
SOVIET PHYSICS JETP VOLUME 33, NUMBER 2 AUGUST, 1971 

DOPPLERONS IN CADMIUM 

'L. M. FISHER, V. V. LAVROVA, V. A. YUDIN, 0. V. KONSTANTINOV, and V. G. SKOBOV 

All-Union Electrotechnical Institute; A. F. Ioffe P3.ysicotechnical Institute, 
USSR Academy of Sciences 

Submitted August 10, 1970 

Zh. Eksp. Teor. Fiz. 60, 759-774 (February, 1971) 

Oscillations of surface impedance of single-crystal plates of cadmium in a magnetic field normal to 
the surface and parallel to the hexagonal axis were observed experimentally and investigated theo
retically. At a frequency of 1 MHz, the oscillations exist in the interval from 7.5 to 13.5 kOe. 
With increasing frequency, the boundary fields increase in proportion to the cube root of the fre
quency. The period of the oscillation increases with the field, changing by 30-50%. Near the upper 
boundary, the period reaches a limiting value that depends only on the thickness of the plate. These 
oscillations are connected with excitation of an electromagnetic wave ("doppleron") due to the 
Doppler-shifted cyclotron resonance of the lens electrons. A theoretical analysis shows that near 
the upper boundary, the doppleron oscillations go over into oscillations of the Gantmakher-Kaner 
size effect. Measurement of the period of the oscillations has made it possible to determine the 
radius of curvature of the lens at the limiting point kF = 1.49 ± 0.08 A-1• The experimental bounda
ries of the region of existence of the doppleron and the change of the period are in good agreement 
with the theoretical values obtained from the free-electron model. 

1. INTRODUCTION 

WE have observed experimentally and investigated 
theoretically electromagnetic waves capable of propa
gating in cadmium in a magnetic field normal to the 
surface of the sample. The range of frequencies and 
magnetic fields for these waves coincides approximately 
with the region of the Doppler-shifted cyclotron reso
nances of helicons in uncompensated metals. This cir
cumstance is not accidental, since the physical nature 
of both these phenomena is the same-Doppler-shifted 
cyclotron resonance of definite groups of electrons on 
the Fermi surface. In alkali metals, the propagation 
of helicons occurs only in sufficiently strong magnetic 
fields, when the displacement of the electron along the 
field during the cyclotron period is smaller than the 
wavelength of the helicon. With decreasing field, these 
quantities come closer together, and when the maxi
mum displacement over the period (for electrons trav
eling opposite to the wave) turns out to be equal to the 
helicon wavelength, a collisionless cyclotron absorption 
sets in and makes wave propagation impossible. This 
absorption threshold corresponds to equality of the 
cyclotron frequency to the Doppler shift of the fre
quency of the wave in a coordinate system moving to
gether with the electrons of the limiting point. The 
nonlocal conductivity of the degenerate electron gas 
has a singularity in this case. The character of the 
singularity depends strongly on the law of dispersion 
of that group of electrons which is responsible for the 
Doppler-shifted cyclotron resonance. In alkali metals 
this resonance is due to the electrons of the limiting 
point, which lead to a singularity of the type x ln x in 
the imaginary part of the nonlocal conductivity. 

Chambers and SkobovUl and Falk, Gerson, and 
Carolan [2J considered models of anisotropic Fermi 
surfaces, which give stronger singularities of the non
local conductivity, and have shown that such singulari
ties lead to the occurrence of new types of electromag-
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netic waves in metals. The main property of these 
waves is that their length is quite close to the average 
displacement of the electrons during the cyclotron period. 
The presence of such a mode of the electromagnetic 
spectrum was in essence first indicated by McGroddy, 
Stanford, and Stern [sJ and by Overhauser and Rodri
guez, [41 who investigated the edge of the cyclotron ab
sorption in alkali metals. In [51 it was shown that the 
wave due to the Doppler-shifted cyclotron resonance 
can also propagate in alkali metals in another geom
etry, when the magnetic field is directed at a small 
angle to the surface of the sample. It is natural to call 
this entire aggregate of waves dopplerons, since their 
dispersion law reflects almost exactly the equality of 
the cyclotron frequency to the Doppler-shifted fre
quency of the wave in a coordinate system moving to
gether with the characteristic group of electrons. 

The present paper is devoted to an investigation of 
dopplerons in cadmium, in which the concentrations of 
the electrons and the holes are equal and the propaga
tion of helicons is impossible. In the third energy band 
of cadmium, and also of zinc and magnesium, there is 
an electronic Fermi surface having the form of a lens. [Ill 
The velocities of the lens electrons are large and lie in 
a narrow interval, so that these electrons form two op
posing beams. Other groups of carriers apparently have 
much lower velocities, and therefore a situation is pos
sible wherein the nonlocal effects are strong for the 
conductivity of the lens electrons and weak for the con
ductivity of the remaining carriers. To this end it is 
required that the average displacement of the electrons 
of the lens along the magnetic field directed parallel to 
the hexagonal axis be close to the wavelength of the 
doppleron, and the displacements of the remaining 
carriers be much smaller than the wavelength. In other 
words, the Doppler-shifted frequency' of the wave in a 
system moving with the electrons of the limiting point 
of the lens will be close to the cyclotron frequency. For 
other groups of carriers, the Doppler frequency shift 
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will be smaller. Under these conditions, the nonloc~>.l 
Hall conductivity of the lens electrons turns out to be 
much larger than its local limit and is not compensated 
by the contribution of the remaining carriers, as is the 
case at large wavelengths. This makes it possible for 
the doppleron to propagate. 

