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Equations are obtained describing the multi- mode regime of a piezosemiconductor acoustic genera­
tor. The stability conditions of the single-mode regime are determined. The line width connected 
with the natural fluctuations of the current in the sample and with the fluctuations of the applied 
voltage is calculated. 

WHITEl1J has indicated the possibility of generating 
acoustic waves in a plane-parallel layer of a piezo­
electric semiconductor placed in a constant electric 
field. The first such generator was constructed by 
White and Wangl2J and later by Maines and Paigel3 J, 

using single- crystal CdS. It is noted in these papers 
that in the case of small supercriticality (i.e. at a small 
excess of the drift velocity of the electrons over the 
critical value at which generation begins), the generator 
operates only on one mode, although the condition for 
the excitation is satisfied already for several modes. 
It was also noted that the generated sound has a small 
spectral width. According to the data of White and 
Wangl2J, the relative line width was smaller than one 
millionth. 

The purpose of the present paper is to investigate the 
stability of the single- mode generation regime and to 
estimate the line broadening resulting from natural 
fluctuations. 

It follows from the linear theoryl1J that the sound 
gain is maximal for waves with wave number q close to 
the reciprocal Debye radius K = (41Te2n/ ET)112 (n-aver­
age electron concentration, e-their charge, €-dielec­
tric constant, T-temperature in energy units). The 
amplification of a sound wave propagating along the 
electron drift exceeds the absorption produced when 
this wave propagates in the opposite direction, when the 
drift velocity V exceeds the value V co defined by the 
equationl4 J 

( 1) 

(here T = E/41Ten!J. is the Maxwellian relaxation time, 
1J. is the mobility, and w is the speed of sound). In a 
sufficiently long sample, when KL » 1 and L » VT 
(L is the length of the sample), the reflection of the 
sound from opposite walls can be described with the 
aid of the reflection coefficients r 1 and r2, which, by 
virtue of the weakness of the electromagnetic coupling, 
are calculated from the boundary conditions of elasticity 
theoryl5 J. The critical value of the drift velocity V c• at 
which the amplification of the wave with wave vector K 

becomes comparable with the absorption and loss to re­
flection, usually differs little from V co: 

(2) 
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(here x is the square of the coefficient of electromag­
netic coupling). For example, for a CdS crystal of 1 em 
length at room temperature we have XK 2LWT = x Lwe/ 1J. T 
= 6 . 102 1). 

If the drift velocity does not greatly exceed the criti­
cal value 

(3) 

then the linear theory gives for the growth increment of 
the sound with wave vector K the following value: 

(4) 

The frequencies of the natural modes of the generator 
should satisfy the interference conditions. Therefore 
the maximum possible growth increment of the natural 
modes, generally speaking, may turn out to be smaller 
than ro/2. With increasing drift velocity, the condition 
for the excitation is first satisfied for one mode with the 
maximum gain. The theory of a generator operating in 
such a regime was developed by V. L. Gurevich and the 
authorl 5 J • However, the super criticality necessary to 
realize such a regime is so small that it is difficult to 
attain in experiment. Thus, at L = 1 mm the value of 
(V- V c)/V co should not exceed 2 x 10-6 • In practice the 
excitation condition is always satisfied for a large num­
ber of modes. This raises the question of the stability 
of the single-mode stationary regime. 

To answer this question we must have a theory capa­
ble of taking into account the interaction between the 
different generator modes. A similar problem arises 
for microwave and optical generators. It is usually 
solved by expanding the field in the resonator in the 
natural modes of the resonatorl6l. In the present paper 
we use the same method. As a result, the problem re­
duces to a study of a system with a discrete number of 
degrees of freedom. In such a formulation, it is possible 
to solve the problem of stability of the single- mode 
regime. It turns out that if the generator operates at a 
mode whose growth increment is close to ro/2, then the 
remaining modes are suppressed as a result of the non­
linear interaction. 

