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The rate of energy loss and other kinetic coefficients in a·plasma located in strong electric and mag­
netic fields are calculated in the Born approximation with allowance for the inelastic collisions of the 
electrons with the neutral particles. It is shown that the dependence of the kinetic coefficients on the 
external field has a resonant character. Resonant oscillations of the rate of energy loss and of the 
electric conductivity are investigated with the aid of correlation functions in a strong homogeneous 
field, which are derived in the appendix. 

IN the case of elastic collisions, the dependence of the 
collision integral of charged particles in a plasma on 
the external- field intensity comes into play only in very 
strong fields (see below), and does not have a resonant 
character. Allowance for inelastic collisions of the 
electrons with the ions and neutrals leads to the appear­
ance of resonant terms in the expressions for the colli­
sion integrals and different kinetic coefficients. The 
resonances appear when the frequencies of the inelastic 
transitions coincide with the frequency of the transitions 
between the Landau levels of the electron in the mag­
netic field (cyclotron frequency and frequency of the 
overtones), and also with the frequency of the oscilla­
tions of the electrons in an alternating electric field. 
As shown in lll , in the Born approximation, to take into 
account the contribution of inelastic collisions to the 
kinetic coefficients, it is necessary to use the correla­
tion functions of the colliding particles. We shall con­
sider below transport and relaxation processes in a 
plasma in a strong external field with the aid of the 
correlation functions of charged particles. 

1. RELAXATION AND TRANSPORT PROCESSES IN A 
STRONG MAGNETIC FIELD 

With the aid of the correlation functions ~, obtained 
in closed form (see the Appendix), it is possible to study 
the influence of strong electric and magnetic fields on 
the frequencies of the elastic and inelastic collisions, 
on the rate constants, on the energy losses, and on other 
kinetic characteristics of the plasma. For example, 
when account is taken of only elastic collisions, we ob­
tain for the rate of transfer of transverse energy from 
the electr2ns (tAempe!atures T 11 and T1 , kinetic- energy 
operator Ke = K 11 + K1 , mass m) and the neutrals 
(T, K, M) in a magnetic field H = mew (we put fl = k = e 
= 1) in the Born approximation 

- d!.L =no 1 dt<IK.LV(t)IV*(O)) 
-oo 

=- ino ~d"q I Yo I' ~ dt Cllo<l> n d: .L • 
-co 

(1.1) 

If we assume that y = m/M-- 0, then we can easily ob­
tain from (1.1) (Ko(x) is the Macdonald function) 

338 

Z, = 16nnoJL l'2nJLT V, TJ = chcp+ 2mzroshq>, 

mM 
JL= m+M ~ m. (1.2) 

On going over from (1.1) to (1.2) we have assumed that 
for the square of the modulus of the Fourier component 
of the collision potential we can use the integral repre­
sentation 

(1.1 ') 

Calculation of the sum of the contributions of the 
multiquantum transitions between the Landau levels 
simplifies greatly for 1/J(x) = O(x) (collisions of electrons 
with homonuclear molecules, seel11 ): 

dK.J. Z , T.J.''\i -•• h( T.J.--;T)K ( T.J.) (1.3) ----;u- = 0cp T .i....lne s ncp-r o nq> T . 
11=1 

The Schlohmilch sums (1.2) and (1.3) can be calculated 
in the limit of weak (q;-- 0) and strong (q; -- oo) fields. 
Thus, as q;-- 0, replacing the summation in (1.3) by 
integration, we get 

dKJ. _ 2T-T.J. 
--=Z,T[Y(~)-Y(1)], ~= , 

dt T.J. 

Y(~)=-1 -[ ~ ln(~+l'~'-1)-1]. 
' 6'-1 l'~'-1 

(1.3') 

In a strong field, the energy loss is exponentially small: 

dKJ. 1 Z 1/n;;-_,.sh(mTJ.-T)· m'--1. (1.3") -"""dt=T ,ror T e .,.-T- ' .,.,.,.. 

