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The motion of Abrikosov vortex lines in type IT superconductors is considered phenomenologically for 
K » 1 and T = 0°K in the presence of a transport current which in the general case depends on the 
time. An effective Ohm's law is introduced for the transport current and the effective resistance in 
the mixed state is determined by means of this law. A phenomenological generalization of the results 
is proposed, in which elastic properties of the vortex line are taken into account, and the problem of 
the vibrational spectrum of the vortex line is solved. The existence of helicon oscillations is demon
strated. An expression is obtained for the relaxation time of such oscillations. The effective ac re
sistance arising in the mixed state as a result of the excitation of vibrational degrees of freedom of 
the vortex lines is calculated. The resistance exhibits a resonance behavior which depends on the 
frequency of the external harmonic current. 

1. The present work is an attempt to consider from a 
phenomenological point of view the problem of the mo
tion of Abrikosov vortex lines, which are nonstationary 
in the general case, in type IT superconductors. Well
known experimentsl1 ' 2 J, which reveal the effective re
sistance in type II superconductors in the mixed state 
(the resistance effect), have led to the development of 
representations in which the resistance is associated 
with the motion of the vortex lines under the action of 
the external current. Experiments on the induced mo
tion of vorticesl3 ' 4 J evidently confirm the existence of 
such a connection. Therefore, it is important to estab
lish the dependence of the rate of migration of the vor
tices on the external current. On this basis, several 
phenomenological models have been proposed which, 
however, contain, in our opinion, a number of invalid 
assumptions. lS- 7 J In particular, Bardeen and Stephen, lSJ 
and also Nozieres and Vinenl6J, used the representation 
that, in the motion of a vortex with a constant velocity, 
the external current penetrates into the normal center 
of the vortex without change. This assumption undoub
tedly gives a lucid interpretation of the nature of the 
losses in the mixed state; however, as we shall see 
below, there is no necessity of bringing in this assump
tion to explain the resistance effect. Furthermore, as 
has been pointed out inl6 ' 7 J , the assumption of the exis
tence of local equilibrium of the normal electrons with 
the lattice in the core of the vortex is doubtful. Further, 
it has been required by the authors of[s,sJ that the con
dition cp0 = 21T ~ 2Hc2 , which is given by the Ginzburg
Landau theory for fields H « Hc2 , be extended over the 
entire range of fields up to H ~ Hc2 • This continuation 
seems arbitrary to us. 

Besides the instances noted, there are a number of 
circumstances which stimulated this research to a sig
nificant degree. First, the phenomenological model 
should lead to equations which would determine the elec
tric and magnetic fields in each element of volume of the 
superconducting phase, and any macroscopic effects for 
the superconductor as a whole should be obtained as a 
result of appropriate averagings. Second, the motion of 
the vortex leads of necessity to the induction of an elec-

tric field in each element of volume of the supercon
ducting phase. The presence of such a field is the 
reason for the resistance effect. Third, the empirical 
relation for the effective resistance Pf = PnH /Hc2 in 
the mixed state is applicable over such a wide range of 
conditionsl7 J that it would be desirable to have such a 
scheme for the calculation of the resistivity which would 
not depend on the specific model of the vortex or on the 
conditions of its motion. 

In Sec. 2 of this paper, assuming axial symmetry of 
the magnetic field of the vortex, a temperature T = 0°K 
and K = A/~ » 1, we introduce the relation (2), which 
connects the velocity of motion of the vortex, the mag
netic induction and the external current in each element 
of volume of the s phase. This equation is equivalent to 
an effective Ohm's law for the external current. An ex
pression is derived for the effective resistance in the 
mixed state by means of this equation. 

In Sec. 3, we propose a phenomenological generaliza
tion of relation (2) for an account of the elastic proper
ties of the vortex line. On the basis of this generaliza
tion, the problem of the vibrational spectrum of the 
vortex line is solved and the existence is shown of 
helicon oscillations, the n-th harmonics of which decay 
with the relaxation time: 

In addition, the effective resistance arising as the 
result of the excitation of the vibrational degrees of 
freedom of the vortex line is calculated. An analysis 
of the resonance behavior of the effective resistance as 
a function of the frequency of the external harmonic cur~ 
rent is carried out. 
2. We propose to limit ourselves to the case of motion 
of vortices in homogeneous crystals, and to consider 
the dissipative effects in the linear approximation. Con
sidering the ensemble of Cooper pairs as a charged 
liquid, we introduce the velocity of motion of the vortex 
vL{x, y, z, t) as the velocity of that underformed con
tour, the magnetic induction flux through which remains 
constant during motion of the vortex, i.e., 
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ab, I at- rot[vJJ,] = oo (1)* 