The smallness of the line width in optical and micro-

1lJn this and subsequent estimates we use the following constants cor­
responding to a CdS crystal at room temperature: x ~ 3 X I o- 2 , w ~ 2 X 
105 em/sec, J.l.- 300 cm 2 /V-sec, and E ~ 10. 
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wave generators raises the question of the line width in 
an analogous acoustic generator. The minimum possible 
values of the line width is governed by the natural fluc­
tuations in the conductor. The low intensity of the sound 
in the generator makes it possible to use the Langevin 
method for the study of the fluctuations. In the single­
mode regime this problem reduces to a study of the 
fluctuations in an ordinary Thompson generator. At an 
electron concentration not exceeding 1013 cm-3 , the 
natural width turns out to be exceedingly sniall. How­
ever, with increasing concentration the natural width 
increases exponentially, since the noise is amplified 
together with the signall4 J, the gain being proportional 
to the concentration. At a low natural width, the ob­
served broadening of the line may be connected with 
other mechanisms. We consider here one such mech­
anism-the fluctuations of the external constant field2 >. 
In this case the problem reduces to a study of the fluc­
tuations of the generator parameters. 

1. FUNDAMENTAL EQUATIONS OF THE PROBLEM 

The papers published to datel2 ' 3 ' 7 ' 81 report observa­
tion of sound generation with CdS crystals at room 
temperature. The only mechanism of nonlinear inter­
action of sound waves is the concentration nonlinearity. 
In the present paper we consider only this case3 >. 

The smallness of the electromechanical- coupling 
constant causes all the electronic effects to play a role 
only at distances that are large compared with the wave­
length, and at times large compared with the period of 
the sound. This makes it possible to reduce the com­
plete system of equations obtained inu21 to a system of 
abrreviated equations for slowly varying amplitudes. In 
the case of small supercriticality (3) the amplitude of the 
sound is small, and allowance for the nonlinearity reduces 
to allowance for the interaction of the first and second 
harmonics. For the same reason, the frequency inter-
val within which the excitation condition is satisfied is 
small compared with the average frequency WK, and the 
elastic displacement can be written in the form 

ET . 
U = --[a+e<•(•-wf) + a-e-•"(x+wt) + b+e''"(•-w<) + b-e-"•(•+wt) + K C] 

4n~e · · · 
(1.1) 

Here {3 is the piezoelectric modulus, the x axis is 
chosen in the direction of the drift velocity. The indices 
+ and- pertain respectively to waves propagating in the 
direction of the drift velocity (forward waves) and in the 
opposite direction (backward waves). By velocity of 
sound is meant here throughout the velocity of sound in 
the piezoelectric dielectric w = ../c/p(1 + x/2) (c is the 
modulus of elasticity and p is the density of the crystal). 

The abbreviated equations for the amplitudes are 
derived by a well known method, and it is therefore 
meaningful here only to denote the peculiarities of the 
calculation. The concentration nonlinearity is quadratic, 
and for the abbreviated equations it is necessary to per­
form two iterations in the amplitude- first to second 
order and then to third£121 • The main feature of the cal­
culation is allowance for the interaction of opposing 

2)1 am grateful to A.M. D'yakonov who pointed out this mechanism 
tome. 

3JGenerally speaking, nonlinear effects of another type [ 9- 11 ] can 
play a role in the case of sound in piezoelectric semiconductors. 

waves (seeu31 ). In second order in the amplitude, this 
interaction leads to the appearance of harmonics of the 
type exp(2iKx) and exp(-2iKwt). These harmonics do not 
describe the propagation of waves with sound velocity, 
and by virtue of the smallness of the electromechanical­
coupling constant we can neglect the elastic displace­
ment corresponding to them. From the charge conser­
vation law it follows that the concentration of the elec­
trons does not contain the harmonic exp(- 2i KWt). To 
determine the amplitudes of the current density and of 
the potential of the electric field at this harmonic, we 
use the law of conservation of the total current, and for 
simplicity we assume that the total current in the ex­
ternal circuit at the frequency 2wK is equal to zero. 

The wave amplitudes are assumed to be independent 
of the transverse coordinates y and z, i.e., we disre-. 
gard waves propagating at an angle to the x axis. The 
generation threshold for such waves is obviously higher 
than for waves propagating along the x axis, since the 
coefficient of reflection from the unfinished side sur­
faces of the crystal is small, and the end surfaces are 
metallized and produce additional absorption. 