As T 1 -- T we have 

and 
1 4 
->-+-Z,, q>-->-0. 
't.J. 15 

(1.4) 

(1.4') 
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For Coulomb collisions, results analogous to (1.3') 
and (1.4') were obtained by Koganl2l with the aid of the 
Landau collision integral. The Coulomb relaxation at 
<p ;ot 0 was investigated by Silin£3 J in the classical limit, 
corresponding to the real correlation function 

[ . q.J.'T.J. ] <II.J.(q,t)=exp ---,--(1-cos(J)t) , 
· mm 

In our case it is easy to describe the Coulomb relaxa­
tion by replacing 41o in (1.1) by 41 11 411 for heavy particles, 
corresponding to consideration of cyclotron rotation of 
not only the electrons but also th~ ions (transverse 
diffusion with allowance for the Debye polarization was 
taken into account in similar fashion inl4l ). 

The longitudinal relaxation is described in analogy 
with (1.1)-(1.4). The elastic loss of energy by heavy 

particles dK/dt are determined by the relation 

d ' " • 
dt(K 11 +K.L +K) = 0. (1.5) 

A curious feature of relaxation in a strong magnetic 
field with allowance for inelastic collisions of the elec­
trons with the neutrals is the resonant character of the 
dependence of different kinetic coefficients on the field 
intensity. Let us examine with the aid of (A.8) the os­
cillations of the rate of inelastic energy loss and of the 
electric conductivity, and let us confine ourselves to an 
approximation of an almost isothermal plasma, i.e., we 
assume that the translational (T) and the internal (T1) 

temperatures of the heavy particles coincide and that 
T 11 = T1 - T. From the expansion (His the internal­
energy operator) 

---:::::' 00 k 00 

_ ~~ = ~ 2: !! ( ~~) (1\e)•+l = n0 ~ dt ([HV (t)] V* (0)) (1.6) 
R:=l -co 

in the limit as ~ T- 0 we get (~E is the transferred 
energy) 

:_!_ = .18 ' = - ~s d'q ~J dt exp [-L(it + t'T)] 
l' 2T' 2T' -~ 2M 

d' ~ -
X !D 11Ql.J. dt'(V,(t) V.'(O)). (1.7) 

In the general case the correlator of the collision 
operator is of the form ( see[l] ) 

(V,(t) V.'(O) > .= .E v.,(q) (exp[- e./T- itm,.] 

I /W ] (1.8) +exp[-8,T+itm,. ), IDwv=8,-8,. 

From (1. 7) and (1. 8) we obtain for the reciprocal time 
of inelastic relaxation 

1 2nmno 1 / 21111 """ ( e. + e.• ) J 
'T=-r-f -y-<Pshq> ·~/'···exp ---T- d.xljl ... (z) 

X Jj dudv exp[- v(2a + 2JLTZ + ch q>)- u (~+ 2JLzr)] 
0 iu(u +Bav) 4 

x{Io(v}exp [- 4T'(:·~ Bav)1 + 2 ti.(v)exp[- ~;:(;:-:~:)]l' 
n=t 

a='f•'I'IPshqJ. (1.9) 

In the approximation l/1 11111{x) = c5(x), the contribution 
of the resonant term (w 11 1 11 = nw) describing the transi­
tions between the Landau levels of magnetic oscillators 

and the internal degrees of freedom of the structure 
particles is equal to 

1 ( 2nm) ''•1/""""j: _ ( 8, } -;:- = 2n, ~ f -;;(nm)'cpshq> V,.•exp -,-T- ncp g.(a, b), 

-
g.(a.b) = J dv e-"'.•+bJK,(av)I.(v), b = chq>. (1.10) 

0 

In the limit as y - 0 we can obtain from (1.10) (seel5l, 

4.16.28 and£6l, 8.831.1 and 6.611.4) 

e-•A "• • ( 2b } b . 
g.(a,b)~-=ln - ,a~O,--+oo. 

ib' -1 a a 
(1.10') 

In the absence of a magnetic field the contribution of 
the transitions between levels with energies E 11 and E11' 

to the total inelastic- relaxation time 

'""1 1 nos J~ .L..J-,-=-= --, d'q dt 
-vw 't ""~ 'to 2f _.,.. 