The connection of the migration velocity of points of the 
vortex with the velocity vT = jT/Ne (where jT is the 
external current should be established independently of 
the system of electrodynamic equations for the fields, 
and should be determined at each point of the s phase. 
The conclusive experiments on the resistivity in type II 
superconductors in the mixed state can be explained 
only when the given connection is linear both in the 
velocity and in the value of the magnetic induction (in 
the axially symmetric case considered). It is not diffi
cult to see that the nonlinearity of dependence of vL 
on vT and (or) bs would lead to a nonlinear dependence 
of Pf on the external field and (or) the external current, 
since experiment shows that Pf = PnH/Hc2 • Therefore, 
the desired connection can be written in general form 
as follows: 

(2) 

where a, {3, y are unknown parameters which depend 
perhaps on Wc2T and the ratio of the macroscopic fields 
(for example, H/Hc2). We note that the requirement of 
linearity eliminates. the possibility of the addition to (2) 
of terms containing the density of the "London" current, 
which would have led to a nonlinear dependence of Pf on 
the external current. 

Equation (2) represents the independent fundamental 
relation of the theory and can be written without rela
tion to the specific mechanism of interaction of the 
electrons with the lattice and with the fields. It is 
equivalent to 

(3) 

where His the external field, CJf = Nec/HJ.L and, as we 
shall see below, plays the role of the effective conduc
tivity of the superconductor in the mixed state, 
J.1. = ({3- ay)/(1 + y2}, o =-(a+ f3y)/(1 + y2) and 
E = - vL x HI c is the effective macroscopic electric 
field induced by the vortex motion. The coefficients a, 
{3 and y are unique quantities, depending on the specific 
mechanism of the interaction of the electrons with the 
lattice and with the fields. We note that the results of 
the well-known modelsl5- 123 can be obtained by the 
selection of specific values of these coefficients. Thus, 

. for example, the ratio of the energy loss per period to 
the energy of oscillation of the vortex, which was intro
duced inl9J can be obtained from our results (see Eq. 
(13) below) if we take o = Nsi2Nc (where Ns is the con
centration of the s electrons and Nc the concentration of 
normal electrons in the core of the vortex). The disper
sion laws set down in[8 ' 12 l are obtained from our results 
(see Eq. (12) below) if we take o = 1, and the dispersion 
law obtained in[uJ for a choice o = 1 + 0.871ln K. 

The solution of (2) has the form 

which gives for the Hall angle 

(5) 

It should be emphasized that, in accord with (2}, there-

lation of Bardeen and stephen for the Hall angle, tan eH 
=-wc2 TH/Hc2 , contradicts the requirement of complete 
entrainment of the vortex by the external current in the 
limit of an ideally pure material (wc2T ~ 1). Actually, 
we have in the given limit, from (2), limo = 1 as wc2T 
- ""· But this contradicts the value o = H /Hc2 , which 
follows from the relation of Bardeen and Stephen (see 
Eq. (9) below). 

We proceed to the problem of the power dissipated. 
Substituting (1} in the Maxwell equation curl es 
=-c-1 &bs/at, we get 

e, = -c-•[v,JJ,) +grad u, 

where u is a certain potential. It is not difficult to see 
that the requirements of a linear dependence of pf on 
the external field, axial symmetry of the magnetic field 
of the vortex, an ideal conductivity for the vortices at 
rest, all lead to u = const. In this connection, the elec
tric field induced in every element of the volume of s 
phase by the motion of the ith vortex is determined by 
the relation 

(6) 

Therefore, the dissipated power density in a given vol
ume element in a phase, due to motion of the i-th vor
tex, is 

(<) 
i.uN o <•1 b, f1 o 2 

= )Te, =.Nee ]T 0 

Averaging this over the entire volume of the sup~rcon
ductor, and taking it into account that the flux q;<1> of 
the magnetic field of the i- th vortex is 

~i) = I b~<) a:E, 
<•> 

we get for the mean power density dissipated through
out the specimen, after sum~ing over all vortices, with 
account of the fact that ~iq;<ll = HS (where Sis the 
cross- section area of the. sample perpendicular to the 
magnetic field} 

(w) = (J,;WdCf.LjT'H I H"o 

By identifying the coefficient of jT with the effective 
specific resistance Pf• we get (compared with (3)) 

(7) 

(8) 

We note that there are but two parameters in the 
proposed phenomenology: J.1. and o. Using these results 
of experiments on the resistivity, [1 • 23 we fix one of 
them, say 

(9) 

The second parameter left arbitrary by us, o, can be 
established, for example, from experiments on the Hall 
effect in a mixed state (see Eq. (5)) or from experiments 
which could clarify the dispersion law for helicon os
cillations of the vortex line (see Eq. (12) below). We 
have deliberatly not fixed the value of o since it is quite 
well known that the choice. of the specific model in a 
number of works (see, for example/5 ' 63 ) has not been 
uniquely verified by the most recent experiments. l13- 16 J 

