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The simplest model of a double polymer chain (similar to the Ising model) is used to consider the 
effect of an external action on a phase transition of the type of denaturation of DNA. It is shown that 
the presence of a phase transition is essentially determined by the parameters of the system and by 
the magnitude of the external field. Depending on the values of these parameters, one, two, or three 
phase transition points (with respect to the temperature) may occur. 

1 

IN recent times the attention of investigators has bee; 
attracted to the investigation of the unusual phase tran­
sitions which may occur in double, triple, and higher­
multiple polymer chains. The essence of these transi­
tions consists in the fact that long molecules which are 
twisted into "ropes" at a certain temperature unwind 
and separate into individual strands. The process of de­
naturation of DNA may serve as an example of such a 
phase transition; in this process the two strands which 
form the helical molecule are separated from each 
other. The problem of the melting of DNA was first 
theoretically considered by Zimm,(ll and also by Lifson 
and Zimm. l 2 J Processes analogous to denaturation, or 
to the melting of DNA, also occur in long protein chains. 

The course of a phase transition is essentially deter­
mined by the chemical conditions in the surro.unding 
medium, and also by the nature of the external influen­
ces acting on the system. The goal of the present arti­
cle is a theoretical analysis of the simplest model of a 
double chain, permitting a phase transition of the type 
indicated above and allowing us to take a certain ex­
ternal influence into account. 

1. FORMULATION OF THE MODEL 

Let us consider a long molecule consisting of two 
complementary strands. By complementarity of the 
strands we shall understand the following property. 
During the formation of a single chain ("rope") out of 
the two strands, only the coupling of quite definite 
mutually- corresponding elements of the chain occurs. 
If we number the elements of each strand (counting from 
one end of the molecule), then only elements having 
identical numbers can be joined together. Sometimes 
this property is called the "memory" of the chain, 
emphasizing by such a name the fact that the order of 
connection of the elements is not determined by energy 
considerations but is prescribed by certain ''hidden'' 
structural properties of the molecule, which are not 
discussed in the problem. 

We shall assume that each element of an individual 
chain may exist in one of two possible states (we shall 
denote them as the states + 1 and -1) and each element 
interacts with the nearest neighbors of its own chain 
according to the law assumed in the one-dimensional 
Ising model. If the state of the element with number n 
(n = 1, 2, 3, ... , N) belonging to the strand with labels 
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FIG. I 

(s = 1, 2) is denoted by a~, then the interaction energy 
of the elements of a single strand will have the form 

s = 1,2, 

where s denotes the label of the strand and n denotes 
the number of an element in the strand. 

(1) 

The interaction of complementary elements of differ­
ent strands will also be regarded as an Ising-type inter­
action, and the corresponding energy for the complete 
chain can be written in a form similar to Eq. (1): 

E" = -l \"G • G ' 0 ~ n n• (2) 

However, we shall assume that the nature of the behav­
ior of the system which is generated by this interaction 
differs in principle from that which is caused by the 
usual Ising interaction. Let us suppose that the linking 
of the strands and their disconnection are uniquely de­
termined by the states of the complementary elements. 
Let us assume, for example, that for a~ = a~ the corre­
sponding elements are found in a bound state, forming 
a segment of a "rigid" double chain (for example, a 
segment of the helix in the DNA molecule). The rigidity 
of the chain involves the small relative mobility of the 
neighboring paired elements. Let us denote the statis­
tical weight of such a paired state by w 1· However, if 
a~= -a~, then these elements separate, forming a seg­
ment of a split part of the molecule (see Fig. 1). In the 
split state the individual elements of each strand may 
easily turn relative to their neighbors, and their mutual 
orientation is limited only by the number of possible 
isomer compounds or by the corresponding rotation 
angles. We denote the statistical weight of such a state 
of an element on a free individual strand by .fW;.. 

Since a bound state always possesses a smaller en­
ergy than a "free" state, the described situation can be 
realized for J 0 > 0. 