The excitation condition can be satisfied simultane­
ously for several modes. In this connection, it is neces­
sary to take into account in the abbreviated equations 
the weak spatial dispersion, i.e., it is necessary tore­
tain second derivatives of the amplitudes with respect 
to x (seem' 151 ). These terms are small compared with 
the remaining ones by a factor equal to the ratio of the 
width of the frequency interval within which the excita­
tion condition is satisfied to the average frequency wK. 
They must be compared, however, with the .lpercriti­
cality, and if they are discarded then it turns out that 
the gainS for all the modes are equal. 

Thermal fluctuations in the sample are taken into 
account by introducing random currentsllOH>. This is 
permissible if the drift field is not heating, which is 
well satisfied in CdS at room temperature, and if the 
electron- density change connected with the sound is 
small compared with the average density, a condition 
that coincides with the condition for the smallness of 
the amplitude a+ and a- compared with unity. The con­
tribution of the fluctuations to the abbreviated equations 
are calculated in the same manner as used in the design 
of radio oscillators (seel171 ). Only the terms linear in 
the fluctuations are taken irito account, since inclusion 
of the nonlinear terms would be an exaggeration of the 
accuracy in the Langevin approach. 

As a result we obtain the following system of equa­
tions for the dimensionless amplitudes: 

4>The fluctuations of the elastic stresses are disregarded, since they 
are usually small in comparison with the fluctuations of the current, by 
a ratio TJWK./cx, where TJ is the viscosity coefficient. The viscous absorp­
tion is small compared with the electronic absorption by the same ratio. 



400 B. D. LAIKHTMAN 

We have introduced here the notation 

/-"" =P+Ia+l'a+ +S+Ia-l'a+ +Q+b+at> + G+(x, t) 

1 L/2 

+R+[ la+l'-y J la+l'dx ]a+ 
'-L/2 

I"" f L/'1. 

+T+lla-1'-i J la-l'dx]a+, 
-LIZ 

F- = P-la-l'a- + S-la+ l'a- + Q-b-a-· + G-(x, t) (1.4) 

+ R- [ I a-1' - ~ ''J I a-1' dx] a-
-Liz 

The interaction of the first harmonics in (1.4) is the 
result of the interaction of the sound with the strongly 
damped electron-density wavesllBJ. The last two terms 
are connected with the acousto- electric current r12 l. 

Further 

s+ = - + ...;_----:::-:--'-::-'-::::------'-ixwx [ tVx-r (3 + 2iv_) (1 + iVx-r)] 
(4 + v-') (2 + iv+)' 1- 2iwx-r 5 + 2iVx-r ' 

(1.5) 

S-=- .. ixwx __ ·-[--~ i~x-r + (3+2iv+)(1-iVx,;)]; 
(4 + v+') (2 + iv_)' 1- 2iwx-r 5- 2iVxt 

R+=a;el+ V-w fJ£e 1- V+w 
fJV 4+(V-w)'x'-r'' R-= fJV 4+(V+w)'x'-r'' 

(1.6) 
r+ = a;el+ v + w 

av 4+(V+w)'x'-r'' 
fJ£e1- V-w 

r- = av 4 +( v- w) 2x'-r' 

(1. 7) 
The remaining coefficients are given by the same ex­
pressions for both indices + and- 5 >: 

= =x_wx _i_ i _ _ xwx 
.z. 1 2 2 + iv' ;e' = xwx 5 + 2iv ' A - 2 ~(-2 _+_i_v )-' ' 

p __ . ixwx(1 + iv) (3- 2iv) _ 2ixwx(1 + 2iv) 
- 2(4+v')(2+iv)'(5+2iv)' Q- (4+v')(5+2iv)' 

K = ixwx(f + iv) 
2(2 + iv)'(5 + 2iv)' 

where v should be replaced respectively by 

v+= (V- w)x-r or v_= -(V+ w)xt. 

(1.8) 

The functions a• and a- are connected by the follow­
ing correlation relations: 

<G+(x,t)G+(x',t'))= x'w'x'-r 6(.x-.x')6(t-t') 
2nS 4 +(V- w) 2x2-r2 ' 

(G_•(.x,t)G-(.x',t'))= x'w'x'-r 6(.x-.x')6(t-t') 
2nS 4+(V+w) 2x2-r2 ' 

(1.9) 

where S is the area of the transverse cross section of 
the sample. The remaining correlations are equal to 
zero. 

