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The electrodynamics of weak superconductivity in finite-width tunnel junctions is investigated. When 
account is taken of the boundary conditions of the junction borders, phenomena of "magnetic overheat
ing" type arise in both the Meissner and mixed states. A diagram of state is set up for a finite-width 
tunnel junction in an arbitrary magnetic field. In contrast to the situation encountered in ordinary su
perconductors, the absolute stability boundary of the metastable superconducting state coincides with 
the upper boundary for the existence of the Meissner solutions. Josephson plasma oscillations in a 
semi-infinite junction are studied in the Meissner and mixed states. 

AN elementary analysis of the influence of the bound
ary of the metal on the magnetization curve of a bulky 
superconductor r 1 l has shown that although a transition 
to the mixed state becomes thermodynamically favored 
in a field H > Hc 1 , in order for the vortex to penetrate 
into the superconductor the latter must overcome a cer
tain potential barrier, the magnitude of which (in the 
simplest case) is determined by the elastic properties 
of the vortex filament and its interaction with the mag
netic field. r 1' 2 l A thermodynamic consideration of the 
stability limits of the Meissner state in the limit of 
large K t 2 l yielded for the field Hs1 the value Hs1 

Rl 0. 75Hc (at T = 0) and Hs1 Rl 0.8Hc (at T = Tc), which 
thus turned out to be lower than the thermodynamic 
critical field He. Subsequentlyt 3 l it was suggested that 
the superheat field exceeds Hs1• The equations of elec
trodynamics admit formally of a solution with H = 0 in 
the volume of the superconductor, up to a field Hs2 that 
coincides with He: Hs 2 =He. In the present paper we 
discuss similar problems of the electrodynamics of 
weak superconductivity. A phase diagram is constructed 
for a tunnel junction of finite width in an arbitrary mag
netic field. It turns out that, unlike the situation that 
takes place in ordinary superconductors, the field Hs1 

is the absolute limit of stability, in the small, of the 
metastable superconducting state, and the field Hs2 is 
the upper limit for the existence of Meissner solutions 
(the Ferrel-Prange fieldt 4 l); in the limit of very broad 
junctions, the fields are equal and are characterized by 
the quantity 

H, = nfl .. /2 = ([)0 /2M,.A, 

{~0 = 1TCti/e is the quantum of the magnetic flux). 
Since in a field H = Hs the instability against the en

try of vortices first arises near the edge of the junction, 
the question of the stability limits is closely connected 
with the investigation of the spectrum of the "plasma 
oscillations" of small perturbations of the phase cp1 

against the background of the equilibrium distribution 
cp = cp0{x) {the amplitude cp1 is localized near the sur
face and attenuates in the interior of the junction.tsl If 
the frequency of such oscillations is imaginary (Im w 
> 0), this means the appearance of instability. 

374 

The phase distribution in the contact is determined 
by the nonstationary Ferrel-Prange equationt 4 , el 

{1) 

Here t::. = a2jax2 + a2/ay2 is the two-dimensional La
place operator in the junction plane, c0 = (c2l/2E0 ~L)112 

is the velocity of the electromagnetic waves in the bar
rier (E0 and l are the dielectric constant and the thick
ness of the layer of dielectric between the superconduc
tors), and ~L and ~J are the London and Josephson 
depths of penetration. 

On the basis of {1), the equation for small oscillations 
takes the form 

{2) 

where cp0 = cp0(x) is the "equilibrium" solution corre
sponding to the unperturbed state {Meissner or mixed).t7l 

The boundary conditions in the case of a junction of 
finite width have the form (in dimensionless variables 
x' = x/~J, H' = 4e~L~H/tic 

d<p, · dclo " -1 =-1 =H, dz z•O flx :=L • 

Accordingly, the boundary conditions for the non
equilibrium increment cp1 are 

{3) 

(4) 

It should be noted that an additional condition to {4) is a 
sufficiently rapid decrease of cp1 with increasing dis
tance from the edges of the junction (see footnote 3 be
low). For an investigation of the spectrum of the sur
face waves it suffices therefore to consider a semi
infinite junction with boundary conditions 

BqJ,·~· -0 qJ 1 (oo) = 0. 
Ox x=O- t 

{5) 

