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The effect of the plate dimensions and the nature of the electron scattering by the boundary on the 
kinetic coefficients of monopolar metals and semimetals is studied for the case of a strong magnetic 
field (y = r/l « 1, where l is the mean free path and r is the Larmor-orbit radius) parallel to the 
surface. For diffuse scattering, the Hall field near the surfaces possesses root singularities which 
result in considerable alteration of the Hall constant compared with its "volume" value. The depen
dence of the mean electric conductivity on the plate thickness is derived. Electron-hole (intervalley) 
transitions in the volume and on the surface and redistribution of the carrier densities are taken into 
account for semi- metals. It is shown that for a small probability of intervalley transitions on the sur
face, for specular as well as diffuse scattering, the "volume" value of the magnetoresistance p ~ H2 

is attained at a plate thickness b > Ly- 2 (L is the intervalley diffusion length). For small thicknesses 
p ~ H (L < b < Ly -2} and is independent of H (b < L). The skin effect for a skin-layer depth exceeding 
r is considered. It is shown that when the relation between L and l>o is changed (6 0 is the skin layer 
depth at H = 0) the surface impedance may change by a factor y. 

INTRODUCTION 

A special role in the determination of the kinetic 
coefficients of bounded metallic samples is played by 
the character of the scattering of the electrons from 
the surfaces. In the case of "smooth" surfaces (when 
the dimension of the roughnesses is the shortest length} 
the character of the scattering for the distribution func
tion can be taken into account by the boundary condition 
(diffuseness denotes here completely isotropic scatter
ing, specularity scattering with conservation of the tan
gential momentum components; the process of collision 
with the wall is assumed to be elastic). The boundary 
condition consists in the requirement that there be no 
normal surface flux of the particles; by virtue of the 
continuity equation, this requirement should be satisfied 
at any point. We shall henceforth confine ourselves to 
the case of second-order Fermi surfaces and analyze 
first the situation in a monopolar metal with a singly
connected Fermi surface. In the case of specular scat
tering, according to the conservation laws, the normal 
projections of the velocities of the incident and reflected 
electrons are equal and opposite, and therefore, in the 
sense of mutual cancellation of the electron fluxes 
moving from the surface and to the surface, the surfaces 
themselves are not singled out in any way, i.e., the 
boundary condition can be satisfied without a spatial 
variation of the distribution function and without produc
ing an inhomogeneous normal electric field. The situa
tion is different for diffuse scattering: it is clear that 
the electrons reflected from the surface have a distri
bution that is in no way similar to that of the electrons 
moving in the same direction in the interior of the sam
ple. Therefore an inhomogeneous field should arise as 
well as a spatial dependence of the distribution function 
and with it a spatial dependence of all the kinetic coeffi
cients. 
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In Sec. I of the present article we consider a plate of 
monopolar metal in a strong magnetic field (y = r/l 
« 1, r is the Larmor radius and l the mean free path) 
parallel to the surface, at different ratios of the plate 
thickness 2b to r. We investigate the character of the 
spatial inhomogeneity of the Hall field EH in diffuse 
scattering. The inhomogeneity of EH exerts an influence 
on the Hall constant RH, particularly strongly in thin 
samples (when b < r). The dimension dependences of the 
average electric conductivity of the plate are deter
mined. 

We now proceed to the case of a semimetal, which is 
characterized by a multiply- connected Fermi surface 
and equal electron and hole concentrations. The elec
tron and hole Fermi surfaces (valleys) in semimetals 
are separated in momentum space by distances that are 
large compared with their dimensions, as a result of 
which the times of intervalley transitions T are much 
longer than the times of intravalley relaxation T; a 
similar relaxation can also be expected between the 
probabilities of the intervalley and intravalley scatter
ing (including diffuse scattering) on the surface. Conse
quently, in formulating the boundary-value problem we 
encounter a fundamental difference from the case of a 
singly- connected Fermi surface. If the intervalley tran
sitions on the surface can be neglected, then the boun
dary condition that requires the vanishing of the total 
normal flux breaks up into conditions for the vanishing 
of the fluxes of the particles of individual valleys, which 
do not transform into one another upon collision with 
the surface. These conditions can be satisfied only when 
account is taken of the change in the particle concentra
tion in the valleys (there is no total change of concen
tration). Owing to the presence of concentration grad
ients, diffusion contributions to the fluxes appear. 
Together with the normal field, the gradients of the 
concentrations compensate for the Hall drift for each 
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valley (of course, near the boundaries the corresponding 
fluxes are determined by integral relations). In the gen
eral case the diffusion fluxes are determined by the rate 
of intervalley scattering from the surface. 

As a result, scattering from the surface exerts an 
influence on the conductivity up to distances on the order 
of the intervalley diffusion length L (L ~ r, in a mag
netic field parallel to the surface L ~ r{Tfi), over 
which the concentration gradients decrease as a result 
of intervalley transitions in the volume, and the current 
density assumes its volume value. Thus, the current 
can be concentrated on the surface at a depth consider
ably larger than the Larmor diameter. The possibility 
of realizing this case depends on the magnitude of the 
intervalley scattering. In the case of weak intervalley 
scattering (a criterion will be derived below) the effect 
is practically insensitive to the type of the intravalley 
scattering (the degree of specularity of the reflection). 
The case of diffuse reflection differs only in the behav
ior of the transverse field and of the concentration 
gradients in the immediate vicinity of the boundary. 

In Sec. II we consider also the problem of the skin 
effect in an alternating electromagnetic field at a skin
layer depth greatly exceeding r. Allowance for the indi
cated singularities that are characteristic of semi
metals leads, in the case of weak intervalley scattering, 
to changes in the value of the surface impedance and the 
character of its dependence on the magnetic field. 