To a considerable extent such a description is 
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analogous to the formal assignment of an "Ising" spin 
to each element of the chains. Therefore we shall char­
acterize an external influence on the molecule by a 
certain interaction of its elements with an external 
"field," choosing this interaction in the standard form 
used for the interaction of spins with a magnetic field. 
Then the total energy of the molecule consisting of N 
pairs of elements in an external field will be given by 

EN= -1. t cr.' cr/- J .t f:U.· cr,:+t- B .t t cr.' 
n=O s=t n=O s=l n=O 

2 N-1 2 

=- '/,J,cr,'cro'- 'f,B .Ecro' + .L,E .. •",- 'f,J,crN 1crN'-'f,B ~ cr.v', 
8=1 n=O •=1 (3) 

where B denotes the intensity of the effective external 
field, and 

2 

E •. •+• = - '/,J, ( cr.'cr.' + cr~+t cr~+,)-.E [Jcr.'cf•+• + 'f,B ( crn'+cr~+,)]. 
•=t (4) 

2. EVALUATION OF THE PARTITION FUNCTION 

In order to construct the thermodynamics of a double 
molecule we shall use the grand canonical ensemble 
method and we calculate the corresponding partition 
function 

Z(J.t)= _E[e~'"'Z,(N)], (5) 
N=t 

where f3 = 1/T, J-1. denotes the chemical potential, N de­
notes the number of pairs of elements in the chain, and 
Zo(N) is the partition function for a chain consisting of 
N pairs of elements. By definition 

Z0 (N) = .E g{crn'}exp[- ~EN{crn'}]. 
{a,.'} 

(6) 

where EN{a~} denotes the total energy of the chain for 
a given configuration of the spins {a~}, g{ a~} denotes 
the statistical weight of the corresponding spin configur­
ation, and the summation goes over all possible con­
figurations. 

It is convenient to carry out the evaluation of the 
partition function (5) by using the standard matrix 
method (see, for example/31 ). Since in either the 
paired or in the split states of the chain each pair a~, 
a~ takes only two values, then it is convenient to dis­
tinguish the spin states of a pair of elements, which in 
what follows we shall regard as a single link of the 
chain, with the aid of an index a which takes the values 
1 or 2. Then, in the one-dimensional Ising model which 
describes the spin states in our problem, it is sufficient 
to introduce the corresponding matrices of the second 
rank. In particular, one can represent expression (6) in 
the form 

2 

Z,(N)=SAEZ(N)""' .E Z««'(N), (7) 
cz, a/=t 

A 

where we have introduced the symbolic notation Z(N) 
for the matrix Zaa'(N) (a, a' = 1, 2) where the first 
subscript refers to the first link of the chain and the 
second refers to the last link in the chain. In order to 
be definite, we shall assume that for the appropriate 
link in the paired state a = 1 if a 1 = a 2 = 1, and a = 2 if 
a 1 = a 2 = -1. In the split state a= 1 if a 1 = -0'2 = 1, and 
a = 2 if a 1 = -a2 = -1. 

FIG. 2 

In order to represent the partition function (5) in the 
form of a matrix product, let us consider a certain sub­
division of the total double chain into paired and split 
segments (see Fig. 2). Let there be 2k points in the 
chain corresponding to the separation of the paired and 
split segments (in what follows we shall call such points 
junctions). It is obvious that k coincides with the num­
ber of "rings" along the chain shown in Fig. 2. Let us 
denote by mi and ni (i = 0, 1, ... , k) the number of links 
on the split and paired segments, respectively. Then, 
assuming that at least one link of the chain is always 
found in the paired state, one can postulate the following 
representation for the partition- function matrix: 

Z(N) =;o.E .E Z1(p)R{IT zii(m;)21 (n,J}(zo+ ZF(q)), (8) 
k p, mi, ni, q i=l 

where p denotes the number of links in the paired seg­
ment at the extreme left in Fig. 2 (p 2: 0), and q denotes 
the number of links occurring in the free split state at 
the extreme right edge of the chain in Fig. 2 (q 2: 1). 
The summation in Eq. (8) is carried out under the ob­
vious condition that 

• 
P+ .L,<m,+n,)+q=N. (9) 

i=t 

The letter R in Eq. (8) in front of the product sign indi­
cates that the noncommuting factors corresponding to 
different values of i are arranged in order of increasing 
value of i from the left to the right. The matrices ap­
pearing in formula (8) have the following meanings: 

z1(n) is the standard form of the symmetrized statistical 
matrix for a chain of n links which are in the paired 
state. It is obvious that one can write this matrix in the 
form 

(10) 

(11) 

where the notation Eo = {3Jo, E = 2 {3J, H = {3B has been 
introduced. 

