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Hydrodynamic equations for the first moments, with allowance for the influence of the waves on the 
translational velocities and the temperatures of different plasma components, are obtained from the 
kinetic equation for the "slow" distribution function of a magnetoactive spatially-homogeneous 
plasma. The distribution function was taken in a form that makes it possible to determine the action 
of the waves on the anisotropy of the pressure and the currents in the plane perpendicular to the 
constant magnetic field Ho. The simplest cases of waves propagating along and across Ho are 
considered. In the high-frequency limit, expressions are obtained for the dragging and for the heat
ing of the electrons; these expressions demonstrate the role of Cerenkov and cyclotron resonances 
in longitudinal propagation of the waves. For transverse waves propagating perpendicular to H0 , 

expressions are obtained for the nonlinear drift current excited by a wave perpendicular to the wave 
vector and to the magnetic field. In conclusion, nonlinear effects arising in the propagation of Alfven 
and magnetosonic waves are discussed briefly. 

I N the present paper we generalize and refine the 
results of our earlier article[ll, which was devoted to 
the quasilinear theory of magnetoactive plasma for 
high-frequency waves interacting with plasma particles 
in the case of Cerenkov resonance. 

In the general case, in the derivation of hydrody
namic equations, when integration is carried out over 
all the particle velocities, it is necessary to take into 
account all types of interactions of particles with waves 
in the plasma (Cerenkov and cyclotron resonances with 
the harmonics) for only allowance for all the mecha
nisms of the interaction makes it possible to estimate 
in each concrete case the contribution made by the 
waves to the momentum and energy balance equations. 
In some cases, the role of one of the resonances may 
become decisive (for example, the role of the Ceren
kov mechanism in the propagation of longitudinal waves 
along an external constant magnetic field H0 , or the 
role of the cyclotron mechanism in propagation of 
transverse waves along Ho ), whereas in other cases 
(for example, in oblique propagation or propagation 
perpendicular to H0 ) it is not correct to separate any 
particular interaction effect, and their summary effect 
is of importance. 

An essential feature of the present paper (as well 
as of[ll) is that, besides taking into account the colli
sions of the particles, we take into account the depend
ence of the "slow" distribution function f~, which de
scribes the relaxation behavior of the plasma, on the 
azimuthal angle cp in the velocity space, and this makes 
it possible to describe effects that occur in a plane 
perpendicular to H0 • This is essential, for besides a 
constant magnetic field there is also one more pre
ferred direction, namely the wave-propagation direc
tion. Consequently, cylindrical symmetry is violated, 
as a result of which one can speak of the appearance of 
vector quantities, for example particle drifts due to the 
field of the wave in a direction perpendicular to the 
wave vector and the magnetic field. Such an analysis 
is all the more important since the influence of the 
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magnetic field is appreciable precisely in a plane per
pendicular to H0 • In addition, this reveals most clearly 
the role of the cyclotron resonance as the mechanism 
for the interaction between resonant particles and the 
waves (at velocities Vz ~ ( w ± nna)/kz, na 
= eaH 0 /mac). 

In the given formulation of the quasilinear theory, 
the collisions are taken into account in two ways: 
1) with the aid of a "slow" collision integral S~, 
which enters in the right side of the kinetic equation 
for f~, and 2) via the effective collision frequency va, 
which simulates their contribution to the rapidly
alternating processes [2 • 31: 

(1) 

Here f~ is the "fast" (pulsating) part of the distribu
tion function and s~ is the ''fast'' part of the collision 
integral. 

The effective frequency va = va(f~, v, w, k) deter
mines the final width of the curve of. the resonant inter
action between the particles and the plasma waves; 
this curve characterizes the coefficient of particle 
diffusion in velocity space. In earlier work on the 
quasilinear theory, without allowance for the collisions, 
the resonant-interaction curve turned out to be in
finitesimally thin and was chosen in the form of a (5 

function (which is obtained when va - 0). A consistent 
allowance for the collisions leads to a replacement of 
the 6-like curve of the resonance between the particle 
and the wave with a curve having a Lorentz profile, 
which of course is closer to the real conditions in a 
plasma. 

Such a formulation of the theory makes it possible 
to take more complete account of the dissipation in the 
interaction of particles with oscillations, and in particu
lar, it makes it possible to determine the heating and 
the dragging of the plasma components by the ions 
(adiabatic effects). 