A doppleron propagating along the magnetic field has 
circular polarization. The direction of rotation of the 
electric vector of the wave coincides with the direction 
of rotation of the electrons, in analogy with the helicon. 

The propagation of a Doppleron in a plate of finite 
thickness is accompanied by interference oscillations 
of the impedance as a function of the magnetic field, in 
analogy with the situation for helicons. As already 
mentioned above, the wavelength of the doppleron is 
close to the displacement of the electrons of the limit
ing point during the cyclotron period. Therefore the 
transition from one interference maximum to another 
corresponds to a unity change in the number of dis
placements subtended by the sample. From this point 
of view, the doppleron oscillations are quite similar to 
the oscillations ofthe Gantmakher-Kaner radio-frequency 
size effect. [?J It is shown in the present paper that in 
cadmium the regions of magnetic fields in which the 
doppleron and the Gantmakher-Kaner wave exist lie 
alongside each other and even overlap somewhat. The 
doppleron exists in weaker magnetic fields, and its 
amplitude greatly exceeds the amplitude of the radio
frequency size effect, while the period of the oscilla
tions is smaller than the period of the size effect. In 
strong fields, the amplitude of the doppleron decreases 
and the period of the oscillations increases, so that a 
continuous transition takes place to Gantmakher-Kaner 
oscillations, a distinguishing feature of which is con
stancy of the period. 

2. MEASUREMENT PROCEDURE 

We investigated the surface resistance of single
crystal plates of cadmium in a magnetic field normal 
to the surface of the sample. We measured the depen
dence of the derivative of the surface resistance on the 
magnetic field in the frequency range 0.8-8 MHz. Plane
parallel cadmium samples were cut by the electric spark 
method from a single crystal, and were etched after cut
ting in concentrated hydrochloric acid. We investigated 
plates with dimensions 12 x 4 mm and with thicknesses 
0.40, 0.76, 1.46, and 1.48 mm. The resistance ratio was 
p(300°K)/p(4.2°K) = (10-12) x 103• The orientation of the 
samples was determined by x-ray diffraction. The nor
mal to the plate coincided with the direction of the hex
agonal axis [0001], and the major axis of the sample 
was parallel to the [1120] direction. 

The measurements were performed with a setup 
similar to a spectrometer for the observation of NMR. 
The block diagram of the setup is shown in Fig. 1. 

The small-amplitude generator was a tapped-capaci
tor oscillator. The use of negative feedback made it 
possible to stabilize the amplitude of the oscillations 
and the operating conditions of the generator. As a re
sult, it was possible to carry out amplitude measure
ments of the dR/dH = f(H) of samples in a magnetic 
field, when the Q of the tank circuit changes strongly. 
When the Q changed by a factor of 5, the error in the 

FIG. l. Block diagram of measuring setup: 1-superconducting sole
noid, 2-modulation coil, 3-coaxial cable, 4-fork, 5-sample holder, 
6-high-frequency coil, 7-sample, 8-cord-driven pulley, G-small-am
plitude generator, D-detector, AS-amplitude stabilization system, 
LFA-low-frequency amplifier, 0-oscilloscope, PD-phase detector, 
GM-modulation generator, P-x-y plotter, R-standard resistance, CS
current stabilizer, CB-control block. 

measurement of the amplitude was ~ 1%. The stabiliza
tion system had a large time constant (on the order of 
10 seconds), so that it exerted no influence on the sig
nal at the modulation frequency (10 Hz). This system 
will be described in detail in a separate article. 

The sample was placed in a flat induction coil of the 
tank circuit of the generator. The coil was mounted on 
a polystyrene holder and was immersed in liquid helium. 
Three interchangeable coils with three or four layers 
of turns were used to cover the frequency band 0.8-10 
MHz. 

The magnetic field was produced with the aid of a 
superconducting solenoid with a maximum field 50 kOe. 
The diameter of the solenoid channel was 24 mm and the 
height was 100 mm. The magnetic field H was deter
mined from the current I flowing through the solenoid: 
H = Kal. The solenoid constant K0 was determined from 
signals of nuclear magnetic resonance on protons in 
weak fields (H ~ 2 kOe) and on aluminum and copper 
(Cu63 and Cu65) nuclei in fields ~ 10 kOe. In this field 
interval, K0 was independent of the magnetic field and 
amounted to 1.885 kOe/ A. The current I was measured 
with a potentiometer circuit and determined from the 
voltage drop across a standard resistance. 

The constant magnetic field was modulated at low 
frequency (10 Hz) with amplitude up to 300 Oe. The al
ternating field was produced by an additional supercon
ducting coil fed from a low-frequency generator. 