2 } d' - -xexp{-L(it+t'T) -(V,(t)V,'(O)) 
2JL dt' 

(1.11) 

is given by 

- 1 = 4n, ( 21111 ) .,, m.:. v.,.K, ( w ••• ) exp {-~} ; ( 1.12) 
.-••• • T T 2T 2T 

therefore (m R~ J.L) we have the ratio 

1 1 e-"" ( 8cthq>) 
T:": < .. ~ 4nK,(nq>)ln --:yq;- · (1.13) 

It follows from (1.13) that in strong fields ( <p > 1/ n) the 
resonant processes become quite effective. 

By way of an example let us consider the loss of in­
ternal energy by homonuclear molecules in a magnetic 
field corresponding to resonant transitions between . 
rotational levels with l = 0 and l' = 2. In place of (1.8) 
we have (Q-quadrupole moment, B- rotational constant, 
Z-partition function) 

2n Q' • ll' 2 · ' 
<V,(t) v:(OJ>= 45:z .E L, (2l + 1) (21' + 1) I (000 ) I 

~~· 11-1•1~•.• (1.14) 

{ B } 2nQ' 
X exp - T l ( l + 1) + itmw = 45:z [ e-"'9 + e'"<;'-•J•) + ... ] , 

whence 

t' 16 v2nm (B)' ( 8cthq>) B - =·-n0m --Q'T - e-'"1' q>e-""ln -- , nq> = 3---,. 
'fvv• 5 T T yq> T 

(1.15) 

The contribution of the resonant term (1.15) can 
reach a value equal to the total loss of the internal en­
ergy of the homonuclear molecules in the absence of the 
magnetic field ( see[l] ) 

1 64 v 21tJL 2 -=-nolL --QB. 
'fo 15 T 

(1.16) 

Thus, in a hydrogen plasma, for the main resonance 
(n = 1) 1/ T 1111 , amounts to ~ 30% of 1/ To. We note, how­
ever, that in the case of H2 molecules the value of the 
magnetic field corresponding to n = 1 is quite large 
(Hmax > 106 Oe). For dipole molecules with small B 
it follows from the resonance condition H = 2Bmc/n that 
Hmax > 104 Oe, which apparently is accessible to ob­
servation. In this case, using the connection between 
the dipole correlator 
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(d(t)d*(O))= nt (Vq(t)Vq*(O)> 

and the imaginary part of the polarizability a 11{w) (see, 
e.g. [7]) we obtain in place of (1.14)- (1.16) (d is the 
dipole moment) 

(d(t)d'(O)>=.!._S~ dwa"(w)e-'•' 
n -~ 1- e-•JT 

d' ~ 
= 3z ~ e-Bl(I+I)/T [le2itBI + (l +f) e-211B(I+I)] 0 (1.17) ,_, 

whence in the absence of a field 

_ dfi = Bn • / 2JL 'f dCtJCtJa"(w) e- ... ;2'f K (~) 
dt o V n.'l' _.), 1 - e-ooJT , o 2T ' 

~ = ~ + ~ ' ( 1.18) 

and further in analogy with (1. 9)- (1.13). 
Let us proceed to consider the contribution of inelas­

tic collisions to the electric conductivity in a magnetic 
field. For a semiconductor plasma the oscillations of 
the transverse component of the electric conductivity 
tensor a xx in a magnetic field, as a consequence of in­
elastic scattering by phonons {the magnetophonon effect), 
was considered inl8•91 • The magnetokinetic effect of the 
resonant aik(H) dependence as a result of inelastic 
collisions of electrons with atoms and molecules in a 
gas plasma is described in analogy with (1.6)-(1.10). In 
the case of an isothermal plasma (the generalization to 
the many-temperature case T 11 ;o' T 1 ;o' T ;o' T1 is obvious) 
we have for the transverse electric conductivity, in ac­
cordance with Kubo (X is the coordinate of the center of 
the Landau oscillator) 

1 S n.c' a.,= 2f_oodt(X(t)X(O)) = Tii's d'qq,' 

X Ldtexp{- 2~(it+t'T) }a> 11!l>~(V.(t)V,"(O)). (1.19) 

For elastic scattering (for simplicity we consider the 
case IV q [2 = V) at cp » 1 the contribution made to the 
electric conductivity by multi- quantum transitions be­
tween Landau levels is exponentially small and (see 
(1.10), iJ."" m) 

8n.a'Zo d 
a .. = ----g,(a, b). 

my'w' db 
(1.20) 

We note that the logarithmic divergences characteristic 
of the scattering by immobile centers (seel81 ) are miss­
ing from (1.19) and (1.20), since the thermal motion of 
the heavy particles is taken into account. 