The appearance of the matrix factor z0 in formula 
(8) is related to the symmetrization of the energy (4) 
and to the fact that the matrix (11) only includes the 
symmetrized part of the total energy (3). It is obvious 
that 

(12) 

The characteristics of the j~nctions do not appear in 
the expression for the matrix zl(n); from this it follows 
that they must be taken into consideration in the defini­
tions of the remaining matrices. The basic property of 
a junction is that it connects links that exist in different 
states. Therefore the matrix corresponding to it must 
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transform the definitions of the various matrices from 
the classification corresponding to paired states to the 
classification corresponding to split states, and vice 
versa. In order to demonstrate the form of the matrix 
which carries out the transition from a paired state to 
a split state, let us write down the expression for the 
matrix zF(q): 

(13) 

(14) 

(15) 

(16) 

where the factor y is introduced in order to take account 
of the restrictions on the mobility i)f the link at the 
junction point, and the matrix Zf, associated with the 
last pair of elements in the split state, has the same 
origin as the matrix z0• 

The matrix zll(m) in formula (8) denotes the contri­
bution to the partition function from the states of a 
''ring'' containing m pairs of elements. In order to 
calculate this quantity, it is necessary to correctly take 
account of the number of different configurations in 
which split segments of the molecule can occur. Let us 
recall that the split segments of the chain may freely 
travel in space, and their position is limited only by the 
nature of the connections between the elements and by 
the length of these segments. Therefore the number of 
configurations of interest to us is determined by the 
probability that the two strands, each of which has the 
same number of moving links going out of a common 
point, will encounter their own ends. If the chains con­
sist of freely coupled elements then the mentioned 
probability is equal to the probability that two diffusing 
particles, going away from the same point, meet after 
a certain identical number of elementary steps. For a 
ring consisting of m pairs of elements, we shall denote 
the number of indicated configurations by the letter Am· 
For a chain of free coupled elements and for large 
values of m (m >> 1) one can assume Am= const · m-3 / 2 

Precisely such a dependence of the coefficients on m 
was assumed in the work of Zimm. lll However it is 
necessary to keep in mind that this is the weakest of the 
possible dependences of Am on m. It is easy to indicate 
examples in which the exponent r in the formula Am 
= const · m- r is larger than the value adopted inl 11 

(r > 3/2). In addition, this dependence may not be a 
power-law dependence at all, but we shall assume that 

00 

the series E Am always converges. 
m 

Returning to the notion zii(m), let us represent it in 
the form 

(17) 

where z2 is defined by formula (14)' and the correcting 
matrix is given by the expression 

(18) 

After discussing all of the factors inside the summa­
tion sign in (8) one can go on to perform the summation, 

which is contained in the initial definition (5) for the 
partition function Z(!J. ). However it is convenient to per­
form this summation up to the operation (7) by introduc­
ing the matrix 

Z(f.t)= L,e~"NZ(N). (19) 
N=l 

The evaluation of the sum (19) is carried out in exactly 
the same way as in the articles by Lifson and Zimm. l2 •41 

The result of this calculation is the following: 

z (f.t) = -z.zr (fl) {f- zn (fl) zr (11lr1 (zo + ZF(fl)) 

= 'Z. {1- tzl- .zn (fllr' (2:. + 2f (f.t}J, 

where t = e f3 !J.. The individual factors in (20) are 
defined in an obvious manner: 

00 00 

zr (fl} =I: tnzr (n) = r. (tzl)n = o·- tz,r'. 
n=o n=o 

00 00 

2f (fl) = L· tqlf (q) = i\ r (tz,)q z1 = i\ti,(r- tz,t1 z1, 
q=l q=] 

00 

zrr (fl) = L, tmzn (m) = l\1jJ (tz,) 1\, 
m=2 

(20) 

(21) 

(22) 

(23) 

and the function 1/!(x) is equal to the sum of the series: 

(24) 
m=2 

It is clear that formulas (21), (22), and (24) are valid 
provided all of the corresponding series converge. 

For operations with the matrices zii(!J.) and zF (!J.) 
it is convenient to use the representation in which z2 is 
diagonal. Let us write the transformation A <2 > which re­
duces z2 to diagonal form in the standard form: 

(25) 

where the matrices 

- - 1 ( 1 -1) 
s,- 1"2 1 1 ' (26) 

The diagonal elements of the matrix f...< 2 > are determined 
by the following simple formulas: 

(27) 

Finally, by performing simple but cumbersome ma­
trix operations, we may evaluate the desired partition 
function: 

Z(f.t) = SAEZ(f.t) = 2e'• 1\ -'(t) (ch 2H- 2tw,e'•sh e) 1 + ---- , ' - ( y fA, ) 
ch e 1- tA 1 

(28) 
where 

1\ (t) = 1 + 2(tw 1e'•)' sh 2e- 2tw,e••+• ch 2H 

v2e2e~ (29) 
+(2tw1e'•shB-ch2H) ch'e 1jJ(tA,). 