The influence of the surface on the galvanomagnetic 
characteristics of metallic samples was investigated in 
a number of papers; the most thorough theoretical in
vestigations were those of Azbel' [1,2J and of Azbel' and 
Peschanski1l3 ' 4 J. Inll'2J, correct results for the dimen
sion dependence of the average electric conductivity of 
metallic samples were obtained for the first time, but 
no analysis was made of the inhomogeneity of the normal 
field and of the Hall effect. Inl3 ' 4 J the semimetal was 
investigated in the limiting case when the probabilities 
of the intra- and intervalley transitions coincide and 
the diffusion processes can be neglected. Therefore the 
current density is concentrated at distances ~ r from 
the surface (the so-called static skin effect). Conse
quently the dimensional relations obtained inl3 ' 4 J differ 
significantly from those derived in the present paper. 
Analogously, our formulation of the skin- effect problem 
differs from that used inlsJ. 

For simplicity we confine ourselves to the case of 
spherical Fermi surfaces (in a semimetal- electron and 
hole Fermi spheres separated in momentum space); an 
analysis of other surfaces entails no difficulty and does 
not result in significant differences in the case of a 
strong magnetic field. The parameters of surface scat
tering are 2 ssumed to be specified constants. 

I. MONOPOLAR METALS 

1. Distribution Function 

Let us consider a plate with surfaces z = ± b in a 
homogeneous magnetic field H = Hy. In the T- approxi-
mation, the kinetic equation for the non- equilibrium 
increment efllF0 /IlE to the distribution function 
(F0(E- #J,)-Fermi distribution) is as follows: 

al al I 
v,-+-+-=Ev. 

{)z at ,; (1) 

The time of motion along the trajectory t is determined 
by the equation 

dp e 
-= --[vH]. 
dt c 

(2)* 

We consider first the case of all- specular scattering 
from the surfaces, when the boundary conditions are of 
the form 

(3) 

The symbols ~ denote Vz ~ 0, and the asterisk denotes 
replacement of Vz by -vz. In order not to write out the 
cumbersome formulas, we present a solution of (1) 
satisfying the condition (3), for the case of a sufficiently 
thick plate, when b ~ r. Near the surface z =- b, for 
example, there is no influence of the collisions with the 
other surface, and f takes the form 

1 • 8 i,• 
I = - S dm' e'l(•'-'llv'E (z') - 1 [ J dm' e'<"'-•>v'E (z') 

Q_~ .. Q(i-e''<'• "l) -~ .,. 

Jn-J., 

- e''<'·-·> J~ d!p'e'(•'-•>v'E(z') ) . (4) 

We have taken into account here the periodicity off 
with respect to the time t, and changed over to the pha
ses cp = U(t- t1) E [0, 27T] reckoned for concreteness 
from the upper vertical diameters (U is the cyclotron 
frequency). According to (2) and the assumed origin, 

v. = -v.c cosljl, v, = V.csiniJl, v ... = v,sin 6, 6 E [0, nl. 

The argument of E in (4) is 

1 s· V.c z' = z- z('P)+ z(IJl'), z(IJl) = Q v,(IJl')diJl' = -Rcos!p, R = Q' 

(5) 

The ® function in (4) takes into account the limitations 
on the integration interval, connected with the discon
tinuity of the orbits when they cross the surface; 
A1,2(z, cp) are the phases corresponding to the instants 
of start from the surfaces z = =F b, and are determined 
from the equations 

Rcos 71.1,,(z, q>) = z ± b +Rcosljl, 

which have solutions for A if the following conditions 
are satisfied: 

(6) 

- R < z ± b + R cos 'P < R, i.e. , 8,,, = 8 (R =F z - b + R cos 'P). (7) 

If 0 :s cp :s 1T and cp* = 21T- cp, then 

71.,' = .?..., ,.,. =A.,+ 2:~:, 

From (4) follows the already noted independence off of 
the coordinate. 

Let us consider the case of crossed electric and 
magnetic fields wh~n the applied field is Eo= Ex· As
suming that the Hall field Ez is constant and putting 

E;=v-'E., (8) 

we obtain after carrying out the integration in (4) 

*[vH]=vXH. 
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f=-r:v,E •. (9) 

The distribution function (9) satisfies all the required 
conditions and coincides with the "volume" value off 

' ' from which the Hall field, equal to (8) for a bulky sam-
ple, is excluded. The current density jx in the entire 
plate has a constant value 

;. = a,E., ,a,= e'-t(v.") = e'n-r: I m, 

S 8Fo 2 2 
(x)=- d-r:.--x, d-r:.=-d'p=-mdcpdedp,. 

iJe h' h' · 
(10) 

It is easy to show that (8)-(10) hold for an arbitrary 
ratio of the plate thickness to the orbit radius. It is also 
easy to verify that in the case of an arbitrarily oriented 
Fermi ellipsoid there is likewise no coordinate depen
dence of f, and the Hall field is equal to its volume 
value throughout. 

In parallel electric and magnetic fields (Eo= E ) 
there is likewise no influence of the boundaries, J:d all 
of the kinetic characteristics of the plate coincide with 
the volume ones. 

To determine the principal features of the problem, 
we shall analyze now the case of pure diffuse scatterin~. 
We write the boundary conditions in the form 

f -;;e(=Fb) = "'''' (11) 
The constants x, which have the meaning of the shift of 
the chemical potential for the incident and reflected 
electrons, are necessary in order to take into account 
the fact that the densities of the electrons with v z > 0 
and vz < 0 (not the fluxes!) may not coincide, as it turns 
out in the presence of transverse drift. The importance 
of taking the parameter f. into account was noted by 
Azbel' and Peschanski1c '4 llJ. We shall show below that 
the value of x plays an important role for all thick
nesses of the plate. The values of x are determined 
from the condition that there be no transverse flux jz on 
the surfaces: 

(12) 

Here the signs ± at the angle brackets denote integra
tion at Vz ~ 0. The solution of (1) under conditions 
(11) is 

j"S = _!__ r dm' ev<•'-•Jv'E (z') + 8 <!> ey().,,,-•J + El (1- 8 ) <1> ev<As.,-•J Q ~ T 1,2 1,2 2,1 1,2 2,1 i1 

-oo 

1 Al,2 

<I>,,,= 1(,,,- Q ~ dcp' ev<•'-A,,,J v'E (z'). (13) 
-oo 

In the case of crossed fields, it follows from (12) and 
(13), using the obvious property that the Hall field is 
even (Ez(z) = Ez(- z)) that x1 = -x2 = X· In parallel 
fields we get from (12) and (13) x1 = X2 = 0. 