The orientation of the samples in the magnetic field 
was varied with the aid of a rotating device. The sam
ple together with the coil could be rotated about the 
horizontal axis through 360°. The rotation angle was 
controlled accurate to 1 o by means of a micrometer 
screw coupled to a drive cord, the other end of which 
was fastened to a spring. The orientation at which the 
field was normal to the surface of the sample was de
termined approximately {rom the minimum induced 
modulated signal in the inductance coil of the tank cir
cuit. This orientation was determined more accurately 
from the symmetry of the dR/dH = f(O) curves {9 is the 
angle between the normal to the sample and the mag
netic field). 
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dR/dH 

FIG. 2. Plots of the derivative of the surface resistance. Curve!
sample III, d = 1.46 mm, f = 5. 7 MHz; 2-sample II, d = 0.76 mm, f = 
4.06 MHz; 3-sample II, f = 1.67 MHz; 4-sample I, d = 0.4 mm, f = 1.60 
MHz. 

A signal proportional to dR/dH was fed to the Y co
ordinate of the automatic potentiometer PDS-021; the 
X coordinate was fed with a voltage proportional to the 
magnetic field from a standard resistor. The total 
X-coordinate error, including the errors of the auto
matic plotter and of the standard resistor, did not ex
ceed 2%. 

The measurements were performed mainly at a tem
perature of 2°K. The temperature dependence of the ef
fect was investigated in the interval 1.9-4.2°K. 

3. MEASUREMENT RESULTS 

In all the investigated cadmium samples in a normal 
magnetic field we observed oscillations of the quantity 
dR/dH, which were approximately periodic in the direct 
field. The amplitude of the oscillations increased with 
decreasing temperature. Thus, with decreasing temper
ature from 4.2 to 2°K, the amplitude increased by a fac
tor 2.8. Therefore all the measurements were carried 
out at T = 2°K. 

Sample plots of the oscillations of dR/dH (as func
tions of H) for different frequencies f and different sam
ple thicknesses d are shown in Fig. 2. We see that the 
oscillations are observed in a magnetic-field interval 
that is limited from below and from above, and reach a 
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FIG. 3. Frequency dependence of 
the field H0 at which the amplitude of 
the oscillations is maximal. 
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FIG. 4. Dependence of the period of the oscillations L'lH on the 
magnetic field: 0-period determined from the maxima of the oscilla
tions of dR/ dH, •-period determined from the minima. Curves 1-3 
pertain to sample I and correspond to frequencies 0.85, 1.60, and 3.46 
MHz; curve 4-sample II, frequency 1.67 MHz; curve 5-sample III, 6.63 
MHz. The position of a point on the abscissa axis corresponds to be 
right-hand extremum of the pair from which the period is determined. 

maximum amplitude inside this interval. Some of the 
plots have quantum oscillations superimposed on the 
strong-field side. For this reason, a determination of 
the upper limit of the field interval is difficult in many 
cases. We see that the amplitude of the long-period 
oscillations greatly exceeds the amplitude of the quan
tum oscillations of the impedance. The amplitudes of 
the oscillations of both types are much larger than the 
noise of the measuring apparatus. 

With increasing frequency, the oscillation picture 
shifts towards stronger fields. Figure 3 shows a plot 
of the frequency dependence of the field H0 at which the 
amplitude of the oscillations reaches a maximum. We 
see that with good accuracy H0 '""' f11 3 • We note that the 
value of H0 is practically independent of the thickness 
of the sample, whereas the positions of the upper and 
the lower limits of the region of existence of the oscil
lations come somewhat closer with increasing thickness. 

As seen from Fig. 2, the oscillations are not equi
distant in the magnetic field; their period increases with 
increasing H. Figure 4 shows the dependence of the 
period of the oscillations ~H on the magnetic field for 
samples with different thickness. In all cases this de
pendence has the form of a growing curve with satura
tion. Curves 1-3, while pertaining to the same sample, 
correspond to different values of the frequency f. It 
should be noted that the asymptotic values of the period 

FIG. 5. Sample plot of dR/dH in a wide interval of magnetic fields; 
T = 2°K, d = 0.4 mm, f = 1.6 MHz. 
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in strong fields are quite close for these curves. Curves 
4 and 5 pertain to samples of large thickness, and the 
asymptotic values of the period are smaller for them. 

The impedance oscillation amplitude was strongly 
dependent on the angle (}between the normal to the sam
ple and the magnetic field. When (} changed from 0 to 3° 
the amplitude decreased by a factor of two, and at (} = 7° 
it amounted to only 0.2 of the maximum value. 

We note that dR/dH has a large-scale singularity in 
the field. In most cases the oscillations lie near the top 
of the large flat maximum of dR/dH, (see Fig. 5). 

4. THEORY 

1. The lens model. In metals of the second group 
with hexagonal lattice, such as magnesium, zinc, and 
cadmium there is an electronic Fermi surface in the 
third zon~, in the form of a lens or lentil. [eJ In the free
electron model it is represented in the form of two 
spherical segments placed together (see Fig. 6). For 
cadmium, the radius of the sphere is kF = 1.418 x 108 

em -l and the distance from the center of the sphere 
• 8 ~m to the base of the segment is k0 = 1.14 x 10 em . 

It is convenient to introduce the quantity IJ.o =cos J. 
= k0 /k F = 0. 803. The volume of the lens is equal to 
kFV0 , where 

4n '{ J.t•) V,= 3 (1-J.to) 1+2 • (1) 

so that for the electron concentration in the lens n0 we 
have 

no= 2k/V,f (2n)' = 0.51·1021 em-s (2) 

The nonlocal conductivity for a circularly polarized 
wave propagating along a magnetic field has the follow
ing form (see, for example [sl, pp. 629 and 630): 

u~)(k,ro)=±J;; +iJ: 
e• m'(vi- v.') 

