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The role of quantum fluctuations of the gravitational field is discussed in terms of including them in 
the nonlinear equations of general relativity theory. A treatment is given for gravitational fields of 
arbitrary symmetry, although the explicit direct calculation of the vacuum contribution is made only 
for the closed Friedman cosmological model. Our results lead, first, to the assertion that the drop
ping of the A term is not justified. Second, when one uses appropriate ("observed") values of the 
gravitational constant K = 81rk/c4 and the cosmological constant A, the effect of the quantum (zero
point) fluctuations is extremely small as long as the matter density is small in comparison with the 
characteristic density Per~ ( c3 K2nr1 ~ 1094 g • cm-3, so that the radius of curvature a is large 
compared with lg ~ ( Ktic) 1/ 2 ~ 10-33 em. Near a singularity, however, the fluctuation effects can in 
principle be very important. This fact may be of importance for some cosmological models now 
under discussion. 

THE theory of the gravitational field (specifically, we 
shall be concerned with the general theory of relativity, 
referred to hereafter as GTR) is usually constructed 
on a classical (nonquantum) basis. This approach is 
quite natural, since quantum effects are extremely 
small in the case of "ordinary" astronomical prob
lems in which the force of gravity plays a part. The 
situation can be different, however, if one considers 
solutions with singular points (cosmology, collapse). 
Besides this, quantum fluctuations of the gravitational 
field could in principle be important when included in 
the nonlinear field equations themselves in the form of 
some sort of vacuum "contribution" to the expression 
for the energy-momentum tensor or the A term. 

The question of including quantum fluctuations, and 
quantum effects in general, in GTR has been repeatedly 
discussed in the literature (cf., e.g.,[l-&1), but it seem 
to us that the question has not been made sufficiently 
clear. This is primarily due to the appearance of 
diverging (and indeed nonrenormalizable) expressions, 
which have not as yet allowed the construction of any 
consistent quantum theory of the gravitational field. 

In the present paper we do not claim any success in 
the solution of this fundamental problem. Nevertheless, 
it seems interesting to present here a rather simple 
analysis which indicates the possibility of in some 
fashion estimating the importance of quantum fluctua
tions in GTR. 

1. We begin with the Einstein equationf! with the 
cosmological term 1> 

x = 8nk/c', (1) 

which we shall regard as exact microscopic equations; 
in the description of quantum effects they are to be 
understood as equations for Heisenberg operators. 

Suppose the dynamical quantities in these equations 
can have fluctuations around their average values. 
These fluctuations include: zero-point (vacuum) or 
actual fluctuations of the matter or the gravitational 

I) Our notation throughout is essentially the same as in [ 9]. 
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field, spatial nonuniformity in the distribution of the 
matter, r lOJ and so on. In this paper we shall consider 
only quantum fluctuations of a gravitational field of 
the tensor type, which in the linear approximation are 
not coupled with the fluctuations of the matter (cf)111). 
We shall reiard the energy-momentum tensor Tlt 
= ( E + p) UiU - p6~ as a given nonfluctuating quabtity 
satisfying the conservation law T~.k = 0. 

' Taking the average over all the "modes" of the 
vacuum fluctuations of the gravitational field, 2> we 
arrive at the equations 

G~ = xr,• + AfJ~ +Ill~ (2) 

where G~ is the Einstein tensor corresponding to the 
average metric and <I>~ is a tensor describing the 
contribution of the fluctuations. 

2. We now ascertain the general structure of the 
tensox: <1>~, considering the case in which the tensors 

at Rkzm• etc., can in a certain sense be regarded as 
small. In the cosmological application this means that 
we consider comparatively late stages of the evolution. 
We make the assumption (see below, Sec. 4) that the 
tensor <I>~ can be expanded in a series in the average 

tensor R~lm 
Ill,• = ll>,~o) + «D~t) + ll>~z) + ... , (3) 

where the index in parentheses shows the power to 
which the tensor Rk.zm occurs in the term. More ex
actly, we shall also include in <~>f< 2> terms of the type 

R~~. which, though linear in R~lm• also contain addi-
' tional powers of a length in the denominator. There-

fore the expansion (3) is act.ually an expansion in in
verse lengths (the tensor R~zm itself has the dimen
sions of inverse length squared). 