2. Hall Field in Diffuse Reflection 

The Hall field Ez should be determined from the 
electroneutrality condition (f) = 0, which with the aid 
of (13) is best represented in the form 

'1lThe boundary condition for diffuse reflection should have the 
form (II) also in the absence of a magnetic field, if there exists in the 
system a transverse drift connected, for example, with the inclination 
of the conduction ellipsoid relative to the surface [6]. 

From (14) it is easy to reveal the character of the spa
tial behavior of the function Ez. It is more convenient 
to investigate it with the aid of the integral equation ob
tained by differentiating (14) with respect to z. After 
simple transformations we obtain 

E, (z) (1) = -(8,g,F, + f),g,F,)+ + (6, [<I>,g, - 8,<l>,e'<'•-<>J) 

- 6,[<I>,g,- 8,<J>,eV(',+•-'"l)>+ + E, (15) 

The last term (15) combines the integrals of Ez: 

E, = (X(<p) + X(2n- cp) - 8,X(t.,)g,- 8.X(/.2)g2)+, 
• 

X(cp) = y f dcp'e'<••-•JE,(z'). 

Let us consider separately in (15) the terms Ezo• 
which contain 6 functions. Taking into account the rela
tions 

R b R ll(cp-cp,,,) 
li( - =Fz=F coscp)= I . -8(2R-~=Fz), 

R SlD!flt,21 
(16) 

coscp,,,=±1-(z±b)/R, Rlsincp ... l =l'(b±z)(2R-b=Fz), 

we note that these terms lead to root divergences for Ez 
on the surfaces of the plate. Let us write out the ex
pressions for E z6 in the limiting case y « 1, when the 
exponentials can be omitted: 

E,o' =-1 [-A'-+-A'-] 
nfr jz + b yb - z ' 

- •t• d6sin6 Ai,z =ir f 8(2R- b =F z) {x- Y(O, R- b) 
0 l'2R- b =F z 

+8(R-b)[ib(R-b)E.+: Y(O,R-b)+fY(t.,',R-b)]J, 
• 

Y(cp, x) = nJ d<p' sincp'E,(x- R cos cp') eV(v-•J, 

'J...,' =-arc cos{coscp- 2b/R). (17) 

It follows from (15), furthermore, that when b ± z = 2r 
the function Ez has discontinuities. It is easy to verify 
that the expressions connected with the ® functions do 
not vanish at b ± z = 2r, while the corresponding terms 
vanish abruptly at distances from the surfaces exceed
ing the orbit diameter. The presence of singularities 
and jumps denotes that the electroneutrality condition 
(f) = 0, used to obtain (14) and (15), is violated near the 
singular points. Therefore the expressions (17) are 
meaningful only up to distances on the order of the 
Debye radius from the singular points z = ± b and 
± (2r - b). A more accurate analysis calls for the use of 
the Poisson equation 

dE,/dz 1= -4-Jtl)p, l)p= -e'(f(z)); (18) 

op is the density of the uncompensated charge. It is 
necessary here to take into account the deviation from 
the equilibrium density in the collision integral in (1), 
i.e., to use it in the form (f-f)/T, l = (f)/ (1). It is easy 
to s~ow that the latter is equivalent to replacement of Ez 
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by Bz = Ez- df/dz in all the formulas (with the excep
tion of (18)). The solution of (18) then shows that when 
the distance to the singular points becomes smaller 
than the Debye radius Rn = (41Te2(1)r112 , the divergences 
in B z are compensated by the concentration gradient 
df/dz, and the quantity 1 has in this case, like the field 
Ez, a finite value. 

Thus, a space charge is produced in the vicinity of 
the singular points (the charges have opposite signs at 
different boundaries). The increase of the transverse 
field at the boundary and its jump at Jz- bl = 2r, ac
companied by the occurrence of a layer of a space 
charge of thickness Rn, constitute a specific feature of 
the case of diffuse scattering in a strong magnetic field 
parallel to the surface2 >. 

The quantity E~0 is determined by the values of x and 
Y. The latter depend strongly on the ratio of the plate 
thickness to the orbit diameter. 

3. Thick Plate (b » r). 

Let us proceed to determine X· Were we to know the 
exact solution for Ez, which expresses Ez in terms of 
the parameters x and Ex, then by using this solution in 
(12) we could then express x in terms of Ex. It is im
possible to obtain an exact solution of (15). However, to 
determine x we can employ the very useful relation be
tween the boundary values of the 'current densities jx 
and jz and the parameters x and Ex· It can be shown 
that in a sufficiently thick plate (b » r) a generalization 
of the method of invariant embeddings developed for 
problems of diffuse scattering of particles[7 • 81 to the 
case of the presence of a magnetic field, makes it possi
ble to obtain the following exact relation3 >: 

J,' . 3o, , 
0 +E.(oE.-2J,)=Tx.; ~ • I (J E 

J·=J.+.- •• y 

o,y' 
o=i+y' (19) 

Here l = vFT is the mean free path, and the values of 
the current density are taken on the boundary z = ± b. 
We note that as y -co (absence of magnetic field, when 
jx(± b)= (1/2)ooEx), Eq. (19) goes over into the relation 
between x and jz(± b), obtained in[6J from an exact solu
tion of the problem. When the exact solution is used for 
Ez, formula (19) should be satisfied identically. We note 
that this should take place for an arbitrary ratio of x to 
Ex, since the boundary condition (12), which establishes 
a connection between x and Ex, was not used in the 
derivation of (19). 