= 4n'fi' S dv (+r.l-ro+kv,-iv) ' (3) 

where w and k are the frequency and the wave vector, 
m is the effective mass of the electrons, VF = likF /m 
is the Fermi velocity, Vz is the projection of the veloc
ity of the electron on the direction of the magnetic field 
H (z axis), 0 = eHjmc is the cyclotron frequency (e
absolute value of the electron charge), and 11 is the 
electron-lattice collision frequency. 

Expression (3) for the conductivity is valid in the 
case of a spherical Fermi surface. In this case the in
tegration with respect to Vz is carried out from -vF to 
vF. The same expression can also be used for the lens 
model when the magnetic field is parallel to the axis of 
revolution of the lens. In this case, however, the inte
gration with respect to Vz should be carried out in two 

FIG. 6. Qross section of lens in a plane 
passing through the hexagonal axis. 

intervals, from - vF to -IJ.oVF and from IJoVF to VF· 
Introducing the dimensionless integration variable p. 
= Vz /vF, we represent expression (3) for the conductiv
ity of the electrons of the lens in the form 

<•l _ n,e' v. 
U± (k,ro)=+ m(Q±ro±iv) V.' (4) 

where 

(5) 

kvF 

q= Q±ro±iv· 
(6) 

The lens volume V0 defined by (1) is obtained from 
(5) at q = 0, so that Vq=o = V0 • Calculation of the inte·
gral (5) yields 

V = 2n(1-J.to)+n 1-q'ln(1-q t+~toq)· (7) 
• q' q' 1 + q 1 - !loq 

Let us consider the singularities of the nonlocal con
ductivity a~el(k, w) in the case of a strong magnetic 
field, relatively low frequencies, and large mean free 
paths, when 

(8) 

Under these conditions, the reduced wave vector q is 
almost real (q R:: kvF /0), and the conductivity a_ is 
practically independent of the frequency w. Electrons 
with Vz = vF, traveling along the field H, are displaced 
during the cyclotron period by a distance 

(9) 

Thus, the quantity q represents the ratio of the dis
placement u0 to the electromagnetic wavelength .\ = 21T/k. 

The nonlocal conductivity defined by formulas (4) and 
(7) has singularities at q = ± 1 and q = ± 1/P.o· The first 
singularity is due to the Doppler-shifted cyclotron reso
nance of the electrons of the limiting point, and the sec
ond is due to the electrons located in the immediate vi
cinity of the edge of the lens (vz = ±IJoVF). These singu
larities limit the region of values of the reduced wave 
vector, 1 s I q I s 1/p.0, within which there exists colli
sionless cyclotron absorption of the wave by the lens 
electrons (in this region the argument of the logarithm 
in formula (7) is negative). It must be borne in mind 
that the singularity at I q I = 1/p.0 is obtained for a lens 
with an ideally sharp edge. In a real metal the edge of 
the lens is smoothed out to some dElgree or another, so 
that this singularity can shift towards much larger 
values of q or may not exist at all. In this case the 
cyclotron absorption exists in the entire region I q I > 1. 
The rounding off of the edge of the lens, however, exerts 
no influence on the singularity at I q I = ±1, which is due 
to the electrons of the limiting point. 

In the local limit as q - 0 the ratio V q /V 0 tends to 
unity, and a_ coincides with the static Hall conductivity 
of the lens electrons. Obviously, for the metals of the 
second group this conductivity is offset by the contribu
tion of the holes. Therefore in such metals the propa
gation of helicons at q « 1 is impossible. To the con
trary, when q is close to unity, the nonlocal conductivity 
of the lens electrons turns out to be much larger than 
its local limit. On the other hand, the hole conductivity 
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differs little in this case from its local value, since the 
displacements of the holes during the cyclotron period 
are smaller than the displacements of the lens elec
trons. Therefore when q ~ 1 the cancellation of the 
electron and hole conductivities is violated. This makes 
possible the propagation of the doppleron, which is sim
ilar to a helicon in the sense that the nonlocal Hall con
ductivity differs from zero in a certain range of wave
lengths. Inasmuch as in this case the electronic con
ductivity exceeds the hole conductivity, the electromag
netic wave has the same polarization as the helicon, 
and its properties are determined by the conductivity a_. 

2. Properties of the wave. The dispersion equation 
determining the spectrum and damping of the wave with 
negative polarization is given by (see, for example, [9 J) 

k'c' = 4nw[cr~·> (k, w) +a~> (k, w)], (10) 

where a~el is the conductivity of the lens electrons, de
termined by expressions (4)-(7), and a~hl is the con
ductivity of the hole type, due to all the other carriers. 
If we neglect the nonlocal effects in a~hl, then its real 
part should be equal in magnitude and opposite in sign 
to the local limit Re a~el(k) lk -o· Thus, we obtain the 
following expression for the total conductivity a_: 

a_( = nnoec r 2(1- f.lo) 
g) HV0 (1- iy) l q' 

+ 1 -q'ln( 1 -q i+f.toq) _ _2(1-iy,)), 
g' 1 + g 1 - f-log l't 

(11) 

where n0 and V0 are given by the formulas (2) and (1). 

y=v/Q, y,=v,/Q. (12) 

The term containing Yt describes the local dissipative 
conductivity due to the collisions of all the carriers. 
The quantity Yt exceeds the quantity y, since the ratio 
yt /Y is proportional to the ratio of the total carrier 
concentration to the concentration of the lens electrons. 