Formulas (28) and (29) determine the partition function 
of the grand canonical ensemble as a function of !J., T, 
and B. 

3. ANALYSIS OF THE PHASE TRANSITION 

In order to clarify the question of the possible exis­
tence of a phase transition of the type of denaturation 
in the system under consideration, it is convenient to 
consider the behavior of the chemical potential !J. as a 
function of T and B. As is well known, l 51 in the method 
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of the grand canonical ensemble the function 1J. = JJ.(T, B) 
is found from the condition 

aO./av-= -N, (30) 

where N denotes the number of pairs of elements in the 
chain being studied, and 

0.=-TlnZ(~-t). (31) 

If a phase transition is possible in the system, then 
as N- "" a singularity appears in the function 
IJ. = JJ.(T, B) obtained from Eq. (30), this singularity 
corresponding to a point of intersection of the two 
branches of the solution of the equation 

8Q/81J.= -oo. (32) 

In the present case such a situation is possible in prin­
ciple since from the explicit form of the partition func­
tion (28) it follows that the solution of Eq. (32) may be 
found either from the condition 

tl., = 1, (33) 

or as the solution of the transcendental equation 

A(t) = 0. (34) 

We recall that t = ef3 1J. = eJJ.IT. It is easy to figure out 
that the function IJ. = JJ.(T, B), which is obtained from 
Eq. (33), pertains to the states of the completely separ­
ated chain and is the chemical potential of the denatured 
phase. The solution (34) gives the chemical potential of 
the phase in which paired and separated segments of 
the chain simultaneously exist. A phase transition oc­
curs at that temperature for which the chemical poten­
tials of these two phases coincide. Since the correspond­
ing temperature depends on the value of B, a phase 
transition curve T = T(B) exists. It is clear that this 
curve can be found from condition (34) in which t = 1/A1. 
If one introduces the notation 

x = e''• (~+ y'1jl(l) } (35) 
lilz ch' 8 

y = e''•~th 8, (36) 
lilz 

then the phase transition curve is determined by the 
solution of the transcendental equation 

i+xy- (x+y)ch2H=0 (37) 

under the compulsory condition 

xy,;;;; 1. (38) 

Condition (38) is the require~ent !n ~rder that the lar­
gest root of the matrix tz1 + n l/l(tz2)H does not exceed 
unity. This natural requirement is the condition for the 
analytical form of the partition function (28). 

Let us carry out a graphical analysis of the solutions 
(37). Let us start with the case B = 0. Then from Eq. 
(37) it follows that either x = 1 or y = 1. However from 
the definitions (35) and (36) it follows that x ~ y; there­
fore, taking the restriction (38) into account, we notice 
that the temperature of the phase transition for B = 0 is 
determined by the condition x = 1, which is equivalent to 

m>=e-'"·· /(~)==~+ y'1jl(l). (39) 
lilz ch' 2.~1 

Let us assume that f(O) < 1. Then, as follows from a 

FIG. 3 

FIG. 4 

consideration of Fig. 3, the existence of a solution to 
Eq. (39) depends on the value of Jo. If Jo is very small 
(Jo- 0), the curves for the functions f( {3) (curve 1) and 
exp(- 2 {3J0) (curve 2) intersect at a single point ( {3 = /31). 
With increasing values of Jo the point {3 = {31 moves to 
the left along the axis and curve 2 descends. At a cer­
tain value J 0 = Jb1> a point of contact of the curves 1 and 
2 arises, lying to the left of {3 1. If J 0 somewhat exceeds 
the value J~ll, then there are three points of intersec­
tion of the corresponding curves (the points {32, /33, and 
{34 corresponding to the points of intersection. of curves 
1 and 3). With a further increase of Jo the points /32 and 
{33 converge, but the point {3 4 moves to the left. Finally, 
there exists a value J 0 = J&2> at which {32 = /33. It is 
clear that for J 0 > J~21 (curve 4) once again a single 
point of intersection, {3 = f3s, is left. 