The subsequent analysis consists in the following. We 
represent the exact solution for E z in the form of a 
linear function of the parameters x and Ex: 

E.=x.l-'U(z) +E.V(z), (20) 

where U and V satisfy the equations that follow from 
(15) and do not contain external parameters. Then sub
stitution in (19) of the expressions for the currents 
written out, using (13) and (20), also in the form of a 

2>1n a vanishingly weak magnetic field it can be deduced from (IS) 
that the inhomogeneous term goes over into xr' Ei(z/1) (Ei is the integral 
exponential function) in accord with the results of [6). In this case, how
ever, x =I= 0 only in the multivalley case, in the presence of intervalley 
sea ttering. 

3lFor lack of space we do not present here the derivation of (19). 

linear combination of x and Ex, should identically 
satisfy relation (19) for all x and Ex· These conditions 
make it possible to estimate a number of integrals con
taining the functions U and V. 

Leaving out the simple intermediate steps, we present 
expressions for jz and jx at z =- b, obtained in the indi
cated manner for y << 1: 

j,=o[z.u-f+Z,vE.J, j.=o[z.u-}+Z~vE.]. (21) 

1 Z,v=--+a, 
y 

It is now possible to find the connection between x and 
Ex with the aid of the boundary condition (12) or the 
identical condition jz(- b) = 0. As a net result, the prin
cipal part of x is equal to 

(22) 

We proceed further to calculate the current density. 
a) Crossed fields. The average current is given by 

J.= 2
1b J dzj.(z), j(z)=e'(vf). (23) 

-· Using here the distribution function (13), we can verify 
that it is important to take into account the terms con
nected with the parameter X· We do not present the 
cumbersome intermediate steps (we note that the inte
gral terms that depend on Ez are similar to those con
tained in (21) and are estimated in a similar manner), 
but write out the final results: 

J,= o,E.(i- a'r/ b), a' -1. (24) 

In the same approximation, the Hall constant RH turns 
out to be 

1 
Ra~=-, 

enc 

- 1 & 
E, =-· -S dzE,(z). 

2b -· 
(25) 

With the aid of the distribution function (13) we can also 
investigate the character of the current-density distri
bution over the plate. According to (21) and (22), jx on 
the surfaces is proportional to o0 yEx. Analyzing the 
expression for the current density jx(z), we can show 
that at distances ~ r from the surfaces the current den
sity increases strongly: h ~ ooEx. However, it is im
possible to obtain an estimate of jx(z) at large distances 
but still prior to the assumption of the asymptotic value 
ooEx· 

b) Parallel fields. When y « 1, the average current 

density fy and the current density on the surface are 
equal to 

J. = o,E.[t-1::~]. 
16 b 

. ny 
7.(± b)= 2 ooE •. (26) 

A density on the order of the asymptotic value ooEy is 
reached at distanc~s ~ r ~rom the surfaces. 

4. Thin Plate in a Strong Field (b « r « l) 

The analysis in a thin plate is facilitated by the facL 
that in this case Eq. (17) is a sufficiently good approxi
mation to the exact solution (15), as can easily be veri-
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fied by iteration. Equation (12) for x reduces, in the 
zeroth approximation in y, to the form 

< (R-b)6(R-b)Jx•+!!- RE. [arccos(t-~) 
~ 2 4(1-b/R) R 

- 2 ( ~ )"' ( 1-! )' ( 1-~ ) ]} ) = 0. ! (27) 

Here WO denotes the integral term 

-·· 4A'V2b W"(<p) = RJ d<p' sin<p'E."(- b+Rcos<p-Rco!l<p') = W'(Or=- ---.. 
' n r • 

(28) 

We have used (17) withy= 0. As a result, forb~ r, 
we have 

w• 2 x• ~ - 2 =--,;bE,. (29) 

We present the result for the average current density 
fx in crossed fields, obtained by straightforward but 
cumbersome calculations using (29): 

~ 3 b r 
J·=--ln-a.E .. 

4 l b 
(30) 

Analogous calculations lead to the following values of 
Ez and of the Hall constant: 

1 r 
E,~ -~E,ln-, 

It h 

In parallel fields we have 

~ 3b(r 2b) ~u=- ln-+- a,E •. 
4l. b 3yr 

n. SE:MIME TALS 

1. General Equations and Solution of Static Problem 

External magnetic and electric fields H = Hy and 

(31) 

(32) 

E =Ex are applied to a plate (surfaces z =±b). We as
sume that the field H is strong (y ~ 1). The case of 
parallel fields E and H does not differ in any way from 
the corresponding above- considered case of a mono
polar metal, and will not be discussed further. 

We shall assume the plate to be "thick," i.e., b ~ r; 
it is precisely this case which is of fundamental inter
est for semimetals. The results for a "thin" plate 
(b ~ r) practically coincide with those obtained in 
Sec. I. 

Let us write down equations for the distribution func
tions of the conduction electrons ( c- electrons) and for 
the valence band (v-electrons). (We shall sometimes 
omit the indices c and v.) The nonequilibrium additions 
f to the distribution functions satisfy linearized kinetic 
equations that differ from the equations used inl 61 in 
that account is taken of the field H: 

V 8/c,v + 8/c, • + /c,o -Jc,v + fc,v -J •• c = Ev. (33) 
z iJz iJt 'f~. • T •• • 

The arrival terms in the collision integrals are dete~
mined by the average quantities 

J,= <t> I <1>, (34) 

with the integration carried out over the Fermi surface 
corresponding to the index. The changes in the concen
trations are 

6n = n- no,= -e(/), 

6n.+6n.=0, i.e., J,+ af.=O. (35) 

In formula (33), T ~ v are the times of intra valley re
laxation, Tc v are the times of the intervalley relaxation 
(transitions 'from the c- states to the v- states and vice 
versa); 

T. 
-=a, 
T. 

(1). m. 
a=-=-. 