With the aid of (11) it is possible to reduce the dis
persion equation (10) to the form 

a(1-iy)'=<l>(g), (13) 

<I>{g) = 1 { Za- 2a' (1-~) (1- iy,) 
2a(1-a+a'/3)q' g' 3 

_ 1 :- g' ln (~ 1 - f-log ) } 
q' 1 - g 1 + f-log . ' 

(14) 

neH' ( 2m5) 3 

a= 2a(1- a+ a'/3)clt'k!w = ---;;- ' (15) 

where a = 1 .- J.Lo and 

[ n/tc' ]'" (16) 
ll= 2a(1-a+a'/3)we'kF' · 

The characteristic length 1l is close in order of mag
nitude to the thickness of the anomalous skin layer, so 
that the parameter a is proportional to the cube of the 
ratio of this length to the displacement of the limiting
point electrons during the cyclotron period. 

We are interested in the solution of the dispersion 
equation (13) with an almost real value of the wave vec
tor k. The reduced wave vector 

q = kuo I 2n(1- iy) (17) 

will also have a small imaginary part. In the limiting 
case of a very large mean free path, when y and Yt tend 
to zero, the function 4> is almost real (at I q I < 1) and 

1Po 

FIG. 7. Plot of the function <P 0 (q'). 
0,5 
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the solution of the dispersion equation (13) can be sought 
in the form 

g= q' + ig", Jg"J ~ Jg'J (18) 

In this approximation, the separation of the real and 
imaginary parts in (13) can be effected by expanding the 
function 4> in powers of the small quantity iq ", 

a= <I>,(g'), (19) 

_ 3ya= a(1-a/3) y, +g"d<I>,(g') ( ) 
(1- a+ a'/3) g" dq' ' 20 

where the function 4> 0(q') differs from 4>(q') (14) in the 
absence of a term proportional to yt. 

Equation (19) determines the dependence of the real 
part of q' on the frequency and on the magnetic field, 
which enter in the parameter a, and Eq. (20) makes it 
possible to determine the imaginary part of q. By de
termining q in this manner and using relation (17), it 
is easy to find the real and imaginary parts of the wave 
vector k. 

A plot of the function 4> 0(q') is shown in Fig. 7. At 
q' « 1 it tends to a constant limit 

<I>,(O) == a(t- 5a/3 +a'- a'/3) 
1-a+a'/3 

For the lens dimensions given above, we have 
a= 0.197, so that 4>0(0) = 0.171. This limiting value 

(21) 

was obtained neglecting nonlocal effects in the conduc
tivity due to the other groups of carriers. Allowance 
for such effects may change the limiting value and 
probably decrease it. What is most important for us 
is that this value is much smaller than unity, as a re
sult of which the region of existence of the wave turns 
out to be quite wide. As seen from Fig. 7, the effects 
of spatial dispersion begin to play a role in the region 
of values of q' close to unity, where the function 4> 0 in
creases rapidly. At q' = 1 it has a termination point, 
reaching a maximum value of unity. It follows there
fore that in the magnetic-field interval corresponding 
to the variation of the parameter a from 0.171 to 1 
there is a solution of the dispersion equation describing 
the wave propagation. As is seen from (20), the damp
ing of this wave is inversely proportional to the deriva
tive d4> 0 /dq', so that near the termination point q' = 1, 
a = 1) the damping of the wave turns out to be maximal, 
increasing rapidly with decreasing magnetic field. 

It must be borne in mind that the method described 
above for solving the complex dispersion equation (13) 
is not valid near the limiting values of the parameter a. 
In the vicinity of the lower limit amin = 0.171 the de
rivative d4> 0 /dq' vanishes, and at the point amax = 1 
the derivative becomes infinite. Correct allowance for 
the damping in the region a ~ amin causes the minimum 
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possible value of the reduced wave vector qmin to be 
finite: 

( 1-a/3 )''• 
qm<n ~ - 1 - 3a Vt e-••1•, (22) 

For Yt = 0.05, formula (22) gives for qmin a value on 
the order of 0.6. Tnus, in the region of existence of the 
wave the wave vector k is close to 21T /u0 , which is a 
characteristic property of the doppleron. On the other 
hand, variation of q from 0.6 to 1 denotes a noticeable 
change of the period of the oscillations with changing 
magnetic field. 