We make two remarks. The fact that the tensor 
<1>~ must be expressible only in terms of the tensor 

1 . 

'llwe do not introduce a special symbol for averages, since here
after only averages will appear in the calculations. 
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R~lm and its derivatives is due to our neglect of the 

fluctuations of the matter. In this case the tensor T~ 
must appear in the expression for <~>f as a whole, a~d 
can be simply expressed in terms of the tensor R~ by 
Eq. (1), in zeroth order in the fluctuations. Our 1 

second remark c.oncerns a possible nonlocal depend
ence of <I>~ on R~zm· Taking (3) as an expansion in 
inverse powers of a length, we can reflect this non
locality by the introduction of terms containing deriva
tives of the Rieman tensor. 

We proceed to the determination of the forms of the 
tensors <~>f<O>' <~>f<,,. etc., in Eq. (3). The first of these 

quantities must be of the form const · 0~, owing to co

variance and the fact that it is independent of R~lm. 
Therefore the tensor <1>~ 01 leads to a renormalization 
of the cosmological term, and can be ignored here
after. 

The tensor <~>f< 11 , which is linear in the Riemann 
tensor, can have the following structure: 

ID,t., = AR.' + BRlJ; ·== A'G,' + B'RlJ:, 
where A, B, A', B' are constants. The term propor
tional to G~ gives a renormalization of the gravita
tional conslant and can also be omitted. Hereafter we 
shall take K and A to mean the renormalized values 
of these quantities, which are directly measurable. 
(From this we see in particular that it is not justified 
to assume that A = 0). As for the term B'RO~, it must 

1 
be absent, since it violates in this order of the expan-
sion (3) the conservation law <~>f.k = 0, which follows 

from the equations Gf.k = 0 and' Tf.k = 0 (see Sec. 1). 
. 'k-1t-Accordmgly, we can take <l>i<o> - <l>i<t> - 0. 

Finally, the general structure of the tensor <I>~ 21 is 

ID,<~> = CRR,• +DR/: R: + ER: R." + 
+ FR:'; R.~' + HR'lJ~ + IR:R:o: + IR,~•+ KR,~~· + LR.FJ.". 

The constants C, b, E, F, H, I, K, J, and L are actually 
connected by a number of relations, which follow from 
the conservation law <l>~·k = 0 already mentioned. , 
Namely, it turns out that in this order there are only 
two linearly independent conserved combinations: 

where 

(4) 

cp~, =- 2RR,'+ '/..R'o: + 2R,t- 2R::6:, (5a) 

cp:, = -2R:R,":+ '/,R:R:lJ,• + R,f' -R~~- '/..R,:FJ~. (5b) 

It is essential to emphasize that these combinations 
become linearly dependent in the conformal-flat case, 
which in particular includes· the Friedman metric. In 
this case, however, an additional conserved tensor 
appears, 

qt:, =- 'f,RR~ +R,"R.'+ '!.R'FJ~- 'J,R!R."FJ.". (5c) 

Therefore in our Eq. (6) below we can take <P~i to 
mean either (5b) or else (5c ). 31 

3> It is interesting to note that the two combinations (Sa) and (Sb) 
can be derived by varying functionals fd 4 x (-g)~£ with£ equal to the 
respective quantities R2 and RabRb a. In this connection we note that 
the variation of functionals of this type automatically leads to conserved 
quantities (cf, e.g., [ 12] ). 