In the Meissner state, the distribution of the phase 
cp0{x) is expressed by the formula (the solution for the 
isolated vortex in the stationary case) 
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cp!'•(x) = 2 arcsin {ch-' [x ± C (h)]}, (6) 

C(h) is the distance from the nearest maximum on the 
field to the edge of the transition and is connected with 
the applied field H0 by the relation (h = H0 /Hs) 

C(h) = arcch(h-'). (7) 

The two signs in formula (6) correspond to an isolated 
vortex, the maximum distribution of the field of which 
is located outside and inside the junction. Formula (6) 
was obtained as the limiting transition, as y - 1, from 
the general distribution of the phase[ 7 J for the mixed 
state, determined by the expression 

. cp,- cp,(O) . ) 
sm 9 . = sn(x/y, y , O~y~1. (8) 

The quantity cp0(0) in (8) (the value of the phase cp0(x) 
at x = 0) is determined by the applied field 

tpo(O) = ±2arccos (y-'- h')"' (9) 

(the coordinate x is measured in units of AJ). We rep
resent the solution (8) in a form more convenient for 
the subsequent analysis: 

tpo(x) (x±A(y) ) cos ____.__, = sn , 'Y • 
2 'Y 

(10) 

The quantity A( y) is determined by an incomplete el
liptic integral of the first kind: 

( n-cp,(O) ) 
A =yF 2 ,y 

(A( y) determines the position of the junction point 
closest to the edge, where the field is maximal). 

The solution of Eq. (2) is 

<p1 (x, y, t) = ':l'(x) exp (iky- ioot), 

where 'lr(x) satisfies the "Schrodinger equation'': 

(11) 

(12) 

'¥"+2[E-U(x)]'¥=0 (13) 

with periodic potential 

U(x) = -y'cn' (x±A) (14) 

and boundary conditions '11'(0) = 0 and 'lf(oo) = 0.1) In 
the foregoing formulas we introduce the quantities 
E = e: y 2, e: = (w 2- k2- 1)/2 (the wave vector is meas
ured in units of A 1 and the frequency w in units of the 
Josephson plasma frequency w0 = c0A J). Equation (13) 
is the Lame equation (see (a, 9 l ): 

':l'"=[n(n+1)y'sn'(x±A)+B]':l' (15) 

with n = 1, B = - 2( e: + .1) y 2, the exact solution of which 
(which decreases at infinity) is of the form 

':l'(x)= H(x-a±A) e-«•±A) 
8(x±A) ' 

(16) 

H(x) and 6(x) are the Eta and Theta functions, q plays 
the role of the wave vector in the direction normal to the 
boundary. The value of q is fixed by the condition '11'(0) 
= 0. As expected, Re q > 0, corresponding to surface 
waves that attenuate in the interior of the junction. 

1lThe boundary conditions differ from the corresponding conditions 
of quantum mechanics. 

The dispersion relations are determined in paramet
ric form (a is the parameter): 

q = Z(a, y), oo' = k' + Q'(a, y). (17) 

Here U(a, y) = y - 1dna (dn is the delta-amplitude) is 
the threshold frequency of the plasma oscillations and 
Z(a, y) is the Jacobi Zeta function, which can be ex
pressed in simple form in terms of the Euler integrals 
of the first and second kind: 

Z(a, y) = E(a, y) - aE(y) / K(y). (18) 

The value of q, and consequently also the form of the 
threshold function U2(y) is determined from the bound
ary condition '11'(0) = 0. Differentiating (16) and using 
the periodicity properties of elliptic functions (9 l we ob
tain after a number of transformations (x = 0) 

cn(a ± A)dn(a ±A) =F y' sn a snA sn'(a ±A) =0. (19) 

Using the relations between the functions en a, sn a, 
dna, we can easily reduce (19) to the following equa
tion with respect to the threshold function U2(h): 

F(Q,h)=O, (20) 
where 

F(Q,h) =TJTJ•(1-fTJ.') =FTJ,(TJ•'+fTJ') =F 
=F r 11 ,'[(hh.Q,)' + (h,QQ,)'J. (21) 

In the last expression we have introduced the notation: 

11 =hQ, h, = }'y-'- h', Q, = }'y-'- Q', 

TJ•.• = h,_,Q,,,, h, = l'1- h,', g, = l'1- Q,', r = y', (22) 

h = H0/Hs is the dimensionless magnetic field, and 
n = w I Wo is the dimensionless threshold frequency of 
the small oscillations. Equation (21) can be readily re
duced to an equation of fourth degree in the sought func
tion U2(y) (u =·../y-2-h2 1 t =...Jy-2-U2): 

[(1- u') (1- y'u') (1- t') (1- y't') ]"' 
= ± ut[1 + y'(1- u'- t')]. 