The maximum magnetic field Hmax corresponding 
to the termination point is determined by the condition 
a = 1. As the magnetic field approaches Hmax from 
smaller values, the value of q' increases and approaches 
unity. This means that the wave vector k increases with 
the magnetic field somewhat more rapidly than linearly. 
In other words, with increasing magnetic field the wave
length of the doppleron decreases, whereas in the case 
of the helicon it increases. Therefore the edge of the 
cyclotron absorption of the helicon lies on the weak
field side, and that of the doppleron on the strong-field 
side. It should be noted that an experimental measure
ment of the maximum field Hmax is difficult, since near 
this edge in cadmium there should exist a Gantmakher
Kaner wave, the length of which is the limiting value of 
the doppleron wavelength. As shown by an analysis of 
the excitation conditions, the amplitude of the Gant
makher-Kaner wave is comparable with the amplitude 
of the doppleron near its termination point. This am
plitude is maximal at the point H = Hmax• falling off 
both in the region of the existence of the doppleron 
H < Hmax• and in the region of stronger fields H 
> Hmax· The overlap of the regions of the existence 
of the doppleron and of the Gantmakher-Kaner wave 
makes it difficult to determine experimentally the edge 
of the doppleron Hmax• 

3. Excitation of wave in metal and surface imped
ance. The distribution of the field in a semi-infinite 
metallic sample is described by the following ex
pression: [lOJ 

1 , +• e""dk 
E_ ( z) = - --; E_ (O) J--:k:-::-' ---4:-n-w-c---::,-cr_-(-::-k,..-) ' (23) 

where E:(o) is the derivative of the electric field with 
respect to the normal on the surface of the metal z = 0. 
Expression (23) was obtained for specular reflection of 
the electrons from the surface of the metal. The same 
formula will be valid also for the distribution of the 
field in a plate whose thickness greatly exceeds the 
damping length of the electromagnetic wave in the 

---t--- CD _ .......... ~ ....... ,. ' 
/ ' 

/ ' 
I ' I \ FIG. 8. Integration contour in 

the complex q plane. 

metal, if the wave is excited on one side of the plate. 
On the other hand, if the plate is placed inside a coil 
and two-sided antisymmetrical (with respect to the 
electric field) excitation of the wave takes place, then 
it is necessary to subtract from the right-hand side of 
(23) a similar expression, in which the coordinate z is 
replaced by d - z. This term describes the part of the 
field due to the excitation from the opposite side of the 
plate. As a result the surface impedance of a thick plate 
can be represented in the form 

+• f- eil!.d 

z_ = - 8iw sdk--;-:;--;;-----;------;:-:-
-oo k'c'- 4nwcr-(k) ' 

(24) 

where d is the thickness of the plate. The term with 
unity in the numerator of the integrand describes the 
impedance of a semi-infinite metal, which at w « v · 
has a smooth dependence on the magnetic field. This 
term has little influence on the oscillating part of the 
impedance, and we shall not consider it here. The term 
containing the factor eikd is a rapidly oscillating func
tion of H and is our main interest. 

Denoting this part of the impedance by az_ and 
changing over from integration with respect to k to in
tegration with respect to q, we write it in the form 

~Z-=8iw6 a'l,(1 -iy)'Jdq exp[q(d/l+2ind/u,)], (25 ) 
c' c q' a(1-iy)'-ID(q) 

where l = VF jv is the mean free path of the lens elec
trons. The integration contour C (see Fig. 8) consti
tutes a straight line inclined to the real axis'at an 
angle y. To calculate the integral, we close the con
tour of integration in the upper half-plane in the man
ner shown by the dashed line. The contour goes around 
the pole p of the integrand in the upper half-plane and 
the edge of the cut between the two branch points q1 

= -1 and qa = -1/1-Lo· The residue at the pole, az~>, 
constitutes the impedanc~ due to excitation of the 
doppleron in the plate, while the integral over the 
edges of the cut z~GK> describes the radio-frequency 
size effect (the Gantmakher-Kaner wave[7l). Thus, the 
impedance of the plate takes the form 

where 

<•> 4nw6 [ , 2nd ] 
~Z- =--A(q,)exp -x(q,)d+iq,- , 

. ~ ~ 

A(q,) = 4(1- iy)'a''{~[q'tD(q)- q'a]} _, , 

dq ·=·· 
) qo' 2n , 

x(q, =--+-q, • 
l n, 

(26) 

(27) 

(28) 

(29) 

The pole q = q0 = q~ + iq~' lies in the second quadrant 
near the branch point q1 = - 1. The amplitude A(q0) is 
inversely proportional to the derivative d41/dq. There
fore, A(q0) tends to zero at the point of termination of 
the doppleron as a - 1, and increases in the region of 
weak fields as a----; amin• The damping of the wave 
K(q0), to the contrary, is small in the region of strong 
fields and large near a = amin· Therefore the imped
ance (27) has a maximum inside the interval between 
amin and amax· 

The period of the oscillations is determined by the 
phase of the impedance (27 ), which depends on the mag-



416 L. M. FISHER et al. 

netic field. The thickness of the plate d subtends a 
large number of displacements u , as a result of which 
this phase is quite large and the Impedance (27) is a 
.rapidly oscillating function of the magnetic field. The 
period of the oscillations ~H corresponds to a change 
of the phase by 27T and can be determined from the 
condition 

d ( 2:td ) 2n = -- -q,' /"iH., 
dH llo 

(30) 

From this we get 

I dq' 1-1 
Ml = (l"iH)cK q,' + H d; , (31) 

where 

(l"iH) GK = 2nlik,c I ed (32) 

is the period of the Gantmakher-Kaner oscillations. C7l 

At magnetic-field values not too close to Hmin and 
Hmax. formula (31) for the conversion of the oscilla
tions can be expressed in terms of the function <1> 0 : 

/j.fl 
(/"ifl)GK (33) 