3. Accordingly, Eq. (1) takes the form 

G~ = xT~ + AFJ,~+ acp~ + pep~,. (6) 

In accordance with the assumptions we have made, we 
take the quantities a and {3 that appear here to be 
constants, although, as will be shown in Sec. 4, it is 
more probable that they have a weak (logarithmic) 
dependence on the curvature. The general treatment 
which we shall give does not allow us to exclude the 
possibility that a = 0, {3 = 0, or a = {3 = 0. We think, 
however, that such a situation is extremely improbable. 
One can most simply estimate the order of magnitude 
of the constants a and {3 from dimensional considera
tions, assuming, of course, that in a future "good" 
quantum theory of gravitation these constants will have 
finite values. Then a and fj must be of the dimensions 
of the square of length, and will evidently be propor
tional to the only quantity of these dimensions that is 
characteristic for the quantum fluctuations of the 
gravitational field, Khc = 1~ ~ (10-33 cm)2• 

Let us now examine the role of the fluctuation cor
rection in Eq. (6) as applied to cosmology. We here 
confine ourselves to homogeneous and isotropic cos
mological models. As is well known, for the solution 
of this sort of cosmological problem it is sufficient to 
use the (0, 0) component of Eq. (6). Substituting in <I>~ 
the curvature tensor expressed in zeroth approxima
tion in terms of E, p, and A, we get41 

G: = x8 +A+ l,P,(x8, xp.A), (7) 

where P 2 is a homogeneous quadratic form with coef
ficients of the order of unity. At late stages of the 
evolution, to which the expression (7) derived from 
perturbation theory applies directly, we break up P2 
into a sum of three terms: MA 2 + AQ1 ( KE, KP) 
+ Q2( KE, K p), where M is a constant of the order of 
unity, and Q1 and Q2 are linear and quadratic forms. 
It is easily seen that the first two terms of this sum 
lead to effective changes of K and A by quantities of 
the orders 1gAK and 1gA2 • These changes can be 
neglected, since at the present epoch KE :5 10-56 cm-2 

and lA 1 $ KE, Therefore instead of P 2 we can simply 
use Q2 in (7). 

At the present epoch the ratio of the fluctuation 
term in (7) to the main term is of the order of 12 K E 
~ 10-120 and is altogether negligible. It is natura'! to 
ask when the fluctuation terms could have played an 
appreciable role. This would set a possible limit on 
the applicability of classical GTR. Continuing (7) 
formally into the region of large density, we get as an 
estimate of the ratio just mentioned the quantity 1gKE. 
We see from this that the fluctuations could have been 
important for 

8 1 c' iO+'' -3 p=-> Per~--~-~ g-em 
c' xlr'c' k'li 

(8) 

This conclusion is quite natural, since Per is the only 
quantity of the dimensions of density that can be con-

4>More exactly, there is an additional term of the form l~Ke/a2 in 
the right member of (7), owing to the presence of derivatives of the 
curvature in the tensor 'Ptik· This then makes no change at all in our 
calculations to be given here in the case of the Friedman cosmological 
model, but in other cases terms of this form might be important. 

i 
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structed from K, n, and c. 5 > It may be supposed that 
an analogous result holds also for more general cos
mological models, but this question calls for special 
investigation. 

We note that although we have used in the derivation 
of (8) the expression (7), which generally speaking 
holds only in the region of small densities, the result 
can nevertheless be regarded as correct in order of 
magnitude. The point is that precisely for p ~Per the 
cubic and more complicated terms neglected in (3) are 
of the same order as <t>"f< 2>. 

Meanwhile, it is of course impermissible to use 
Eq. {7) for p :C Per. and particularly in the neighbor
hood of a singular point. In this connection we shall 
mention a paper of Ruzma'lkina and Ruzmalkin, [l3 J in 
which an equation analogous to (7) was used to deter
mine the effect of matter fluctuations on the behavior 
of the cosmological solution near the singular point. 
Besides the need to include cubic and higher terms, 
we must point out that the authors of[13l start from the 
proposition that classical GTR can be applied up to 
densities such that the radius of curvature of the world 
is of the order of lg. Actually, as we have just shown, 
the limit of applicability of GTR is many orders of 
magnitude lower. 