Allowance for the collisions in the form (1) makes 
essential use of a model, and requires further justifi-
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cation in the analysis of, say, the low-frequency 
processes in a fully ionized plasma. However, for 
high-frequency processes, or, for example, a weakly
ionized plasma, the model (1) determines with suffic
ient accuracy the role of the collisions in the interac
tion of particles with waves. 

In[ll we obtained an equation for f~ for the propaga
tion of high-frequency waves, and the magnetic field of 
the wave H was therefore neglected. In the general 
case, the equation of quasilinear theory for a magneto
active spatially-homogeneous plasma has the following 
form: 

{ 1 [ 0 1 0] X E---H-
w-k,v,-n!2a+iva 'ov, c 'JqJ 

+- e E'-e"'+-H.Le'''v, 1 -i· ( i ) 
2 w- k,v,- Qa- nQa +iVa [ c 

( 0 i 0) i . 0] 1 
X ---- --H.Le'"v.L- +-

iJv.L v.L· iJqJ c iJv, 2 

(2) 

(3)* 

Equation (2) is written in a cylindrical system of 
coordinates, the external magnetic field is directed 
along the z axis, the symbol 1 denotes the correspond
ing quantities in the xy plane; cp , () , lJi, and 11 denote 
the angles between the x axis and the corresponding 
vectors v1, k1, E1, and H1• For simplicity, we shall 
put () = 0, i.e., we choose the x axis along k1. 

The amplitudes of the electric and magnetic fields 
of the wave are connected by Maxwell's equation 

1 1 
-H(w, k) =- [kE(w, k)J, 
c w 

(4) 

but in the subsequent calculation it is convenient to 
retain the notation with H in the hydrodynamic equa
tions. In particular, the terms with H pertain only to 
transverse waves (relativ~ to k). We ~ote also that 
the terms containing E1e 1i/l and -iH1e11J correspond 
to waves with positive helicity (when vi~wed along tqe 
z axis), and the terms containing E1e-li/l and iH1e-l1J 
correspond to waves with negative helicity, In the case 
of wave propagation along the magnetic field (k1 = 0), 
they correspond to transverse waves with left-hand 
and right-hand circular polarizations. 

Equation (2) is the most general equation of the 
quasilinear theory for the "slow" distribution function 
in a magnetoactive spatially-homogeneous plasma, 
since it takes into account not only the collisions but 
also the anisotropy of f~ in the xy plane. By the same 
token, it is possible to obtain from it expressions for 
the currents that arise in a plane perpendicular to Ho 
under the influence of various types of waves in the 
plasma, whereas no such expressions can be obtained 
from the equation for the function f~ averaged over cp. 
Equation (2) describes the interaction of the plasma 

*[vH] = v x H. 

particles with different types of waves propagating at 
an arbitrary angle to H0 , both in the case of Cerenkov 
resonance and in the case of cyclotron resonance. The 
structure of the equation offers evidence of the possi
bility of formation of a plateau on the distribution func
tion for the velocity component along the magnetic 
field (the terms appearing in the denominators and 
containing Vz). The possibility of formation of a 
plateau for velocities perpendicular to Ho depends on 
the character of the behavior of the Bessel functions 
Jm and Jn, and calls for an additional investigation. 
For small values of the argument, the Bessel functions 
are expanded in power series, thus indicating that it is 
impossible in this case for a plateau to be formed in a 
plane perpendicular to the magnetic field. 

The "slow" part of the collision integral S~, for 
not very strong magnetic fields (when ~a « wa, where 
wa. is the Langmuir frequency of the component a) and 
without allowance for the polarization, is obtained in a 
completely ionized plasma in the Landau form. On the 
other hand, in order for the influence of the magnetic 
field to be appreciable, we shall assume that H0 is not 
very small, so that the condition k1 v§: <<~a is satis
field, where v~ is the perpendicular component of the 
thermal velocity of the component a relative to the 
magnetic field. This makes it possible to carry out in 
(2) an expansion of the Bessel function at small values 
of the argument, and by the same token to simplify 
greatly the derivation of the hydrodynamic equations. 

Confining ourselves in the sums over m and n to 
terms containing the ratio k1 v 1/~a to a degree not 
hig:her than the first, which makes it possible to employ 
only values m, n = 0, ± 1, we can write Eq. (2) in the 
form 

of o of o 
a +D(fo)-Q _a -so --af a a {)m - a ' 

where the quantities A1 and the operators Bj and Cj 
(in a Cartesian coordinate system) are equal to 

(5) 

(6) 

The upper sign pertains here to quantities having the 
first index (for example A2 and A4 ), and the lower sign 
to quantities having the second index. 