(1). m. 

We rewrite (33) for the functions 

,P=I-J+G, G •.• = r"•·• (J,,.-f •.• ), 
1 11 1 
-=-+~. (36) 
'f 'fo · T ..• 

where the quantities G are small by virtue of the pro
posed smallness of the ratios T /T. We obtain in place 
of (33) the equation 

iJ,P iJijl ,p v,-+-+- = 8,v,, 
iJz iJt 'f 

8,=E,, 
d 

8.=0, 8,=E,--;;;(f-G), (37) 

which is analogous to (1). 
The boundary conditions at z = ± b are of the form 

(compare with[ 61 ) 

formula /(=Fb) = qf(=Fb) + X•.• 
or 

..p(=Fb) =lflll'(=Fb) +i.... X•.•=X•.•+ (q-1)[f(=Fb) -G(=Fb)). 
(38) 

Here q is the fraction of the specular reflection upon 
collision with the surface. The parameters x are de
termined from the balance equation of the incoming and 
outgoing fluxes, ensuring the absence of a total particle 
flux through the surface[BJ 

(v,f,)+ + (q, + d,)(v,f,)_ + ii(v,f.)_ = 0, 
(v,f.)+ + (q. + d,) (v,f.>- + ii(v,f,)_ = 0, (39) 

q.,.+d •.• +ii;=1; 

de v are the fractions o£ the diffuse intravalley scatter
ing on the surface, and dis the fraction of the inter
valley scattering (by virtue of the detailed balancing 
principle, the probabilities of the transitions from c to 
v and vice versa are equal). 

In what follows we shall need the relation between 
Xc and xv: 

-. -. j,'(=F b) [ d, ] 
x •.• (1- q.)- x •.• (1- q,) = e'(v,>+ 1- q,-(1- q.)7 

- ~J.(=F b) (1- q,) (1- q.), 

~ = a+ 1 [1-~-~]. (40) 
a T, T. 

This relation was obtained by substituting (38) in (39) 
and using the definition of the current density and the 
condition jc + jv = 0. When qc v = 1 (all d = 0) the 

z z ' parameters x and the currents jc,v(±b) are equal to 
~ z 

zero; when d = 0 we have j~,v = 0 but x ""0. 
We write down the system of continuity equations that 

follows from (37) 

a;::-_ '<1> G •.• ---e c,,-
dz 't'c,v 

(41) 

or the equivalent equations 
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~c,tJ=Ge,v, ( 42) 

!_rom which we can, in principle, determine 13'~,v and 
f c,v. The problem can be simplified by using the pres
ence of the small parameter 7 /T in the expression for 
G. Since the terms with G in the right- hand sides of 
(41) limit the spatial growths of the concentrations, it 
follows from the smallness of 7 /T that the characteris
tic distances L, over which this limitation takes place, 
can be regarded as sufficiently large compared with r. 
We can therefore consider separately the boundary 
regions (at a distance from the boundary ~D., with 
r « D. « L), where the terms with G can be neglected, 
and the remaining volume of the plate (with lb- zl > D.), 
where the diffusion approximation for the currents is 
well satisfied. The matching of the solutions at lb- z I 
~ D. gives the boundary conditions for the diffusion ap
proximation. 

2. Current Density in Plate 

We consider first the interior region of the plate, 
where by virtue of lb- z I > 2r the distribution function 
has the same form as in an unbounded space, and the 
expressions for the currents are 

j, = cr(t3', =F y-'E.), j. = a(E. ± y-'13',). (43) 

Eliminating the field Ez, we get 

0 • 1 [ ( (J, <Yv) dJ,] E,. =--+- E. --- +cr •.• ~-d . 
Oc. O"v Yc Yu Z 

(44) 

Solving the continuity equations (41), we obtain 

2 OcO"v Tc r 2 Tc 
f, = C,e-<•+')IL + C,e<•-')1', L =:~+a, e'( 1), = 3 ( 1 + yJy.) ,;, 

(45) 

The constants cl and c2 are determined by the boundary 
conditions at z = D. - b and z = b- D.. To find these 
conditions, we use the following relation, which is ob
tained after averaging the kinetic equation multiplied by 
Vz ± Y-lvx: 

J~=jz±~E:t. 
'Y 

After integrating ( 46), from which we eliminate the 
field Ez, from-b to-b +D. (or from b to b- D.), we 
obtain 

(46) 

- - 3 1 ~ 
f,(f1.-b) = j,( -b)+ Tn""""ii .:_. ±((v' sin cp(sin cp + y-• cos cp)ljl(- b))), 

'·" 
ft •• 

v =sine, «t» = J sine de J dqlt(e, q>), 
0 0 

and analogously for fc(b- D.). We ha~e used here Eqs. 
(43)-(45), omitted the small term~ f (D.)D./L, and as
sumed jz(-b) = jz(D.- b). Using the rSation (40), we 
eliminate fc(-b) (for q ~ 1): 

~f,(~-b)=~-___i_+~ z.;:,(O) [-1--~-1-~ 
1- q. 1 - q, 3 Uo 1 - q. if 1- q,'J 

3~ + 4,.,~ ± ((v'sincp(sincp +v-'coscp)ljl(- b))). (47) ... 
The solution of the problem in the boundary regions 
should give the connection between the parameters x 

and the values of the current j~ and the field Ex, and 

also determine the last term of (47) in terms of the 
same parameters. 