We also point out that the equation derived in[13l 
agrees with Eq. (7) only for a nonfriedman metric, 
since it contains the term rp~ instead of rp:~. The ab-
sence of the latter quantity comes from the calcula
tions of[ 41 applied to the matter fluctuations. In this 
connection we note that we do not think it obvious that 
the operation used in[ 4 l, of averaging over the matter 
fluctuations in the Lagrangian before varying the action. 
function, is correct. Therefore it might be that a more 
correct averaging over the matter fluctuations would 
have led to the appearance of the term rp ~f. As for the 
appearance of this term in our equations for the gravi
tational field, there can be no objections to it. More
over, t~ term rp ~t behaves in a radically different way 
from rp 21, and does not vanish in the hot model when 
R =0 (forA= 0). 

4. To corroborate our formulas and, mainly, to 
check the assumption that the it>~ are analytic func-

. 1 
tions of R~zm, we shall give below the result of a 
direct calculation of the coefficients a and {3 in (4). 
We shall use an approximate method analogous to the 
well known fluctuation method in the theory of the Lamb 

5lThe world radius of curvature a that corresponds to the density 
(8) is much larger than the quantity lg (more exactly, by a we mean the 
quantity a or b that occurs in the Friedman solutions; see [ 9 ] , Sees I 04-
106). In fact, supposing that at present Ke = a0 a-3 with a0 - 1028 ern, 
and referring relative values to the critical density (i.e., setting KE-

KC2 Per), we have acr- (a01g) 1/J- 10-12 ern. This is of course a crude 
calculation, since at high densities the equation of state does·not cor
respond to the "dustlike-rnatter" model we are using here. Therefore 
in reality acr > I 0-12 ern. If one uses the equations of state p = 0 for 
small densities and p = e /3 for large ones, one gets acr - 10-s to 10-6 

ern. To find an upper limit on acr we can use the hard-limit equation of 
state p = e, for which Ke = a~ a-6 and acr- ( a~lg)l/3 - I 08 ern. The in
equality acr ~ lg simply reflects the fact that the quantum fluctuations 
become important not when the "size" of entire universe is of the order 
of lg, but when a mas~ Mg- (ch/G)y2 - 10-s g is concentrated in a vol
ume of the order of lg. Of course, the largest components of the tensor 
Riklrn are then of the order of 1//~. 

shiftY4 l We introduce the fluctuations of the metric 
by formally replacing the metric tensor gik with gik 
+ ligik• where gik is the mean value and the amplitude 
of the fluctuations will be determined subsequently 
from the condition that the energy of each vibrational 
degree of freedom be normalized to the zero-point 
energy of an oscillator. When we substitute the expres
sion gik + ligik for the metric tensor in (1) and work 
out the expansion of the tensor Gf, which is nonlinear 
in the gik, to and including the second degree in the 
ligik• we get correction terms of the first and second 
orders in the ligik (we shall denote them by 1i 1Gf and 

1i 2Gt). The equation 1i 1Gf = 0 provides the determina

tion of the form of the function ligik. Finding the aver
age over all the "modes" of the fluctuations, w~ich 
we shall indicate with a bar, we get <t>f = - li2G1 • 

The perturbation ligik of the gravitational field can 
be put in the form of a linear superposition of "har
monics" ligik{N)• ligfk(N) ( N is the index which num
bers the "harmonics"), which are described in detail 
in[ 11J: 

N 

Substitution of this expansion in 1i 2 Gt leads to an 
expression 

N 

where li2Gt(N) is the corresponding quantity for the 

(9) 

N-th "harmonic." When we consider the gravitational 
waves as quantized, the coefficients CN are regarded 
as operators. 

As is well known, the quantum theory of the gravita
tional field encounters a number of difficulties, even 
apart from the problem of renormalizationsY51 In our 
case, however, we are concerned with the quantization 
of a weak field ligik with given average field gik· 
Under these conditions the quantization of the gravita
tional field is analogous to that of the electromagnetic 
field, for example. This means that the small fluctua
tions of the gravitational field formally correspond to 
the presence of a physical (tensor) quantized field in 
the world with geometry defined by the quantities gik· 
However, the quantization of the gravitational field has 
the specific feature that it must be carried out with the 
curvature of space-time taken into account. 6 > More
over, because there is no true energy-momentum ten
sor and because the problem is nonstationary, it is 
impossible to make direct use of the standard Hamil
tonian formalism. Nevertheless it turns outr 161 that in 
this case too, with a suitable normalization of the 
harmonics ligik{N)• we can retain the usual commuta
tion relations for the amplitudes: 

[CN,C;]=IINM, [CN,CM)=0. 