One root of this equation (of second multiplicity), 
negative for all h, is2> 

(23) 

Q2 = y-'(h'- h!,.)/(h'- h! •• ), (24) 

where hmin = ...;y-=... y2 /y, hmax = y-1 (see below), and 
the remaining two are given by 

Q,~, = 2~' {2- y'(1 + h') 

±[y'(1- h')' + 4h'(1- y'h')J"'}. (25) 

Here U ~ > 0 and U ~ < 0 for all y. For branch 2, the 
frequency turns out to be imaginary (at sufficiently 
small k, see (17)), and therefore the corresponding so
lution is unstable. 

In broad junctions (without allowance for the influ
ence of the boundaries of the contact), the solution of 
Eq. (1) for the equilibrium phase cp0(x) is parametrized 
by the quantity y ( 7 J (the value of y determines the pe
riod of the vortex s'tructure a( y) = 2AJYK( y)). The 

2l Actually the root Q 2 , defined by formula (24), is extraneous and 
has no bearing on the problem in question, as follows from an analysis 
carried out in the calculation of (21), and also from an investigation of 
the asymptotic forms of Eq. ( 13). 
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FIG. I. Dependence of the threshold n 2(h) 
on the field in the mixed state for very broad 
junctions (solid curve). The dashed curve shows 
the dependence of the threshold frequency on 
h in the Meissner state (see also Fig. 3). 

choice of y is based on considerations that the energy 
be a minimum, which leads to a connection between the 
"equilibrium" field and y (see [7l): 

h(y) = 2E(y) I 1ty. (26) 

The dependence of the threshold on the field for this 
case is shown in Fig. 1. 

When account is taken of the influence of the bound
aries of the contact, the value of y is determined by the 
boundary conditions. In dimensionless variables 
(dcp0 /dx)b = h0 , which leads to the equation 

2b(y, h) + na(y) = L, (27) 

here L is the width of the junction, b(y, h) = y K( y) 
-A( y, h) is the distance to the minimum-field point 
closest to the edge of the junction, and n is the number 
of vortices in the contact. 

Using the properties of elliptic functions, we can re
write (27) in the form 

F( 1t+!Jlo(O) ).-F ( 1t-cp,(O) ) = L-na(y) 
2 ,y 2 ,y y . (28) 

Equation (28) admits of an exact analytic solution for 
the function h( y): 

h(y) =y-'(1-y')"'dn-' [(L-na(y)) /2y]. (29) 

An analysis of the formula (29) leads to the conclu
sion that for even n (n = 2k) the behavior of h( y) is de
termined by the expression 

h,.(y) = (1-y')V. /ydn (L/2y), 

and for odd n (n ± 2k + 1) 

h,>+,(Y) =y-'dn (L/2y). 

An investigation of these formulas makes it possible 
to reconstruct completely the picture of the distribution 
of the vortices (the phase diagram) in an arbitrary mag
netic field (see Fig. 2). The point y0 = 1 corresponds to 
the absence of a field in the junction. At the point y1 

there is only one vortex in the junction, and the field is 
equal to h = y 11 • In this case the curve 0, as can be 
easily seen, corresponds to the Meissner (vortex-free) 
state, the upper limit of which is determined thus by the 
field: 

h,(L) =y,-'(L), y, < 1, (30) 

where Y1 is the root of the equation (the condition of the 
presence of one vortex in the junction) 

L=a(y). (31) 

a 
h I I' b 

I \ ', 1 
I \ ' 
' ,~, h= _, , , '.........- r 
\ ',, ............. h,-,-' 
\Jl /...,II I 1,0 