The cases of specular and diffuse reflections will be 
considered separately. 

1. The case q = 1. In the boundary regions, putting 
in (4) f = lj; and 

(48) 

we obtain for the functions lj; the values 

(49) 

which satisfy the conditions "iP = 0, i.e., the continuity 
equations. It follows from (48) that the concentration at 
the boundaries varies linearly and the field Ez is con
stant. 

We can now find the current density in the plate. For 
specular scattering, the boundary conditions are the 
relations { = 0 both on the surfaces z = ± b and on the 
boundariesz of the region of the diffusion approximation. 
Using (43)-(45), we find 

f, = (..!_ + ..!_) E,L sh(- z/L) 
y, y, II ch(b/L) 

(50) 

.(_the small, i.e., ~ D./L, difference between fc(- b) and 
fc(D.- b) is neglected). For the average current density 
Tx = T~ +~we obtain with the aid of (49), (43), (44), and 

(50) 

(51) 

2. The case q = 0. It is required to solve the system 

of equations </! = 0. It is impossible to find the solutions 
of these equations, but we shall use the same method of 
determining x as in Sec. I. In the case of a multiply
connected Fermi surface, there is also a relation (19) 
which holds for each group of carriers, except that x in 
(19) should be replace}! byx, and it is necessary to use 
the definition (46) for jz. Proceeding just as in the 
derivation of (22), we obtain expressions connecting X 
with jz(O): 

- r [ J, (O) ] x=- --+aE y3 (J - X l 
a~ 1. (52) 

Formulas (52) should be used in the boundary condi
tion (47), and also in the calculation of the average cur
rent. We confine ourselves for simplicity to the case of 
a symmetrical plate (identical scattering conditions on 
the surfaces), when 

r<-b) = -f(b), i<-b) = -x(b), ;.(-b) =j,(b). 

Calculations with y « 1 give for the last term of (47) 
the estimate 

a, (X, - i.) + a,E.r, a, ~ 1. 

As a result, the boundary condition (47) for diffuse 
scattering takes the form 

11- 4 j,'(-b) [ d,] a ., b)+ ' E (53) -f,(/1-b)= 1-- +-J, (- ay,~ •. 
lc 3 Goc i/ OocVc 

From (43)-(45) we have for j~(-b) in this case 
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j,'(-b)=-y,a,'E,+ 1 +a~oly. ~f,(/1-b)cth ~· 

From (53) and (54) it follows that 

J,(/1- b)= E, (1 + .!:.) !:.___, 1 + aa th~~ 
~ y, y, 1 + Q L 

3 ( y,) L b Q=-a 1+- -th-. 
4 y, y,r L 

(54) 

(55) 

In writing down (55) the only term with fc(A- b) re
tained in th~ right- hand side of (53) is the one with the 
coefficient d-\ which is capable of competing with the 
left-hand side. It turns out to be significant for small 
values of d, when Q ;:;:; 1. 

A cumbersome calculation, which is not presented 
here, yields for the average current density 

• [ L1-2tl b l,]E J•= a,+a.+(a,'+ao)---th-+3a,- •. 
b 1 +Q L · 2b 

In the calculation we used the value resulting from 
(52)-(55): 

- r ( 1 ) 
x=± y3 y(i+Q) +a E •. 

(56) 

(57) 

An analysis of the behavior of the current density at 
the boundary shows that as z - r- b we have 

. e,v{t) ( 1 + ) E 1 7x ~ a, 1 + Q ya ,, y ~ . 

Subsequently, on approaching the region of the diffusion 
approximation, jx assumes a value that follows from 
(43)-(45) and (55): 

. ()-E[ + +.( '+ ')1+aach(z/L)] Jx Z - x Oc Ov O'c Ov ----- • 
1+Q ch(b/L) (58) 

In the case of specular scattering it is possible to des
cribe the current density by formula (58) with d = Q = 0 
for all z. An investigation of the behavior of the func
tions f!f z(z) at the boundaries in diffuse scattering shows 
that f!f z increases in proportion to z-1/2 on approaching 
the surface (of course, we are dealing with an approach 
to the boundary of the quasi-neutral region, which is 
located at a distance on the order of the Debye radius 
from the surface). The transverse field Ez and the con
centration gradients show similar behavior. The corre
sponding e~ression is analogous to (17), i.e., the coeffi
_sient of z-1 is determined by the values of Ex and 
X (57). 

After a number of transformations we can obtain the 
following expression for the average Hall field in the 
case of diffuse scattering: 

- 1 'Yv- ay, r .. 
E, = (y,- y,)E, + ----

cr,'y, y, + y, 1 +a 

rE. [ 2 ( 1 a ) 1 ] 
-2);' a+ y3 ~--:;.- (1 + Q)·(1 +a) (59) 

where the numerical constant is a~ 1 and ~1 is equal 
to the last two terms of (56). In the case of specular 
scatte~ng, Ez consists of the first two terms of (59), 
where jx1 is the last part of (51). The values of the Hall 
constant R in samples where the influence of the dimen
sions is appreciable (i.e., Q;:;:; 1, L > by2) are as fol
lows: 

R=R y,-ay, (1--r-cth~) R =-1-~. (60) 
~ (y,- y,) ( 1 + a) }3L L ' ~ enc 'y, + y, ' 

Roo is the Hall constant of a bulky sample (in our case 
for L < by2). 