Equations (1.2) and (1.3) were derived assuming 
small supercriticality. Therefore the difference between 
V and V c is taken into account only in the calculation of 
the linear gain. In all the remaining cases it can be as­
sumed that V = V c· In the calculation of the nonlinear 
terms it is necessary, in addition, to use the inequality 
(2) and to put V = V co· 

5>1n those cases where the formulas have the same form for the 
forward and backward waves, the indices+ and- will be omitted for 
brevity. 

The system (1.2) and (1.3) must be supplemented by 
the boundary conditions on the end faces of the sample 

a+-r,a-=0, b+-r1b-=O for .x=-L/2, 
(1.10) 

a-~ r,a+=O, b-- r2b+ = 0 for .x=L 12. 

These boundary conditions are sufficient, in spite of the 
fact that Eq. (1.2) is of second order in the coordinate. 
It is necessary to choose those solutions of the equa­
tions, which describe sound waves and for which the 
second derivatives are only small corrections. Other 
solutions of Eqs. (1.2) describe electron-density waves, 
which play no role in our problem ll2 J. 

2. MULTIMODE GENERATION EQUATIONS 

In the linear approximation, the solution of the sys­
tem (1.2) is a superposition of the sound distributions 
corresponding to the resonator modes: 

(2.1) 

where 

( [E 1 + - P• ) ( £E 1- - P• ) .p,+(x)=exp w x , .p,-(.x)=exp - w .x ; 

(2.2) 
'\'o 1 . w . XW2 2 + iwxt 2 2 

P•=-2 +-8 !XWX--L km- :rt (k-k,) 
16x2L2 V,o' ,; ' 

xxL 
k, = -Tn"", (2.3) 

with Qlk(t) ~ exp(pkt). The quantity Re Pk determines 
the growth increment of the k- th mode. It is maximal 
for the mode for which (k- k0) 2 is minimal. The excita­
tion condition for the k-th mode is Re Pk > 0. Its fre­
quency is determined by the quantity Im Pk· 

The terms describing the dispersion in (1.2), in view 
of their smallness, were taken into account only in the 
calculation of the eigenvalues Pk· 

To obtain the system of equations describing the be­
havior of Qlk(t) with allowance for the nonlinear effects, 
it is necessary to multiply Eqs. (1.2) by the solution of 
the conjugate boundary-value problemllBJ which can be 
readily verified to be of the form 

(2.4) 

and to integrate with respect to x from- L/2 to L/2. 
As a result we obtain a system 

da./ dt- p,u.=F,(t), (2.5) 

where 

- 1 { e-inA/2 Lsi• F+ (.x, t) e'"''' L/1 F- (.x t) } (2. 6) 
F,(t)-- -=- ---dx+-- J --' -· dx 

2L l'rl -L/2 .p,+(x) fr, -Ltz .p,-(x) . 

To calculate Fk(t) it is necessary to solve Eqs. (1.3) 
for the amplitude of the second harmonics. It must be 
borne in mind here that the conditions for the amplifica­
tion of the first harmonics are close to the threshold 
values, and their amplitudes change slowly. For the 
second harmonics this is not so, and at sufficiently low 
supercriticality, when the condition 

'1'•~1 Re(£E,++£E,-)- Lw ln-1-1 
r1rz 

is satisfied, or, equivalently, 
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V- V, ~ 288 + 8ln(1/r,r,) 
V,, 168t=t 400w'x'-r' xwx'Lr: ' 

(2.7) 

the amplitudes of the second harmonics assume their 
steady- state values before the amplitudes of the first 
harmonics have time to change. Then the solution of 
Eqs. (1.3) with boundary conditions (1.10) is given by 

\""1 ( l + m P< + Pm ) ) + ( b+(x,t).=""-'exp in-~----w-x a,(t)am(t ~ x), 
t,,,. 

(2. 8) 
\""1 ( . l + m p, + p,. ) ) _ b-(x,t)= ""-'exp -m-~-+--w-x a,(t)am(t ~ (x), 
l,m 

where 

(2.9) 

-L/2 

~-(x)= [c-+r'~- I ('i';~'a.t]rp-(x); 

exp[irt(k -l)/2] Ls/Z dx } 
X 12+' I' --::-::: .S(t,-t,). r2 LV- -LIZ '¢1t '¢1 

Here N = nLS is the number of electrons in the sample. 
The problem is thus reduced to an investigation of a 

system with a denumerable number of degrees of free­
dom, the dynamics equations of which are of the form 
(2.15). Equations of the type (2.15) are encountered in 
the theory of multimode laser generationl6J. 