Using this result and carrying out a quantum
mechanical averaging in (9 ), we get 

6,G: = ..E[•J,+ p(N)]II,G,~Nh 

6) As will be seen from what follows, we are mainly interested in pre
cisely the terms that essentially depend on the quantity a/A, where A is 
the wavelength of a graviton. 
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where p(N) are occupation numbers. Values p(N) = 0 
correspond to the vacuum fluctuations. For the closed 
model a direct calculation, whose details we omit 
(cfY6 • 111) leads for p(N) = 0, after the necessary 

subtractions, to an expression for 02 G\_t of the type of 
Eq. (4) with 

where n is a quantum number occurring in N and 
having the meaning of the ratio of the radius of curva
ture a of the world to the wavelength of the gravitation. 
Assuming that the divergent sum is "cut off" at a 
value n = n0 which corresponds to an effective distance 
of the order of lg, we get n0 ~ allg and a, ti 
~ lg ln (a2llg). In order to write this expression in an 
explicitly covariant and local form, we must introduce 
in the argument of the logarithm a scalar constructed 
from the Riemann tensor. We have no way to deter
mine it exactly, and can only indicate that possible 
quantities are lg2 R-t, lg2 (R~R~t112, etc. The differ
ence between them is beyond the scope of the logarith
mic accuracy we are considering. 

Accordingly, we conclude that the coefficients a and 
(3 in (4) are most likely not constants, but depend 
lo~a,rithmically on the curvature (see alsor 171), This, 
however, has no effect at all on our previous conclu
sions about the role of quantum fluctuations in GTR. 

5. One of the central questions in GTR and in 
cosmology is the following: What are the limits of ap
plicability of the basic equations of the theory; specif
ically, what are the smallest sizes and matter densi
ties for which one can use the equations of GTR and 
their cosmological solutions? 

We here abstract from the possibility that there is 
need for some modification of GTR even in weak 
fields. 7> Then, according to classical ideas, the limits 
of GTR are due to the fact that the field equations (1) 
are set up by using the requirement that derivatives of 
orders higher than the second not occur. If we use a 
series expansion, the introduction of higher derivatives 
leads to the appearance in the equations for the gik of 
terms of _the type of <I>f< 2>' and of higher orders in the 
tensor Rizm and its derivatives. In order of magnitude 

all1of4these terms contain additional factors ( lla)2, 

( l :1.) , and so on, as compared with the terms usually 
taken into account in GTR, where a is the characteris
tic radius of curvature of the gik field and 1 is some 
universal length. Such terms can in general persist 
even in the nonrelativistic limit c - oo, and corre
spond to replacing the equation t::. q; = 41Tkp with an 
equation of the type 

,1\ ( 1 + al',i\ + bl'Ll' + ... ) ''P = 41lk,p, 

where q; is the gravitational potential and a~ b ~ 1 
are constants. 

It is interesting to see what limits are put on 1 by 
the observations (see alsor181). Let us assume, for 

7) At present we see no real basis for such assumptions (for example, 
for replacing GTR with a tensor-scalar theory). We must not, however, 
lose sight of the fact that even in weak fields GTR has so far been veri
fied experimentally only to low accuracy, not better than a few percent. 

example, that the correction 12 t::.. q; amounts to no more 
than 1 percent of the usual relativistic corrections, 
which are of the order of ( q; I c 2 ) q; • Then for the case 
of the sun's field, in which I qJ II c2 $ 10-6 (at the sur
face of the sun I q; I = kM0 Ir0 Rj 2 ·10-6c 2 ) and t 2t::.. q; 
~ l 2 q;lr~, we have 

l' ,- , kM0 -,""'tO- -, ~ 10-• and l ~ 10-'r0 ~ 10' em 
r0 r0 c 

It is quite possible that a more detailed examination of 
the motion of the planets or of their satellites will 
make possible a considerable lowering of this limit on 
l. Equations with higher derivatives are also by no 
means always acceptable, owing to the possibility of 
the appearance of inadmissible new solutions, in par
ticular solutions corresponding to negative energy. 