In the case of thin samples (b « r « l) a calculation 
similar to that carried out in Sec. I yields 

3. Skin Effect 

R = -~-1_!:_ 1-a. 
3n enc b 1 +a 

(61) 

It is obvious that the inhomogeneous distribution of 
the current density at the surface, analyzed above for 
the static case, should also take place in an alternating 
field the depth of penetration of which is large compared 
with r. We can then use formulas (43) and (44) of the 
diffusion approximation for the currents. The problem 
is described by Maxwell's equation 

d'E. 4niro . 
--=---]. 
dz' c' 

(62) 

and by the continuity equation (41) 

dj,' , <1).J,~ 1 1 iro a+ 1 
a;-= -e -T-,- r=y--p-' ~=-a-; (63) 

w is the frequency of the electromagnetic field. All the 
quantities are proportional to exp (kz/L- iwt), and 
kr « L. From (62) and (63) we obtain the dispersion 
equation 

iL' iL' iL' 
k'+k'(6.'+T-1 ]-7 = o, 

c26-2 = 4roro (a,+ a,), c'li,-2 = 4roro (a,• +cr.') . 
(64) 

We obtain the value of L by replacing Tc by T1 in (45). 
By virtue of o 2/ o~ ~ y -2 » 1 we can write the solutions 
of (64) in the form 

L'/6' 
k,' ~ -.,.---:::-:::-::

i+L'/6,' 
(65) 

We confine ourselves to consideration of a half- space 
and represent Ex and Ic in the form 

k,,,L ( 1 1 ) E,,, 
/t,2= k' -1 -+- -R-. 

t,z Yc Yv P 
(66) 

We shall assume that on the boundary of the region of 
the diffusion approximation Ex(A) = Ex(O), i.e., E1 + E2 
= Ex(O) = Eo. The boundary condition for the concentra-

tion I is given by formula (53); after substituting in (53) 
the expression for the current j~(O) and taking (66) into 
account we obtain a second equation relating E1 and E2 
with E 0 • The solution takes the form 

E = ~[aE+ k2,,+Q~-'-arL-'] 
'· 2 ± D 1 - k 2 '· 

2,1 

3 ( y,) aL 
Q~=- 1+- -, 

4 y, y,r 

D = k, - k, [ 1 k k (-1 - ar) (k k ) ] 
(1-k,2)(1-k,') + I 2 + Q~ L ·+ 2 • (67) 

To determine the surface impedance 

w 

Z = E,/1,, I,= J dzj,(z), 
0 

(68) 
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it is necessary to find the total current J x· To this end 
we perform a calculation similar to that made above in 
the static case. After a number of simple transforma
tions we obtain 

(69) 

Calculations using (67) yield 

.!:_ = L [ 1 + k,k, + k, + k, ]-' { 0 ' + 0 " [ k, + k, 
Eo Q~ k,k, 

+(1+k,k,) {-1 + ark,k"}] +{~+..!..) o0'y,}· (70) 
Om L y, y. Q~ 

We have omitted here a number of terms~ rkL-1 « 1. 
It is assumed that Q $ 1; actually the case Q » 1 is 
not covered by our analysis. Indeed, the current density 
jx is then concentrated mainly at the boundaries and it 
cannot be assumed that Ex(A) ~ Ex(O). 

We present expressions for Z at two limiting ratios 
of Land l>o: 

o, 
k.=-0 • 

L<6o, k,= 1, 

z,-i -~----( 4niro )''• 
c'(o.· + Oo") 

·( 4niro )'''[ ;:t, L,]-' z,-z 1+---
c'(o,+o.) 1+Q 60 

(71) 

Here Lo = L/y is the diffusion length at H = 0. The 
realization of the considered limiting cases can be 
attained by varying the frequency; we note that the sur
face impedance changes in this case from its value at 
H = 0 (Zl) to the value determined by the volume conduc
tivity (Z2). 

DISCUSSION 

Let us analyze first the results obtained for the 
monopolar metal. The main difference between diffuse 
and specular scattering is, as already noted, the depen
dence of the kinetic characteristics of the plate on the 
dimensions. A strong magnetic field parallel to the 
surface causes a much sharper inhomogeneity of the 
current density at the boundaries than in the absence of 
a field. Thus, at H = 0 (or y » 1) in a thick plate 
(b » l) the value of j on the boundaries is only half its 
volume value; in the case when y << 1, on the other 
hand, the current density in a surface layer of thickness 
~ r decreases by a factor y. Thus, in a plate of a mono
polar metal (or when ne ,._ nh) with diffusely- scattering 
walls the current flows mainly in the internal region of 
the sample- in contrast to the well known Azbel' static 
skin effectl11 , which takes place for metals with differ
ent numbers of electrons ne and holes nh, and also in 
contrast to our results for semimetals, according to 
which the current can be concentrated at the surfaces 
within a depth ~ L » r. The results (24), (26), (30), 
and (32) for the average conductivity were obtained 
earlier by Azbel' l 21 • 

The data obtained by us are of interest for another 
average characteristic of the plate, namely the Hall 

constant, particularly in thin samples (with b < r). 
Namely, according to (34), the contribution to RH that 
depends on the dimension of the sample is much larger 
than the Hall constant of the bulky sample and has the 
opposite sign. In the case of diffuse scattering, the Hall 
field at the surfaces increases sharply compared with 
the volume value: for thick samples, according to (17) 
and (29), E~ ~ ../r/(b ± z)Ex/r, and in thin plates 
Ez ~ Ex../b (b ± z) (here, as already noted, it is neces
sary to put at the boundaries b ± z = Rn, and in metals 
the Debye radius is Rn « r, b). The space charge con
nected with the singularities of Ez is, however, negligi
ble, and estimates show that its density in a thick plate 
is 

Direct observation of the inhomogeneities of the Hall 
field in metals is apparently impossible. Among its in
direct manifestations is the effect in which the Hall con
stant depends on the dimensions, particularly in thin 
plates. One can expect a sharp increase of the Hall field 
at the surfaces to affect the period of revolution on the 
Larmor orbits. In fact, the usual condition of neglecting 
the electric field E in the equation of motion along the 
trajectory reduces to the inequality yeEl « JJ., where J1. 
is the Fermi energy; in our case forE = E0 at the boun
daries of a thick plate yeEZ ~ ../r/RneExf,, f.e., the in
fluence of the electric field on the trajectory increases 
strongly. By virtue of the inhomogeneity of E..z, action 
of the field on the cyclotron frequency is possible. 