3. STABILITY OF SINGLE-MODE GENERATION 
REGIME 

The simplest generator operating regime is one in 
which the generator operates in the single mode. In this 
case 

da, I dt = p,a, + F,l a, I 'a,, 

where F1 = ~kk k' We put 
' 

(3.1) 

(3.2) 

rp+(x)=exp( :_p,+), rp-(x)=exp(- :.P,-); (2.10) then 

=-~{r,K+ +(-.!:..) -(!..) Ls'' <.P+>'ax· c+ v· 'I' ., 'I' 2 m+ 
2 W ,;;. ....:.L/2 T 

r1r,K- [ L ] Lsi' (.p-) 2 
} +--exp -i-lm(.P,++.P,-) · --_ dx , 

W W -L/2 <jl 

1 r,r,K- [ . L + - ] Lsi' (.p+)' 
C-=--{--exp -•-lm(P, +.P,) -+-dx 

D, w w -L/2 'I' (2.11) 

+ r,K- rp+ (- .!:..) rp- (!__ )_ T (.p-~' dx}; 
. W 2 2 -L/2 <jl 

D,=r,r2rp+(~)rp-(- ~)exp[-2i ~ Im(P,++.P.-)] 

- rp+ (- ~ ) rp- ( ~ ) . (2.12) 

Using these results, we can rewrite Fk(t) in the form 

F,(t) = £ F,~,.a,(t) am (t) a; (t)+ f,(t), (2.13) 
lmn 

where 

1 { e-ink/2 Ls'' G+(x, t) e'•h/2 Ls/2 c- (x, t) ' } 
f (t)=- -- dx+- dx • (2.14) 
• 2£ yr, -L/2 lj),+(x) ir2 -L/2 lj),-(x) 

Because of their complexity, the explicit expressions 
for the matrix elements are given in the Appendix. 

When substituting (2.13) in (2. 5) it must be borne in 
mind that by virtue of the smallness of the nonlinear 
terms in (2.13), the only terms that matter in the sum 
are those that may be resonant. Since the dispersion 
corrections to the frequencies in (2.3) are small, this 
limitation of the summation has an exceedingly simple 
form: 

d~'=p,a,+ £ F1~,.a,(t)am(t)a;(t)+t.(t). (2.15) 
l+m-n=k 

For the functions fk(t) we obtain from (2.14) and (1.9) 
the following correlation relations: 

<fk(tt) f,' tz)) = X2W2X2't { CXp [-iTt (k -l) /2] LSI> __!!!.____ (2,16) 
( 8NL r.J 2 + iv+ I' -L/2 IP• +>!J,+' 

dl ad' I dt = 2Re (p, + F.J a,j') I a, I'· 

The solution of this equation is 

1 ReF ( 1 ReF, ) 
--~ ---+ --,+-- exp(-2Rep.t), 

I a, I Re P• A., Re P• 

(3.3) 

(3.4) 

where Ak:0 is the square of the modulus of the amplitude 
at the initial instant of time. When Re F1 > 0, the am­
plitude of the sound increases from an initial value to 
infinity, i.e., hard excitation takes place. When Re F1 
< 0, the amplitude tends to the stationary value 

(3.5) 

This is the case of soft excitation. 
In view of the complexity of the formulas for the 

matrix elements, the dependence of the character of 
excitation of the generation on the parameters can be 
established only in the following limiting cases. 

Long generator: 
L L 

-;-1Re.2'.J~1, -;-1Re.P,I~1. (3.6) 

At large concentration, WKT « 1 (n » 1014 cm-3) we 
have 

, 367 + 1437r, w ( L ) ReF,= r,(1-r2) . exp -Re.P,+ , 
34112 L w 

(3.7) 

155 - 246r2 - 91r,' w ( L ) 
ImF,=r, exp -ReP,+ . 