/~:2•rrfr: l 1 he~=t 
h·fl-jl'!y '...,..., I 11 1 

~ 13 r. r; ro-, r ~lifzf!YD·'' 
FIG. 2. Phase diagram of a tunnel contact of finite width in a mag

netic field: a-case of relatively narrow contacts, L = 5~1 ; b-case of 
~road contacts, L = SO~J. The values of 'Yn are the roots of the equa
tion L = na('Y). The curves I and II determine the values of the maxi
mum and the minimum of the field at a specified value of n cl> 0 - the 
magnetic flux in the contacts. Curve III represents the thermodynamic
equilibrium connection between the magnetic field h and the parameter 
'Y· Curves 0, I, 2, and 3 deseribe the distribution of the field in the pres
ence in the barrier of respectively 0, I, 2, and 3 complete quanta of the 
magnetic flux. 

FIG. 3. Dependence of the threshold !l2(h) 
on the field in the Meissner state in semi-infinite 
junctions. !12 has different scales along the posi
tive and negative axes. 
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In very broad junctions (L >> XJ), y1 is close to unity, 
and thus in this case hs = 1 or in dimensional variables 

(32) 

i.e., it coincides with the Ferrel-Prange critical field.[ 4 l 

Further investigation of the phase diagram leads to the 
following result: to each value of the field h (on moving 
from weak fields) there corresponds a minimum possi
ble number of vortices. When the field decreases, the 
junction will tend to "retain" the vortices, as a result of 
which, as seen from Fig. 2, a hysteresis of special type 
will occur. Curve I shows the behavior of h with varia
tion of y when the field increases, and curve II the same 
for a decreasing field. The dashed curve m represents 
the thermodynamic equilibrium. In Fig. 2a is shown the 
case of relatively narrow junctions, s> and Fig. 2b shows 
the opposite case. Yn(L) is the root of the equation 
L = na( y). At the points Yn we have 

hmi~(£) = y.-'}'1- Yn21 hmox(L) = y,.-1, 

The question of finding the critical field h (for a 
semi-infinite contact) can be solved without resorting to 
the general diagram of Fig. 2. The threshold in the 
spectrum of the surface waves in the Meissner state has 
on the basis of (24) the form (y = 1) 

. 1 
Q,:,(h) = 2(1- h' ± l'(1- h') (1 + 3h')). {33) 

The form of the curves (33) is shown in Fig. 3. Curve 1 
corresponds to the plus sign in (33), curve 2 to the mi
nus sign (these values of the threshold frequency corre
spond to distributions of phases 1 and 2 in formula (6)). 

3>we note that, as seen from ( 16), the damping of lfJt occurs at a 
distance q"1 ( q is defined in ( 17). Taking into account the condition 
lfJt(00) = 0 for a semi-infinite junction, a bounded contact can be re
garded as semi-infinite when L > q"l. 
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FIG. 4. Electromagnetic oscillations in a 
tunnel junction. I-thresholdless branch-"os-

. cillations of the vortices"; 11-region of 
"plasma oscillations," see [8]; III-region of 
surface waves. The solid lines in region III 
determine the threshold in the spectrum of 
the surface waves as a function of the para
meter 'Y· 

The spectrum of the waves represented by curve 2 is 
unstable in the entire range of fields. On the other hand, 
the spectrum of the waves described by curve 1 is sta
ble up to a field hs = 1 (cf. with formula (30)), at which 
exactly one vortex penetrates into the junction. It is 
possible to investigate analogously the spectrum of the 
plasma waves in junctions of limited widths as a func
tion of the parameter y. Substituting the function h( y), 
defined by formula (29), into the expression for the 
threshold (25), we obtain a set of 0 2( y) curves. The 
complete spectrum of the waves in the Josephson junc
tion is shown in Fig. 4. As shown by Lebwohl and Ste
phen, £a l the spectrum of the "volume" oscillations is 
of the two-band type. On the other hand, the spectrum 
of the "surface" waves, as is clear from an investiga
tion of 0 2( y), falls entirely· inside the forbidden band 
of the "volume" oscillations. 

In conclusion we note that although Eq. (1) with bound
ary conditions (dcp0 /dx)b = h0 has two solutions, an in-

vestigation of the spectrum of the plasma oscillations in 
the junction makes it possible to conclude that the only 
stable solution (both in the Meissner and in the mixed 
states) is the one with dh0 /dx < 0 on the edge of the 
junction (curve 1 on Fig. 3) . 
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