Calculation of the contribution of the inelastic colli­
sions to the electric conductivity yields for 

a== E (a .. ).,. 

an expression analogous to (1.9). The resonant term is 
given by 

32n.a'Z.,• { e, + e.,. \ d 
(a .. ).,,.=- my'w' exp - 2Tf dbg.(a, b), 

z.,. = 16n.n,ml'2n.mTV, •. (1.21) 

Resonances similar to (1.10)- (1.21) are possessed by 
the diffusion coefficient D = axxT/no, the thermal con­
ductivity, and a few other kinetic coefficient&. 

2. RESONANCE EFFECTS IN AN ELECTRIC FIELD 

In the case of a constant electric field E we can dis­
regard the field-intensity dependence of the rate con­
stant of the inelastic collisions of the charged particles 
with the neutral ones kvv'(E), of the probability of the 
elastic collisions Wpp'(E), and of the number of the 
collisions 

Z(E) = ~N,k,.•(E) = s d'p d'p'f(p) w ••. (E). (2.1) 

Thus, for the number of collisions 
~ 

Z(E) = n, Jat < V(t) v· (0) > (2.1') 

we obtain from (A.11) 

no ~ dt { E' ( t' + it)'} 
Z(E) = ""T.'"(2n.J.tT.)'i> V S dxw(x)J e'J. exp - E,' 8 , 

1/--;;;_ ( 't )'h e '1' Eo= f- -R E • ., EaT= z• 8 =it+ t'-+ 2J.tT,x. 
J.1 y a, T. (2.2) 

In particular, at 1Ji(x) = li(x) and T = Te we have 

Z (E) = ~· x'e.,l' [ K, ( :) - K, ( ~')] -+ Z, ( 1 - x' In: + ... ) , 

X = E I 2E,-+ 0. (2.3) 

It follows from (2.2) and (2.3) that Z(E), kvv'• Wpp'• etc. 
begin to depend on E in rather strong fields (although 
much weaker than Eat-the factor (Ry/T) 312 can reach 
~ 103). 

A strong field after Druyvestein (see, e.g./101 ) is 
much weaker than the field E0, so that one can neglect 
the direct influence of the constant electric field on the 
number of collisions, the rate constant, the collision 
integral, etc. 

Let us see how the kinetic characteristics of the 
plasma depend under conditions of inelastic resonance 
wv'v = nU on the alternating electric field. In an alter­
nating external field we have for the inelastic energy 
losses 

(2.4) 

it t, 

v (11) = exp [ i ~ dt (K, + K. + H) J v exp [- i ~at (K, + K. +H)] ; 
0 0 

in a homogeneous field E(t) = E cos Ut the operator of 
the kinetic energy of the electrons is 

~ 1 ( ~ 1 )' K,=- P+-A , 
2m c 

c 
A= -g-EsinQt. (2.4') 

The scattering probability is equal to 

ass· ~ ~ w ... = n,- dt, dt,!D,(q, t,- t,) (V.(t,- t,) Vq' (0)) 
at , 

[ p' - p" i '• ] 
Xexp i(t,-t,)---+-Sdt'qA(t') . 

2m me,, 
(2.5) 

Averaging over the period of the oscillations t0 = 211/U, 
we obtain here in place of (2.5) 

w ••. = n, S~ dt!D,(q, t) (Vq(t) v; (O))J, ( ZEq sin~) exp{u p'- p"}. 
-oo mQ' 2 2m 

(2.5') 
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For the internal-energy losses averaged over the period 
we have accordingly 

aiJ J s'" ( 2Eq Qt ) { q' _ } --=-in, d'q dtl, -sin- exp --(it+t'T) 
dt _,, mQ' 2 2ft 

X :t (V,(t) V,'(O)); (2.6) 

in the derivation of (2.6) we have assumed for the elec­
trons a local equilibrium Maxwellian distribution with a 
temperature Te. 