. 17056 L w 

At low concentration, WKT » 1 (n << 1014 cm-3) we ob-
tain 

ReF,= -2(5 + 9r,')~exp(.£ReP,+), 
72 L w (3.8) 

r1 w ( L ) ImF, = ---wxr:exp -ReP,+ . 
96 L w 

Short generator:' 
L 

-IReP.J ~ 1, w . 
L 
-IRe.P,I ~ 1. 
w 

In this case the general formula is 

(3.9) 

(3.10) 
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whence 

xwx 
F, = 10496 [63(r,- r,)- 34i(r, + r,)] for wx-r « 1, 

F,=~x~x(i+~-1 -) for wx-.:~1. 
320 15 WXT 

(3.11) 

Thus, soft excitation occurs in a long generator at 
low concentration and in a short generator at large con­
centration, if r 1 < r2. 

We shall henceforth consider only these two cases. 
Formula (3.5) makes it possible to calculate the 

acoustic- energy flux density passing from the generator 
through the boundary x = L/2: 

s.·· = 2 r,( 1; r,') nTwA,'l 'I'+ ( ~) j'. (3.12) 

In the case of (3.6) and WKT ~ 1 we have 

s,··= 9(1-r,') Tn Lw' [v,-v, __ 2_(.!:!!:...+_!_)'] (3.13) 
5 + 9r,' D V,, w'x'-.:' xL 4 ' 

and in the case of (3.9) with WKT « 1 and r2· > r 1 we 
have 

S~··= 1312 r,(1-r,') Tn_::!__[V,-V,_~(~+.!_)']·(3 . 14) 
63 r, - r, xxD V,, 2 xL 4 

Here D is the diffusion coefficient. 
In the stationary regime "k = wkt + Jko, where 

(3.15) 

Formula (3.13) was obtained inu 9 ' 51 for the case when 
the excitation condition Re Pk > 0 is satisfied only for 
one mode. The theory developed in the present paper 
makes it possible to determine the possible existence 
of the single-mode regime in the case when the excita­
tion condition is satisfied immediately for several modes 
(the question of the method of excitation remains open). 
To this end it suffices to investigate the stability of the 
regime against the growth of other modes. If we inves­
tigate the stability of the stationary regime at the k-th 
mode, then, just as in parametric resonance, it is neces­
sary to consider simultaneously two modes between 
which interference is possible, namely the m-th and the 
2k- m- th modes: 

(3.16) 

From the general formulas (A.1)-(A.4) for the matrix 
elements it follows that 

(3.17) 

In addition, in the two limiting cases (3.6) and (3.9) we 
have 

F m7,m = F,;:: 2k-m = F, + F,, F::::::. '·' = F::.~m = F, + F,, (3.18) 
(3)m (3)k 

where F2 = Fzk n' F3 = Fzm n· 
' ' Using formulas (3.5) and (3.15) and introducing the 

new variables 
am·=: Am exp [it Im (Pm + 2F,A,' + F,A.')], 

(3.19) 

we obtain the following system of equations: 
dAm/dt = Re(pm- P•+F,A,'+F,A,')Am +(F, +F,)A,'A;;.-m · 

X exp[- it Im(pm + p,._m- 2p, + 2F,A,' + F,A,' + F,A,')], 

dA,._m I dt = Re(p,._m -- p. + F,A.' + F,A.')A,._m 
+ (F, + F,)A.'Am • exp [-it Im(pm + p,._m- 2p, 

+ 2F,A.' + F,A.' + F,A.') ]. 

For a long generator with WK T » 1 

(3.20) 

F, ~ F," = 16wL r, (1 + r,') [ 1 + i sin[ (k- m)n/2] )exp ( .£ Re ,P,+) . 
(k- m)n/2 w 

(3.21) 
Comparing (2.3), (3.8), and (3.21), and also bearing (3.5) 
in mind, we can easily note that the coefficient in the 
arguments of the exponentials in (3.20) is larger than 
the coefficients of the linear terms, by a factor wK T. 

This means that the interference terms are rapidly 
oscillating and they can be discarded. The stability 
condition then takes the form 

Re(pm- p,) + Re(F, + F,)A.' < 0. (3.22) 

Since 

r,(1+9r,') w (L ) Re(F, +F,)= -------exp -Re.P,+ , 
144 L w 

it follows that if the mode with number k is sufficiently 
close to the maximum of the linear gain, the stationary 
regime at this mode will be stable. 