Thus, when account is taken of only the first degree 
of kx (the case of small spatial dispersion for the 
wave-vector component perpendicular to Ho) in the 
case of particle-wave interaction, only the Cerenkov 
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and the single and double cyclotron resonances con
tribute in the normal and anomalous Doppler effect, 
whereas the higher cyclotron harmonics are discarded. 
However, even in this approximation, the quasilinear 
term, which determines the diffusion of the particle 
from the waves, has, as can be seen from (7), a rather 
complicated form, which gives no less complicated 
expressions in the hydrodynamic equations. It is 
therefore advantageous to confine oneself in their ap
proximation to the simplest cases of propagation of 
waves along and across H0 , so as to reveal com
pletely the hydrodynamic effects occurring when parti
cles interact with waves. 

The hydrodynamic equations for the first moments 
of the distribution function f~ (the equations for the 
momentum and energy balance of the component a) 
will be calculated, just as in[ll, in Grad's "zeroth" 
approximation with allowance for the anisotropy of the 
temperatures along and across H0 , i.e., we use the 
function f~ in the form 

{ (v.c-uaL(t))' 
f.'= j • .c(v_c, t)fa'(v,, t)•= Cf'n)-'(v • .c)-'(va')-'exp (v • .c)' 

_(v,-ua'(t))'} _c_.(2T • .c{t))'" v:=(2Ta'J.1)'''. 
(va')' ' v. - m. ' m. (8) 

Such a choice of the distribution function makes it 
possible to take into account the influence of waves on 
the currents in a plane perpendicular to H0 , and on the 
anisotropy of the temperatures. 

We shall also assume that the translational veloci
ties ua are much lower than the thermal ones, and we 
shall neglect the square of the ratio of these velocities 
compared with unity. We shall consider several cases 
below. 

A. High-frequency Waves 

Such waves satisfy the conditions 

n=O, 1, 2. 

corresponding to the case of a "cold" plasma. We 
shall assume in addition that 

n = 0, 1, 2, 

(9) 

(10) 

i.e., we shall consider waves outside the resonance 
region, where they are strongly absorbed. Under these 
conditions we can separate four characteristic cases of 
wave propagation: 

Case Al. Longitudinal waves along Ho (kx = 0, E1 
= 0, H = 0). In this case, as follows from (7), the only 
nonzero operator from among Bj and Cj will be C 1 

= Ez V z. This indicates that the only mechanism for the 
interaction of the longitudinal waves along Ho with the 
plasma particles is the Cerenkov resonance. This case 
is considered in detail in( 1J. 

Case A2. Transverse waves along H0 (kx = 0, Ez 
= 0, Hz = 0). Here 

(11) 

and the remaining operators Bj and C· are equal to 
zero. The responsible interaction mechanism is cyclo
tron resonance with normal and anomalous Doppler 
effects. 

In the "cold" plasma approximation, the balance 
equations have the form 

du:·v_ 11.x J 0 df:" + i~.u. = Vx, ,S. dv, 

dua' _"_,_ e.'E.c'~ __ w'+~2o' =Jv,S.'dv, 
dt w 2m.' (w"-~la·)" 

dT .c 'E 'v w' + Q ' j v ' a ea .L a '"a - __::1:_ s 0 d 
'df'-~(w'-~2.')' --:-m• 2 " v, 

(12) 

~ dT.' = m. J_l1_z~S.'dv. 
2 dt 2 

The upper sign in the first equation pertains to the 
equation for u~, and the lower to the equation for u~; 
expressions for the integrals in the right-hand sides 
are given inr 1J. 

In the stationary state, in analogy withr 11, it is pos
sible to obtain from (12) the currents and the tempera
ture differences produced by the transverse waves 
along Ho: 

Ue.L=O, 
u z = k~ e2E..L2Ve'tetu(w 2 + ~~/) 

e (!) 2m/(wz- Qe2)2 ' 

5'12' e'E.c'v,r:,,"(w' + Q,') T • .c = 1'.' + ~~~~ --.,.-- ~_.::::___:~..'..::...,.....:,...=.!.. 
12(1+1"2) m,(w'-Q.')' 