As E .;..... 0 and to- oo we obtain from (2.5') and (2.6) 
the general expressions for the collision integral and 
the energy loss (seel1 1 ). As Te- T we obtain for the 
relaxation time TE (t- t/T, q2 - 211 Tq2 , cp 1 = n/2T) ., ... 

1 -s s d' , , - =- noftY2ftT d'q dt ClJ (q, t)-d, (V,(t) V,' (0)). 
"t"E t 

-nfiPt 

(2.7) 

The correlation function in an alternating field, which 
describes the translational degrees of freedom, is equal 
to 

(2. 7') 

and the correlation functions that describes the internal 
degree of freedom is given by (1. 8). 

From (2. 7) and (2. 7') it follows that (f = it + e 
+ 2 J1 Tx) 

!, = 4n,yT(2:rtft)'i•<p.' .E V ••• ( ~··) 2 
( exp[- e. +/tWv'•] 

n/.;1 

[ e •• -itwv'•]) J J dt { A } +exp - T dX'Ijl ••• (x) y.exp -4-sin'qJ,t 
_.,., I 

·I, (4 /A sin' qJ,t)_, A = 411T (By) 2 ..!:__ 
mQ Q E!, · (2.8) 

Using the expansion 

cD(q, t) = e-•'(if+f') t '·'( r;,_~~q) e•not;r, (2. 7 11) 

we obtain for the resonant term (a= (nn- w11' 11)/T -0) 
in the approximation 1/!vv'(x) = o(x) 

1 2n, _ J ( -yz,.r ) - = -(2ftT)'"(n'I',)'V..- d'qln' --, Eq 
-r... T mQ 

n/•1 • s dt e-q2(it+t2)(eitC£-BvfT + e-ita.-ev'fl') • 

-nfwt 

(2.9) 

After calculating approximately the internal integral in 
(2. 9) in the case cp 1 « 1 and confining ourselves in the 
expansion of (2.9) in powers of the external field to the 
first non-vanishing term, we ultimately obtain (n > 0, 
a > 0) 

1 1 AnF(a)chn<p, 
-:-.- ;;:;:: -:-:-::--.,.....,--:-c-':--:-.:--=-:--:-"t"vv' -r... 2(2n + 1) (n!) 2n<p,K1(n<p1)' (2.10) 

where the function F( Ql) = Qln+ 1Kn + 1 ( Ql/2) decreases 
rapidly with increasing Ql. It follows from (2 .10) that 
contribution of resonances above the first order can be 
neglected. Near the main resonance (n = 1), TE can 
differ from T noticeably also for not too large values 
of E. For example, for rotational losses n ~ 10-3Ry 
andE ~ 104 V/cm. 

Analogous results can be obtained for the frequency 
dependence of the electric conductivity and other kinetic 
coefficients. The quantum-kinetic equation and the 
kinetic coefficients in strong fields E and H, for a sys­
tem of electrons and phonons, were considered recently 
in°1-141 (see alsol151 ), but the resonant situation was 
not discussed. 

In conclusion we note that in the present paper we 
did not take into account the interaction of the external 
field with neutral particles (or the electron spin). The 
interaction of atoms and molecules with strong electric 
and magnetic fields can be taken into account by replac­
ing the correlation function of the neutrals by 

(2.11) 

where the energy of interaction with the external field is 

1 02(jl 
U= -,_.H-dE+-Q~~---+ ... 

6 ilx~ilx~ 
(2.11') 

Correlation functions of the type (2.11) and (2.11') can 
be used to obtain the collision integral and the kinetic 
coefficients in molecular gases in an external field (the 
Senftleben effect- see, e.g. £16 • 171 ). 