The functions q', <1> 0, and dcl> 0 jdq' increase monotonically 
with increasing magnetic field from Hmin to Hmax· The 
derivative dcl> 0 /dq' increases most rapidly here, so that 
as a result the denominator of the right-hand side of 
(33) decreases with increasing field, approaching unity 
as H - Hmax· In other words, the period of the oscilla
tions ~H increases monotonically with the magnetic 
field and near the termination point Hmax it reaches its 
limiting value, equal to (~H)GK, 

At magnetic-field values close to Hmin, the q~(H) de
~endence can be obtained by expanding the function <P(q) 
m powers of q2 : 

a(1-a/3) 
!l>(q) ~ amin + a,q' + iy, (34) 

1- a+ a'/3' 

where 

a(1-3a+4a') 
a,= 1- a+ a'/:3 = 0.138, 

and amin is determined by formula (21). Substituting 
(34) in the dispersion equation (13) and solving the re
sultant equation for q, we obtain the position of the pole: 

qo ~- [ Yt ( 1-T) ]''• e-in/8 {1 +a- amin.[ 1- 3a + 4a• ]''• l•/•}(35) 
1- 3a+4a• 4a2 y,(1-aj3) e 

Calculating the derivative dq~/dh, we can obtain the 
following expression for the period of the oscillations 
near the lower edge: 

/j.fl 4 { Umin [ 1 - 3a + 4a2 J'''}-1 
min= 3Jq;,inl 1+----u;- y,(1 -a/3) (1'1H)aK, (36) 

where q~in is the value of q~ at a = amin (see also 
formula (22)). 
. Let us stop to discuss briefly the term z~GK>, which 
1s connected with the quasistationary electromagnetic 
field and is described by the integral over the edges of 
the cut. The main contribution to this integral is made 
by a small vicinity of the branch point q = -1. Conse
quently z~GK> contains an oscillating exponential 
exp (- i27Td/u0), which gives Gantmakher-Kaner oscilla-

tions that are equidistant in the direct field. Calculation 
shows that inside the region of existence of the doppleron 
(a < 1) the amplitude of the oscillations of Z(GK> is 
small compared with the amplitude of the doppleron. In 
the vicinity of the upper edge of the doppleron (a ~ 1) 
the impedance Z~ GK> has a maximum, the value of 
which is of the same order as the amplitude of the 
doppleron in this region. Therefore when a ~ 1 the 
Gantmakher-Kaner oscillations are practically indis
tinguishable from the doppleron. In the region of strong 
fields (a > 1) there exist only the Gantmakher-Kaner 
oscillations, the amplitude of which decreases in the 
region a .<:. 1 and then tends to a constant limit propor
tional to (1l/d)2 exp (-d/Z). 

5. DISCUSSION OF RESULTS 

A comparison of the experimental results with the 
conclusions of the theory allow us to state that the ob
served oscillations of the surface impedance of cad
mium are connected with excitation in the sample of 
propagating electromagnetic waves-dopplerons. The 
characteristic properties of dopplerons are the pres
ence of upper and lower limits of the region of exis
tence of the wave Hmin and Hmax. and the dependence 
of the period of the oscillations on the magnetic field. 
In weak magnetic fields, the period of the oscillations 
is relatively small and increases with increasing field, 
reaching a maximum value near the upper limit of ex
istence of the wave. According to the conclusions of the 
theory, this limiting value should coincide with the 
period of the oscillations of the radio-frequency size 
effect. A similar change of the period with changing 
magnetic field was observed experimentally (Fig. 4). 
The limiting value of the period ~Hz for a sample 
0.40 mm thick (curves 1-3) is 1540 ± 80 Oe, and for 
a sample 0.76 mm thick it is equal to 800 ± 40 Oe. 
Formula (32) for the limiting value of the period can 
be written in the form 

(32a) 

where kF is the radius of curvature of the lens at the 
limiting point in A-\ d is the thickness in centimeters 
and (~H)GK is the period of the oscillations in oersted~. 
We then obtain from formula (32a) and from the pre
sented data 

kF= 1.49 ± 0.08 A-'. 

The obtained value of the radius of curvature can be re
garded as in agreement (within the limits of measure
ment accuracy) with the value kF = 1.42 A.-1 given by 
the free-electron model. csJ The radius of curvature 
kF = 1.3 ± 0.1 A.-1 obtained in CHJ is somewhat smaller 
than the value measured by us. 

As seen from Fig. 4, the total change of the period, 
referred to the period of the Gantmakher-Kaner oscil
lations, amounts to 30-50%. Theoretically this quantity 
can be calculated from formula (36). The minimum 
values of the reduced wave vector qmin and of the 
period of the oscillations ~Hmin are determined by the 
effective dimensionless collision frequency yt. The 
value of Yt can be determined from data on the magneto
resistance of cadmium. It follows from the results of 
c123 that Yt ~ 0.01 in a field H = 15 kOe at a resistance 
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Sample d,mm I f,MHz I 
Hmin' I Hmu• l"mrnr-'1•, 'lrnaxf-1/a, 