(13) 

T , = T + e'E.c'v;r,( ( w' + Q,') . 
e 1 -3me(u/- Q/·) 2 

Comparing this with the corresponding expressions 
for the longitudinal waves (seef 1 l ), we see that the 
longitudinal and transverse waves complement each 
other, so to speak, and in particular the longitudinal 
waves produce an electron temperature anisotropy 
with T~ > T~, and the transverse waves do the oppo
site. In both cases, however, this anisotropy is small 
since it is determined by the small parameter of the 
quasilinear theory. 

Case A3. Transverse linearly-polarized waves 
propagating perpendicular to Ho with E IIHo (kz = 0, 
E 1 = O, Hx = Hz = 0). In this case, just as in case A4, 
it is meaningless to separate the Cerenkov or the 
cyclotron resonances, for when kz = 0 the particles, 
in order to fall into resonance with the wave, would 
have to have an infinitely large velocity along the z 
axis. The character of the interaction of the waves 
with the particles is not reson~nt here.{ but adiabatic. 

The form of the operators Bj and Cj, neglecting 
the terms ~ k~/ wOa, is given by the equations 

(14) 

'B.= c.= fi, = c, = o. 
The energy and momentum balance equations are of 

the form 

1 dL' 

2 dt 

(15) 

In the stationary state in an electron-ion plasma we 
obtain for the temperatures exactly the same expres
sions as in the case A1 (see[ll), whereas for the elec
tron current components we have 



318 V. V. LOGVINOV and G. Z. MACHABELI 

k:e e"Ez'·ve-r.~,• 1 
Ua:= w 2m/{ro2 +'Va2 ) 1+(Qe'teiu)z' (16) 

u,=O. 

If Ue r~i » 1 (the momentum relaxation time due to 
the electron-ion collisions is larger than the Larmor 
period of the electrons), then iuy I » I ux 1. _The ~inus 
sign in front of uy denotes that the current 1s exctted 
in a direction opposite to the positive direction of the 
y axis, which in this case coincides with the direction 
of the vector k x H0• We shall call this the nonlinear 
drift current, since it is perpendicular to Ho and to 
the Poynting vector of the transverse wave. We note 
that this current is larger by a factor UeT~i than the 
nonlinear current excited as a result of "direct" 
momentum transfer by the wave along the x axis, but 
is smaller by a factor Uer~i than the nonlinear current 
excited by the longitudinal waves along the z axis in 
case A1 (see[ll). In[1J it was indicated that for case 
A3 we have ux = u = 0, this being due to the discard
ing of the term conlaining the magnetic field of the 
wave in the high-frequency limit in the initial kinetic 
equation. It is precisely this term which makes a 
contribution to the balance equation leading to the ap
pearance of the nonlinear drift current. Excitation of 
this current is apparently connected with the fact that 
relative motion of the electrons and ions sets in in the 
field of the transverse wave, and the particles are in 
crossed electric and magnetic fields. 

Case A4. Transverse linearly polarized waves 
propagating perpendicular to Ho, with E 1 Ho. This 
case does not differ in principle from the preceding 
one, and complements it in much the same way as A2 
complements the case A1. 

In the stationary state, the expressions for the tem
peratures are found to be the same as in the case A2, 
and for the electron current components we have 

k, e'E.'v•r:.t((j)' + 0.') 1 
(j) 2m.' ((1)2 - 0.')' -:1-+:-(:-::0:-;t-,,::-:.)-:-, ' 

ull = -ux!Je't'ei\ 
which is analogous to (16). 

B. Low-frequency Waves 

u,=O, 

(17) 

Greatest interest attaches to an analysis of the 
magnetohydrodynamic waves, in which the frequencies 
are smaller than or comparable with the ion cyclotron 
frequency. In this region of frequencies the waves 
exert a strong influence on the ions. We confine our
selves for simplicity to two cases. 

Case B1. Alfven wave along Ho. 
As is well known, when low-frequency magnetohy

drodynamic waves are considered, it is possible to 
employ the "cold" plasma approximation (see, for 
example, [41), and therefore the formulas obtained 
above for the high-frequency waves can be used also 
for the low-frequency ones. 