APPENDIX 

CALCULATION OF THE CORRELATION FUNCTIONS 
IN A STRONG FIELD 

We change over from the correlation function (see£ 11 ) 

Z = .E e-•.fT,(A.1) . 
to the real correlation function 

ClJ(q, -r) =; J d'ro d'r,e'•<••-••l jG,(r,,,r,) j', 
i ,; =t-iT. (A.2) 

As is well known (see, e.g.,£181 ), the single-particle 
Green's function 

G,(r,,r,)= .Ee-"'•¢v'(ro)¢.(r1 ) (A.3) 

for a charged particle in a homogeneous electromag­
netic field (and also in the case of a quadratic potential 
field cp(r) and in the WKB approximation) is propor­
tional to eiS, where the classical action function is 

' ( mv2 e ) S[r~O),r(t)]= J dt' - 2-+-;:-Av-e<p . (A.4) 
0 

Thus, by calculating the classical function S and 
putting S = S(r0 , r 1 , t- i/2T), we can obtain the correla­
tor 

(A.5) 

where the constant C is determined from relations 
<I>(q, 0) = <1>(0, r) = 1 which follow from (A.1). In par­
ticular, in a homogeneous external fieldS= S(r0 - r1, r) 
and 

(A.5') 

For example, in a homogeneous magnetic field 
H(O, 0, H), solving the classical equations of motion 
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with the timeT and calculating the action from (AA), 
we find1> 

[ mz' mw W't"] 
ImS=lm 2;+4 (x'+y')ctg2. (A.6) 

Inasmuch as 

I ( t- i/2T) sh(w/2T) 
mctg (I) = , 

2 ch ( w/2T)- cos wt 

we obtain from (A.5) and (A.6) 

"'( )- [ qu'Tu('+ 1) q.1.' ch(w/2T.c)-coswt] "' q,'t" - exp --- t - -----'--'-:--:--=7::-::--:---
2m . 4T11' 2mw sh(w/2T.c) 0 

(A.7) 

For greater generality we have assumed in (A. 7) that the 
system is nonisothermal, corresponding to making in 
(A.6) the substitution T - Til = t- i/2T 11 for the thermo­
stat of the longitudinal degrees of freedom and T - T 1. 

= t- i /2T 1. for the thermostat of the transverse degrees 
of freedom. Putting in (A. 7) respectively t = t + i/2T11 
and t + i/2TJ., we ultimately obtain (cp = w/2Tl.) 

<D(q, t) = <Du<D.c, 

<D.c = exp{- _i{_[ (1- cos wt)cthcp + isin wt]} 
2mw 

=exp{-£cthcp}~ e"•••-••J.( q.1.' ). 
2mw .~~ 2mw sh cp 

<Du = exp [- :: (it+ t')] (A.8) 

In a homogeneous alternating electric field E(t) we have 

_ [mr' 1S· ,, ] ImS = Im --- d1: 1: (rE) 0 

21:' 't" 0 
(A.9) 

In particular, in a constant electric field 

[ q' t it' ] 
<DE(q, t) = exp --(it+ t'T)--qE +-qE o (A.10) 

2m 2mT 2m 

In the case E II H, the transverse and longitudinal 
degrees of freedom can be regarded independently, so 
that 

Finally, in the case of crossed fields, choosing 
E(O, Ey, Ez) and A= (1/2)H x r, we obtain 

_ mz' 't" mw w't" 
S =-+ -(yE. + zE,) + -(x' + y')ctg-

2T 2 4 2 

(A.ll) 

+-E, 1--ctg- , X ( W't" W't") 
(J) 2 2 (A.12) 

whence (for simplicity we have changed over to dimen­
sionless variables t- t/T, q2 - q22mT, E- ETvT/2m) 

!)In the particular case T11 = T1, the correlation function in a homo­
geneous magnetic field (Ao8) was obtained earlier from other consider­
ations [8 • 19]. 

[ ch cp- cos (2cpt + iqJ) 
<D(q,t)=exp -(t'+it)(q,'-iq,E,)-. 2cpshcp 

2 2 • 1i' )+, (2t+i)shcp+sin(2cpt+icp) .,. ] (A.13) 
X (q. + q, - lq,p, I 2 h q,.,_, . 

cps cp 

We note that by determining with the aid of the previ­
ously obtained correlation functions the polarization 
operator II(q, w) in the single-loop approximation, we 
can generalize to the case of a nonisothermal plasma 
the dispersion equation in an external field, we can in­
vestigate the deformation of a Debye medium in a strong 
external field, etc. (seet1 e-21 l). 
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