For a short generator with WK T « 1 
. xwx 

F, = F, =' 128 (r, + r,) (1-llmA). 

In addition, we obtain from (2.3) in this case 
Im(pm + p2k- m- 2pk) = 0. Then, putting 

we obtain 

Am~ exp[ -M-it Im(F, + F,)A.'], 

A,._m ~ exp[ -J,•t- it Im(F, + F,)A.'], 

(3.23) 

(3.24) 

f..=- 1/2Re(pm+P,.-m-2P•+2F,A.') ± (3.25) 
± 1/2{[Re(pm- p,._m) + 2i Im(F, + F,)A.']' + 4IF, + F,I'A,'} 'I•. 

In the limiting case, when the k- th mode is so close 
to the maximum of the linear gain that 

IRe(pm- P2k-m) I~ Re P•, 

expression (3.25) simplifies and we have 

(3.26) 

1 xn' 
(Re 1.) min=- 2 Re(pm + P2k-m- 2p,) = Z-.:x'L' (k- m)' (3.27) 

i.e., such a regime is stable. It is obvious from (3.25) 
that when the k-th mode moves away from the maximum 
of the linear gain, the modulus of the radicand increases 
and the stability is lost. 

4. LINE WIDTH OF SINGLE-MODE GENERATION 
REGIME 

An investigation of the influence of the natural fluc­
tuations on the operation of the generator in the single­
mode regime reduces to a solution of the equation 

da, I dt = p,a, + F,l a, l'a, + j.(t), (4.1) 

which is obtained by standard methods (see, e.g., r201 ). 
The spectral density of the mean square of the ampli­
tude 

(4.2) 
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is given by6> 
, 1 (j.')Z 

(a.)o= 4n (w,-Q)'+<t.')'Z'/16A,' 

-1- (f,') 3 Re P• + (f,')Z/4A,' 
2n (ro, -Q)_' +(3 Rep,+ (f,')Z/4A,')'' 

where 

Z=1+ (2ImF./3ReF,)', 

and (fk:) is defined by the relation 

(f,(t)f,• (t')) = (/.')6(t- t'). 

(4.3) 

(4.4) 

The first term in (4.3) is connected with the fluctuations 
of the phase of the oscillation, and the second includes 
the fluctuations of the phase and the amplitude. The 
line width is determined by the relation 

~Q = Z(/.') /4A.'. (4.5) 

Taking (2.16) into account, we obtain for a long gen­
erator 

. (wx't')' 1 [ V- V, 
~Q = 1152NL'x',; 5 + 9r,' ---y:--

2 ( kn X ) '] -• ( 2L ) --- -+- exp -ReP,+ . 
w'x',;' xL 4 w 

(4.6) 

For a short generator we have 

~Q=~ x'wx(rz'-r,') [t 
41,984 Nr,r, 

+(~ r,+r,.)'][V-V, -~(~+_!_)']-'. 
189 r, - r, Voo 2 xL 4 

(4.7) 

The closest to the existing experimental data is the 
case of a long generator. Estimates based on formulas 
(3.13) and (4.6) give for it the following results. At 
L ~ 1 mm, S ~ 1 cm2, r 1 ~ r2 ~ 1, n ~ 1012 cm-3 , 

(V- V c)/V co ~ 10-3 we have 

8"' ~ 10' erg/ cm2sec ~Q-~ 10-' sec-\ 

and at n - 1013 cm-3 and (V- V c)/V co ~ 10-3 we obtain 

8"' ~ 10' erg/ cm2sec, ~Q ~ 3·10-' .sec-1. 

When the concentration is increased by one more 
order of magnitude, the line width, increases immed­
iately by ten orders of magnitude owing to the exponen­
tial conce~tration dependence. 

In the case of a small natural width, the observed 
generator line width is determined by other mechan­
isms. Its estimate in this case can be obtained with the 
aid of Eq. (4.1). By way of an example we consider the 
line broadening as a result of fluctuations of voltage on 
the sample, i.e., fluctuations of the drift velocity. In 
this case the coefficient Pk in (4.1) acquires an alter­
nating incremenf> 

(4.8) 

Let us consider sufficiently strong excitation, when 

I~P•IP·I~i. (4.9) 

6lin this calculation we take into account terms nonlinear in the 
fluctuation, whereas in the calculation of fk(t) (Sec. I) such terms were 
discarded. In this case we are considering the behavior of a resonant · 
system capable of accumulating the effect of the external action fk(t) 
over long time intervals. 