3. We proceed to the problem of taking into account the 
elastic properties of the vortex line. An attractive idea 
(see the reference inl6J to the unpublished workl 173 ) on 
the effective replacement of the tensile stress acting in 
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a vortex displaced from equilibrium by the Lorentz 
force (here and below, we shall be concerned with small 
displacements). This substitution is possible if we in
Jroduce the equivalent field of the velocities v p of circu
lar current of the s fluid, so selected that 

Ne a's 
-[vcp,] =T-

c e az2 ' 

(10) 

where s(r, t) is the vector displacement of the given 
point of the vortex from the equilibrium position, i.e., 
the x axis, and the stress T = (cp0 /41TA) 2ln.U 8 J The dis
placed vortex must then be considered as absolutely 
inelastic. On it will act the Lorentz force, which is ex
actly equal to the restoring force which would have 
acted on exactly the same displaced vortex with given 
elastic properties. The introduction of vp leads to the 
induction of an additional electric field (masmuch as the 
character of the vortex motion is changed which, in 
turn, leads to additional energy dissipation of the ex
ternal current, which is associated with the excitation of 
vibrational degrees of freedom of the vortex line. We 
note that the hypothesis (10) is equivalent to an assump
tion on the result (but of course not on the mechanism) 
of the action of the external current on the vibrational 
degrees of freedom of the vortex. 

Taking into account all that has been said, andre
placing the velocity VT in (2) corresponding to the ex
ternal current by the sum v = vT + v , where vp is de
termined from (10), it is not difficulf to obtain 

as [ as ] cT ( [ a's ] a's ) y-+ -z +a[vzJ+~v=N- ~ -a. z -a-a, , (11) at at ecp, z' z 

where as/at = VL· 
Equation (11) is in fact the generalized Ohm's law 

for the external field with account of the elastic proper
ties of the vortex line. It must be emphasized that the 
hypothesis (10) allowed us to fix the coefficients of the 
terms containing the vector s in the general equation for 
the connection of the external current with the fields, 
with account of the vibrational degrees of freedom of 
the vortex, which one could have written down by making 
use of the considerations of linearity and translational 
invariance. Thus, (10) allows us to proceed from this 
general equation to Eq. (11). We consider the solution 
of this equation in the presence of a harmonic external 
current and for the boundary conditions 

where l is the length of the vortex and vt is the trans
port velocity of the vortex when it is considered as 
absolutely rigid, under the action of the constant com
ponents of the external current. 

The eigenfrequency part of the solution has the form 

~ . . (2k+1)n 
u = .l...JC,>+,(x,y)exp(tQ,..,t)sm l z, 

•=• 
where 

cT (nn)' Q. =- - (b + i~t). 
Necp, l 

Thus we arrive at the existence of helicon oscilla
tions of the vortex line with eigenfrequencies 

(12) 

which decay with relaxation time 

t. = Necp'(-l-)' w,,t. 
cT nn 

(13) 

(As was mentioned above, for a definite choice of 6 the 
results transform into the results of[B-12l ). The solution 
which describes the stimulated oscillations of the vortex 
under the action of the variable component of the ex
ternal current has the form 

~ {1. 4(ib-~t)w~w,sin(w,t+q>.) . 
U = .l-J Un; ZA+i Slll knz, 

n~t. nn[wo' + (ib -~t)'(cT/Neq>o)'kn'] 

where 

tgq>.= [Necp0l',w,(ib-~t)] / (nn)'cT(~t' +·b') 

and w0 is the frequency of the variable part of the ex
ternal current. Thence, in accord with the methodology 
set forth in Sec. 2, we find that the variable and constant 
components of the external current dissipate indepen
dently of one another in the same measure as each of 
these components contribute to the vortex motion. The 
dissipation produced by the constant component of the 
external current is connected with the motion of each 
vortex as a whole and for it the effective resistance is 
given as before by Eq. (8). The dissipation of the energy 
of the variable component of the external current takes 
place with an effective resistivity 

SHu ~m (1) 2 (w 2 + il) ' + (1) ') """'_ r i) 0 0 n n { 14) 
Pt -~ n;2k+t 2[( 2+- 2_ 2)2+4"' 2 2] ' n ec n=l, ll:=O n roo <On Wn Wn Wn 

where the notation W'n = 1/ Tn has been introduced. 
The resonance behavior of Pf as a function of fre

quency of the external current is obvious. One can show 
that the resonance frequencies are equal to 

res cTk.' 
(1)0 =.....----.. . 

Neq>, sin 8Ill'2 sin eH -1 
(15) 

As is seen from this formula, resonances in the har
monics can take place only for materials with fJ > 11/6 
and w~es ;G' 10 Hz for specimens with l ~ 1 mm. The 
analogy should be noted between the expressions ob
tained for Wn and Tn in our model and the theory of heli
cons in normal metals. £19 l We note that the results ob
tained permit us to carry out the calculation of experi
ments which have as their aim the investigation of the 
character of the oscillations of vortex lines from meas
urements of the resistivity which accompanies such os
cillations. 
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