons one against the 
other with their centers at y01 and Yo2 before scattering 
and with their centers at y~1 and y~ after scattering. It 
is obvious that the probability of this scattering essen
tially depends on the relative position Yo1 - Yo2 and 
y~1 - y~2 before and after scattering, i.e., on P1x- p2x 
and P~x- P~x· Therefore for diagrams containing more 
than two external electron lines, i.e., describing the 
many-particle properties of an electron gas, it is im
possible to isolate the gauge-invariant factors by the 
simple method which was used for G and r. 
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3. DIAGRAM TECHNIQUE 

From the preceding section it follows that in order 
to evaluate diagrams containing not more than two ex
ternal electron lines, one may formulate the following 
rules, which do not contain any quantum numbers that 
are not gauge invariant. 

1. An electron line Elpz corresponds to iGz(Epz)· 
2. A phonon line wq corresponds to iD0(wq). 
3. For internal lines in addition one has 

+s· de +s· dp, ~ • 
2n 2n .l...i 

l=p 

4. A vertex at which the line Elpz comes in and the 
lines E'l'p~ and wq go out corresponds to 

(-i) (2n) 26(e- e' -ro)6(p,- p,'- q,)Aw(q.c); 

if the phonon line is incoming, then the sign of q is 
changed. 

5. An electron loop corresponds to 

a=c/2eH, 

where the summation goes over all phonon lines which 
are external with respect to the given loop. . 

6. An unclosed electron path corresponds to eHl'XL. 
The phases xc and XL are determined according to 

Eq. (2.8). 
As an example let us consider the diagram shown 

in Fig. 5. Since the rules 1 through 4 corresponds to 
the usual diagram technique, then we shall only write 
down the phases which appear according to rules 5 and 
6: 

Xc = [-v,, -v,]+[-v., v,]+[-v,, v,] + 2[u., -v,], 

XL= [v,, -v,]+[v,, v,]+[-v,, v,]+2[u,, -u,] +2[u,. v,]. 

An important question is, to what extent is the dia
gram technique according to the formulated rules a 
Feynman technique, i.e., can it be used to obtain equa
tions of the Dyson type? It is obvious that in the formu
lated technique one can only obtain equations in which 
quantities corresponding to diagrams containing more 
than two external electron lines do not appear. In addi
tion, one must take into consideration that the phase 
factor, according to rules 5 and 6, depends on the 
topology of the entire diagram as a whole; therefore, 
upon cutting the diagram in two, in general it cannot be 
factored into factors corresponding to the separate 
parts of the diagram. From the methods by which the 

FIG. 5 

rules for calculating the phases were derived, it is 
clear that upon cutting the phonon lines, the phase fac
tor may be factorized. Factorization does not occur 
upon cutting the electron path. However, it is important 
that the "deficit" phase ll does not depend on the in-: 
ternal structure of the parts which are produced, but 
only on the external lines of these parts. The additional 
inclusion of this phase makes it possible to formulate a 
rule for "cutting a diagram in two": · 

r = Sf'f"e'"', 6 = (~q', ~q"). 

Here r' and r" are the two diagrams which are formed 
after cutting the diagram r with respect to the electron 
path (and also, perhaps, cutting it with respect to a 
certain number of phonon lines); r' contains the initial 
portion of the path and r" contains the final portion; 
q' and q'' correspond to the external phonon lines of 
diagrams r' and r ". The symbol S denotes summation 
and integration over the cut lines according to rule 3. 
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