· No. kOe kOe kOe·MHz-•f, kOe-MHz-

I 0.40 0.85 7 13 7,4 I 13.8 
I 0.40 1.60 8.5 16 7,3 13.7 
I 0.40 3,46 II 21 7.3 13.9 

II 0.76 1.67 8.5 17 7.2 14.3 
II 0.76 2.65 10 19 7.2 13.8 
II 0.76 4.06 12 21,5 7.6 13.5 

Ill 1,46 4:56 13.5 21 8;2 12,7 
Ill 1.46 '4,6 13 21 7.8 12.6 
Ill 1,,46 5.70 14 23 7.8 12.8 
Ill 1.46 6:63 15 23 8:o 12.3 
IV 1 .. 48 2;9o II 18,5 7,7 13.0 
IV 1.48 5.63 12 22 7.9 12.4 
v 1.48 2:90 12 18 8.8 12',7 
v 1.48 3.41 13 19 8.6 12.6 

ratio p{300°K)/p(4.2°K) = 4 x 104 • For the samples used 
in our investigation, the ratio of the resistances is ap
proximately 1 x 10 , so that at H = 9 kOe the value of 
Yt is 0.067. For this value of Yt. the period of the os
cillations .t.Hmin• calculated from formula {36), is 
0.51 (.t.H)GK· Thus, the relative change of the period 
is 49%, in agreement with the experimental results. 

Let us stop now and discuss the position of the upper 
and lower limits of the region of existence of the dopp
leron. The position of the upper limit, Hmax• is deter
mined by the condition a = 1 and is given by the formula 

(37) 

which follows from (15). Here kF is measured in A-\ 
the frequency fin MHz, and Hmax in kOe. Substituting 
the values kF = 1.42 A-1 and a =0.197 corresponding 
to the model of almost free electrons, we obtain 

{38) 

The position of the lower limit Hmin is determined by 
the condition a = a min = 0.17, from which it follows 
that 

(39) 

The table lists the values of the fields Hmin and 
Hmax measured for five samples in the frequency in
terval 0.85-6.63 MHz. The lower limiting field Hmin 
was determined from the appearance of the oscillations. 
In Fig. 2, these values are marked by an arrow. The 
determination of the upper limiting field Hmax is made 
difficult by the distortions of the dR/dH curves by the 
quantum oscillations, and also by the presence of the 
Gantmakher-Kaner radio-frequency size effect oscil
lations, the amplitude of which decreases slowly with 
the field. Allowance for the latter circumstance is par
ticularly important for thin samples, on which the 
Gantmakher-Kaner effect is clearly seen in strong 
fields. Therefore in the determination of Hmax for 
these samples we took into account two attributes of 
the Gantmakher-Kaner oscillations: the constancy of 
the period, and the weak dependence of the amplitude 
on the field. The doppleron oscillations, to the con
trary, are characterized by dispersion of the period 
and by a rapid decrease of the amplitude near the edge. 
These singularities can be illustrated by the saturation 
of the period of the oscillations in Fig. 3 and by the slow 
change of the amplitude of the oscillations on curve 3 of 
Fig. 2, starting with a field H Rj 17 kOe. Guiding our
selves by these attributes, we determined the position 
of the upper limit of the doppleron Hmax· On the curves 

2 and 3 of Fig. 2, these fields are marked by arrows. 
For thick samples, the position of Hmax was determined 
simply as the field at which the long-period oscillations 
characteristic of the doppleron vanish. 

For convenience in comparison of the experimental 
values of the limits with formulas {38) and {39), the 
table also lists the values of the reduced fields 
HminC113 and HmaxC113• According to formula {37), 
these quantities are determined only by the dimensions 
of the lens and should not depend on the frequency and 
on the sample thickness. For the free-electron model 
(see {38) and {39)), the reduced fields are equal to ap
proximately 7.5 and 13.6 kOe-MHz-113 • For thin sam
ples I and n, the minimum reduced field ranges from 
7.2 to 7.6, and the maximum from 13.5 to 14.3. Thus, 
the positions of both the lower and the upper limits are 
in good agreement with the theoretical values. For the 
thick samples Ill-V the agreement is poorer: the posi
tion of the lower limit varies in the range 7 .8-8.8, and 
that of the upper changes from 12.3 to 13. In other 
words, the region in which the doppleron oscillations 
are observed becomes narrower, and its limits shift 
towards the center. This is natural, since near the 
limits the amplitude of the wave is small and in thick 
samples the wave does not reach the opposite side of 
the plate. 

The constancy of the reduced limiting fields denotes 
that, in accordance with the theory, Hmin and Hmax are 
proportional to w 113• The field H0 at which the amplitude 
of the oscillations is maximal should also be propor
tional to w113, but the proportionality coefficient should 
depend on the ratio of the thickness of the sample to the 
mean free path of the lens electrons. Nonetheless, the 
values of H0 for all the samples shown in Fig. 3 prac
tically fit one straight line. This may be connected 
either with the weak dependence of H0 on d/l or with the 
small variation of the ratio d/l for our samples. 

As already noted above, quantum oscillations of the 
impedance are observed ·in strong fields. Their ampli
tude is modulated at the frequency of the Gantmakher
Kaner oscillations. This modulation is particularly 
clearly seen on curve 3 of Fig. 2. This indicates that 
the quantum are connected with the transmitted wave. 

The foregoing comparison of the theoretical and ex
perimental results shows that the observed long-period 
oscillations of the impedance of the plates of cadmium 
are due to excitation of a doppleron. In this connection 
we note that oscillations of similar type, recalling the 
radio-frequency size effect, were observed in copper 
r13- 15l and in indium. U 6l It is possible that these oscilla
tions are also connected with excitation of a doppleron 
(see [15l). 
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