7lFor simplicity we consider a case when the longitudinal waves are 
not piezoactive and no change takes place in the length of the sample. 

Then the fluctuations of the amplitude can be regarded 
as small, and the mean square of the fluctuation of the 
phase during the time t is given by 

where 

( xw'x',; lmF )' ([M(t}]') = ··----' ((~ V)')t, 
16V,, ReF, 

(~ V(t,)~V(t,)) = ((~V)')()(t, -- t,). 

(4.10) 

(4.11) 

In the limiting cases of short and long generators, 
formula (4.10) gives for the line width the same result: 

x• w•e•s • (4 12) 
~Q-~ ll'T'n ((~V) ). • 

In samples with large trap concentrations, genera­
tion-recombination fluctuations of the electron density 
may be appreciable. This case, however, calls for a 
special calculation owing to the nonlinear effects con­
nected with the trapsl9l • 

5. LIMITS OF APPLICABILITY OF THE THEORY 

In the present section we compare the limitations as­
sumed during the course of the calculation. The most 
significant of them is the smallness of the sound ampli­
tude 

(5.1) 

which made it possible to disregard harmonics higher 
than the third. With the aid of (3. 5) it is easy to verify 
that this condition coincides with the condition for the 
smallness of the mean free path of the wave ihrough the 
sample compared with the time of growth of the ampli­
tude of the individual mode 

or V-V, 8 
--~--v,. xwLx',;. 

(5.2) 

At L - 10 mm, the right-hand side of the second in­
equality in (5.2) is of the order of 10-1. 

To simplify the algebz:aic manipulation, we used con­
dition (3), which, in particular, has made it possible to 
regard the interval of the excited frequencies as 
smaller than wK. For the regime with soft excitation, 
the inequality (5.2) turns out to be stronger than (3). 
The inequality (2.7), used to calculate the amplitudes of 
the second harmonics, is practically equivalent to (3). 

For a long generator, the inequality 

(5.3) 

may turn out to be strong and make it possible to 
neglect the dispersion in the calculation of the matrix 
elements. 

The principal limitation on the applicability of the 
calculation is connected with the influence of the fluc­
tuations on the operation of the generator. The line 
width should be much smaller then the difference be­
tween the frequencies of the neighboring modes 

~Q~w/L; (5.4) 

otherwise the concept of mode itself becomes meaning­
less. 

The condition for small supercriticality does not 
make it possible to consider a large number of phenom­
ena observed in the generator. Thus, inlBJ there was 
observed a strong distortion of the form of the signal at 
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large amplitudes. lnl2 J there was noted appearance of 
subharmonics with a frequency half the frequency of the 
excited mode. The reason of the appearance of sub­
harmonics is obviously parametric resonance£21 J. As is 
well known, parametric resonance in the presence of 
dissipation has a threshold, and therefore there should 
be no subharmonics in the case of small supercritical­
ity. 

In conclusion, I am grateful to A. G. Agronov and 
V. L. Gurevich for a discussion of the work and for a 
number of significant remarks. 

APPENDIX 

The expressions for the matrix elements are of the 
form 

(A.1) 

where 

_ (. l-m-n+k ) LJ'2 '¢•+1Pm-IP·+· } + r,S exp 1 2 n dx , (A.2) 
-L/2 IP• 

L/2 

+R-r2 [ J I~P-I'dx 
-L/2 

Sin[(k-m)n/2] LJ/Z ] 
(k-m)n/2 'ljl,-'ljl.-•dx 

-L/2 

( l-m-n+k ) + T+r, exp - i 2 n 

L/2 m+n-l- k x[ J I~P-j'exp(i nx)dx 
-L/2 L 

Sin[n(k-m)/2] LJ/l ] 
n(k-m)/2 'ljl,-'ljl.-•dx +T-r, 

-Lt2 

( l-m-n+k ) L/l m+n-l-k 
X exp i 2 n [ J jlj)+j'exp(-i nx)dx 

-L/2 L 

Sin[n(k-m)/2] LJ/2 + +•]} 
- (k- )/2 1jJ,1jJ. • n m ~12 . 

(A.4) 
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