We shall not dwell further on these questions, since 
it is most probable that a new fundamental length, if it 
exists, must be significant not only in the theory of 
gravitation, but also in electrodynamics and in general 
for all physical fields. At the same time the quantum
field-theory equations now used are valid at least down 
to distances of the order of 10-15 em, and according to 
some arguments[lsJ even down to 10-20 em. Conse
quently, we may suppose that l $ 10-16-10-20 em, and 
it is this l that determines the limits of GTR. If, on 
the other hand, no new fundamental length exists in 
nature, then obviously the value that must be taken for 
l is the gravitational length l g ~ (!die )1/2 ~ 10-33 em. 

Accordingly, from general considerations we may 
already suppose that the maximum breadth of the 
region of applicability of GTR is determined by the 
length lg. In the foregoing this conclusion has, on one 
hand, been given a somewhat concrete form. On the 
other hand, it has been shown that for the average 
("smoothed") gik field the corresponding correction 
terms [cf., e.g., Eq. (7)] appear even in the case when 
we adopt the Einstein equations (1) for the true gik 
field. Finally, it has been shown that the correction 
terms proportional to l g are already large (and con
sequently can radically alter the cosmological solu
tions) not at a 2 ~ lg, but for densities p ~Per 
~ (Klgc 2 t 1 ~ 1094 g·cm-3 corresponding to a radius 
of curvature acr ~ 10-12 em >> l g· We recall also that 
we have here taken into account only the fluctuations 
of the gravitational field, while there can be some 
contribution to the correction terms (and possibly a 
still larger contribution) lfom the fluctuations of the 
matter, i.e., the tensor Ti. Thus there are no grounds 
for trusting the cosmological solutions of GTR [i.e., 
the corresponding solutions of Eq. (1 )], not only as we 
approach the singular point a- 0, or for a$ lg, but 
also everywhere for a$ acr >> lg· 

The question as to the minimum values amin, down 
to which one can use the singular solutions of GTR in 
the case of the homogeneous and isotropic cosmologi
cal models or of the spherically symmetric collapse 
problem, is not an especially sharp one. Obviously 
the point is that in these cases the development of the 
system for a> amin does not depend so very strongly 
on its behavior for a s amin· The situation can be 
radically different in anisotropic and homogeneous 
models, or in the analysis of the question of the 
"initial" perturbations (inhomogeneities) against the 
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background of a homogeneous and isotropic solution 
(cf., e.g.pol), 

What we have said is perhaps especially important 
in the treatment of cosmological models with "inter
mixing" (oscillations), which are now attracting much 
attention. [8• 21• 221 Such models can be of actual cosmo
logical interest, [221 evidently, only if the corresponding 
GRT solutions are good on a scale (of the radius a) 
incomparably smaller even than the length lg ~ 10-33 

em. As we have seen, however, all known arguments 
bear strongly against such a possibility (the considera
tions given in Misner's paper, [8J so far as we can 
understand, relate to other aspects of the problem and 
do not change the conclusions reached here). It is true 
that this in itself does not logically exclude the possi
bility of the unlimited use of the classical singular 
solutions of GTR for applications to the cosmological 
problem, for example; our estimates and qualitative 
arguments are not rigorous enough for this. But also, 
on the contrary, one can be convinced, in our opinion, 
of the validity of solutions of the type of those in [81 and 
and[ 21 l, or any other classical singular solutions, for 
the analysis of the cosmological problem, only on the 
basis of the quantum-theory equations of the gravita
tional field and a sufficiently thorough investigation of 
these equations. 
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