In the Alfven wave, the electric vector is perpendic
ular to k, and consequently the mechanism of interac
tion of these waves with the plasma particles is cyclo
tron resonance (in analogy with the case A2). The 
balance equations, with allowance for the condition 
w < Ua, are 

du:·' .,,z J o --=F O.u. = v,, .S. dv, 
dt 

du.' k, e.'EJ.'v. _ J 8 0 d 
--- 2 2 2 - Vz a. V, 

dt (j) 2m. (0. + v. ) . 

dT.J. e.'EJ.'v• svJ.'sod -- =m - v dt 2m.(O.' + v.') • 2 • ' (18) 

1 dT.' _ sv•'s•d. ----ma -a V. 
2 dt 2 

We see therefore that the contributions of the elec
trons and of the ions to the current along the z axis 
are approximately equal and are determined by the 
corresponding collision frequencies. As to the heating, 
it is the ions that are predominantly heated, since the 
contribution of the waves to the growth of Tt in the 
third equation of (18) is proportional to rna (under the 
condition Ua > v a). 

Case B2. Magnetosonic wave propagating perpen
dicular to Ho• 

Although such a wave is sometimes called "longi
tudinal" in the literature in the sense that the displace
ment vector of the velocity of matter is parallel to k, 
we are dealing with a transverse linearly-polarized 
wave in which the magnetic vector is directed along the 
z axis and the electric vector along the y axis, i.e., 
it is perpendicular to the propagation direction. 

For such a wave one can employ the results obtained 
above for the case A4 with allowance for the condition 
w < Ui. This case, like the case B 1, is characterized 
by predominant heating of the ions with the transverse 
pressure component exceeding the longitudinal one. 

A number of experimental studies[s-sJ have been 
made of strong heating of plasma by ion-cyclotron and 
magnetosonic waves with the conditions w ~ Ui and 
Ui < w « Ue satisfied. The results of these investiga
tions could not be explained on the basis of the linear 
theory of cyclotron and Cerenkov damping of waves, 
nor could they be attributed to the influence of colli
sions. An attempt was therefore made in[9 • 101 to con
nect them with the excitation of high-frequency small
scale instabilities due to the relative motion of the 
ions and electrons in the electric field of the low
frequency wave. Without excluding a similar heating 
mechanism, which is a secondary effect in this analy
sis (the wave excites two-stream instability, which 
leads to a rapid turbulent heating), we note that in the 
present paper the heating of the ions (under the condi
tion w < Ui ) is explained within the framework of the 
quasilinear approximation as being due to direct 
transfer of energy from the wave to the particles in 
cyclotron resonance, as a result of collisions. There 
is also qualitative agreement with the experimental 
data concerning the growth of the transverse compon
ent of the pressure relative to the magnetic field 
(Tl > Tz) when the plasma is heated by a fast mag
netosonic wave[sJ. A quantitative comparison of the 
results is unfortunately impossible since the conclu
sion of the present investigations were obtained under 
the assumption that the wave energy and the tempera
ture anisotropy are low, whereas in[aJ they used waves 
with large amplitudes. 

We note that if the mechanism for heating the 
plasma by low-frequency transverse waves is cyclo
tron resonance, then in propagation of longitudinal 
waves, as can be readily shown in accordance with the 
same scheme[ 11J, the predominant role in the plasma 
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heating is assumed by the Cerenkov resonance, and the 
electrons are heated. The predominant heating of any 
particular species of particles is determined by the 
ratio of the number of these particles in the region. of 
the resonant velocities. 

In conclusion, it must be emphasized once more 
that allowance for the anisotropy of the velocities in a 
plane perpendicular to Ho makes it possible to refine 
significantly the picture of the interaction of waves 
with resonant particles. In addition, the appearance of 
adiabatic (hydrodynamic) effects in the quasilinear 
approximation is possible only when account is taken 
of the finite width of the curve of resonant interaction 
of the particles with the waves, this being connected 
with the introduction of the effective frequency va, 
which simulates the contribution of the collisions to the 
rapidly-alternating processes. Such an analysis is 
equivalent to taking into account the finite correlation 
time of the electro microfields in the plasma, as was 
done in [ 121, 

Under conditions of a "cold" plasma, the current 
direction is determined by the corresponding compon
ent of the wave vector, and the pressure anisotropy is 
determined by the corresponding component of the 
electric vector of the wave. In the propagation of waves 
perpendicular to the magnetic field, the wave causes a 
drift current perpendicular to Ho and k, the magnitude 
of which is larger by a factor of ilaT~b than the non
linear current excited by the wave along k. 

In the present paper we considered the simplest 
cases of wave propagation, but the described scheme 
can be used in the arbitrary case of oblique propaga
tion. In the analysis of low-frequency waves, it is 
necessary to refine also the role of ionic collisions. 

The authors are grateful to Yu. L. Klimontovich for 
advice and interest in the work. 
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