We did not discuss the experimental data, since our 
results for the average electric conductivity coincide 
with the previously obtained data that are in qualitatively 
good agreement with experiment in parallel fields; for 
crossed fields, insofar as we know, no detailed investi
gations have been made, nor are there experiments on 
the Hall effect and on the i-nhomogeneities of the cur
rents and of Ez. 

We now proceed to the case of a semimetal. We first 
discuss the results obtained for the average electric 
conductivity of the plate. As shown in Sec. II, the influ
ence of the surface scattering on the average current 
fx is connected principally with the fraction of the inter
valley (electron-hole) transi.tions. The magnitude of the 
intervalley scattering determines the value of the 
parameter Q (55). If Q $ 1, then according to (51) and 
(56) the type of the intravalley scattering hardly affects 
the value of the average current ~· (In the ca~e of 
weak diffuseness, i.e., 1 - q < y, the value of j , as 
shown by calculation, is determined by formulax(56) 
without the last term.) 

For Q :S 1 there follow from (51) and (56) the follow
ing limiting cases with different types of dependences 
on band H: 

b « L, fx ~ aoEx and does not depend on If and b; 
L < b < Ly-2 , fx~ aoLb-1Ex, i.e., it is proportional 

to (Hbr\ 
b > Ly -2 , fx ~a Ex, i.e., it is proportional to H-2 • 

A diiiusely scattering surface with Q » 1 leads to 
different values of fx, nam.ely fx ~ a(l + alb-1)Ex, with 
a~ H-2 dependence at all thicknesses. The same result 
is obtained also for weak diffuseness. 
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The results of Sec. I remain valid for the case of a 
thin plate (b « r « l). 

The condition Q ~ 1 calls for a small coefficient of 
j.ntervalley scattering: 

ii ~ y l/ _:,cth~ f T L. 

It is possible that the above-noted smallness of d takes 
place in the case when the surface relief is sufficiently 
smooth, and the collisions cause small changes in the 
electron momentum compared with its initial value (we 
recall that in momentum space the distances between 
the valleys in Bi exceed the dimensions of the valleys by 
two orders of magnitude). 

In such a case the above-noted deviations from the 
quadratic dependence of fx on H-1 with changing thick
ness b should appear. We note that the quantity Q itself 
is a function of H (the parameter d and the times T and 
T in our model are assumed to be constants independent 
of H). Therefore when the field increases, the "weak" 
(in the sense Q ~ 1) intervalley transitions can become 
effective (Q > 1), and this leads to a quadratic depen
dence of fx on H-1 even in the case of a small share 
( ~ y) of diffuseness. 

The diffusion length L is determined by the ratio 
T/ T. According to the experimental estimatesl9 ' 10J, 
T/ T > 102 for Bi at helium temperatures. Thus, in Bi 
the value of L exceeds the Larmor radius by dozens of 
times, thus justifying the employed method of solution. 
Therefore deviations from the quadratic dependence of 
fx on H-1 in a field parallel to the surface, as observed, 
for example, for Bi in[ll' 12 J, may be connected with the 
exceedingly small value of d (Q ~ 1). Inl11J, to explain 
the experimental data, use is made of the diffusion size 
effect, but its theoretical analysis is carried out in the 
diffusion approximation using a phenomenological boun
dary condition ji'v(± b) =±eSc vc5nc V' where S are the 

' ' rates of surface recombination. It was shown in Sec. II 
that in a strong magnetic field the boundary condition of 
the diffusion approximation has the form (53). Unfor
tunately, the experimental data inu1J are given in such 
a way that it is impossible to extract information on the 
field dependence of the part of the average conductivity 
which changes with thickness (corresponding to the last 
terms in (56/)· Apparently inl11J the case L > b was not 
realized. In 12J , to explain deviations from the quadratic 
dependence of the magnetoresistance on H, they used 
the static skin effectl2 ' 41 , in the theory of which such an 
explanation calls for the assumption that the scattering 
by the surface is almost completely specular. Allow
ance for the diffusion effects makes it possible to ex
plain the deviation from the H2 law also in diffuse scat
tering, under the previously assumed condition that the 
intervalley transitions are weak. 

The type of scattering by the surface (intravalley 
diffuseness or specularity), while hardly affecting the 
average electric conductivity when Q ~ 1, does cause a 

strong difference in the behavior of the transverse elec
tric field Ez at the boundaries, in analogy with the 
already examined case of a monopolar metal. This dif
ference in the behavior of E z affects the value of the 
Hall constant described by formulas (60) and (61). 

Information on the scattering properties of the sur
faces can also be obtained with the aid of the skin effect. 
Depending on the ratio of the length L and c5 0 , the sur
face impedance at Q < 1 changes in the limiting cases 
by a factor of y, and with it a change takes place in the 
character of the dependence on H. These limiting cases, 
in principle, are attainable by varying the frequency. 
When Q » 1, as already noted, the results of Azbel' 
and RakhmanovlsJ are valid. 

Thus, using a very simple model, we have demon
strated the possibility of a pronounced influence of the 
surface on the characteristics of the magnetoresistance 
and on the distribution of the currents and of the trans
verse field. The experimental data still do not allow us 
to conclude that diffusion effects are important in the 
presence of a magnetic field. In this respect, compre
hensive measurements of the conductivities, the Hall 
constant, the surface impedance, and if possible the dis
tributions of the fields and of the currents at the boun
daries would be useful. 

The authors are grateful to M. Ya. Azbel' and E. I. 
Rashba for very useful discussions. 
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