Going on to clarify the temperature regions in which 
the various phases exist, we note that the denatured 
phase corresponds to values of B lying below the curve 
B = B(T), satisfying Eq. (37). From this it follows that 
for B = 0 and J 0 < J~1 > the denatured phase exists for 
T > T1 = 1/{31 (see Fig. 3). However, if J&1> < Jo < Jb2>, 
then for B = 0 the denatured phase exists in the interval 
T2 < T < T3 where T2 = 1/ {32, T3 = 1/ {33, and also for 
temperatures T > T4 = 1/{34 • Finally, if Jo > J~2 > then 
the denatured phase is realized for T > Ts = 1/ f3s· 

After this it is easy to represent the qualitative 
shape of the phase transition curves for B ~ 0. The 
following curves are represented schematically on 
Fig. 4: 1-for Jo = 0, 2-for 0 < Jo < J~1 >, 3-for Jo 
= J&11 (this curve approaches the temperature axis at 
the Roint T = T*), 4-for J~11 < Jo < J~21 , and 5-for Jo 
~ Jo >. Thus, it turns out that for f(O) < 1 and for arbi­
trary values of B a phase transition always exists in the 
system under consideration. In addition, for sufficiently 
small values of B there exists a range of values of the 
parameter J 0 for which this transition is repeated three 
times. The very low-temperature phase is a cohesive 
phase, and the very. high-temperature phase is a de­
natured phase. As T - "" the phase transition curve 
has the form of a straight line 

B=TArchj-'(0). (40) 
Naturally expression (40) has meaning for f(O) < 1. In 
that case when the phase transition occurs three times 
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FIG. 5 

FIG. 6 

on the temperature axis, a finite interval appears in 
which the denatured phase exists, bounded by tempera­
ture intervals in which the cohesive phase is realized. 

We note that at the points where the phase transition 
curves approach the temperature axis on Fig. 4, the 
curve B = B(T) has a vertical tangent, and in the vicinity 
of these points it corresponds to the graph of a quad­
ratic parabola. 

Now let us go on to the case f(O) > 1. The graphical 
investigation of the phase transition curves in this case 
is clear from Fig. 5, on which curve 1 represents the 
graph of the function f({3) and curves 2 and 3 represent 
graphs of the function exp(- 2{3J 0) for small and large 
values of J 0 respectively. We at once deduce the 
schematic shape of the phase transition curves (see 
Fig. 6) corresponding to different values of J 0 • For J 0 

= 0 the curve B = B(T) starts from the origin of coor­
dinates and ends at the point T = T0 , but for a certain 
value J 0 = J~k) the loop of this curve shrinks to a point 
on the temperature axis {T = T c)· For J 0 > J~) the 
phase transition in such a system is absent. An inter­
esting property of the system with f(O) > 1 is the fact 
that the most high-temperature phase is the cohesive. 
phase. However, one can easily verify by a direct cal­
culation that with an increase of the temperature the 
number of split segments (the "rings" shown in Fig. 2) 
and the length spanned by their parts of the chain in­
crease. As T- oo the ratio of the length of all split 
segments of the chain to the total length of the chain 
tends to unity. 

The nature of the phase transition very significantly 
depends on the value of the derivative of the function 
1/J = 1/J(z) at the point z = 1, i.e., on the quantity 1/1'(1). In 

order to illustrate this dependence, let us consider the 
first derivative of the thermodynamic potential n' which 
formally coincides with the average value of the spin 
(or magnetic moment) of a single element in the chain, 
namely, the quantity 

M = _!_~~~. (41) 
2 as a,.., 

It is quite clear that M = 0 in the denatured phase and 
M or. 0 in the cohesive phase (for B"' 0). Let us present 
the expression for M at the phase transition point, de­
noting it by Me: 

Me= (x+y)sh2H , (42) 
1-xy+(ch2H- y)s 

where x andy are defined by formulas (35) and (36), and 
the parameter s is given by 

e2eo 

s = y'--[1jJ'(1)- •'•(1)] 
ch' e "' ' 

(43) 

and the quantities T and B are taken at the correspond­
ing phase transition point. 

If the value of ¢'(1) is bounded, then from Eq. (42) 
it follows that the quantity M has a finite discontinuity 
(for B >" 0) associated with the phase transition. This 
means that the corresponding transition (B or. 0) is a 
phase transition of the first kind. However if 1/!' (1) = oo, 

then Me = 0 and the quantity M is continuous at the 
phase transition point. It turns out that under the condi­
tion ¢' (1) = oo the other first derivatives of the thermo­
dynamic potential are also continuous at the phase tran­
sition point; therefore we may conclude that the corre­
sponding transition will be a transition of the second 
kind or of higher order. 
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