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We investigate the kinetic stage of quasilinear relaxation of an ultrarelativistic electron beam both 
in a homogeneous and in an inhomogeneous plasma. We show that in a homogeneous plasma the beam 
releases approximately half of its initial energy. The inhomogeneity of the plasma becomes signifi­
cant under the condition IJ.A = A(c/wpL) x (E/mc 2 )(n/n') » 1, where A is the Coulomb logarithm, 
L is the characteristic scale of the inhomogeneity, c is the speed of light, wp is the electron plasma 
frequency, E » mc 2 is the initial energy of the beam electrons, n is the plasma concentration, and 
n' is the beam concentration. If the initial angle scatter of the beam 6.(}0 is large, 6.(} 0 > (IJ.Af\ 
then there is no relaxation. On the other hand, if t::.. e 0 < ( IJ.At\ then the relaxation proceeds but the 
beam releases into the plasma only a negligible ( ~ ( iJ.A t 1 ) fraction of its initial energy. 

1. INTRODUCTION 

THE main question to be answered by the theory of 
relaxation of an ultrarelativistic electron beam in a 
plasma is what is the fraction of the initial energy lost 
by the beam as a result of two-stream instability, and 
over what length does this loss occur. Important re­
sults in this direction were obtained by Fa'inberg, 
Shapiro, and Shevchenko[ll, who considered both the 
hydrodynamic and the kinetic stages of the instability 
for the case of a homogeneous plasma. We shall in­
vestigate in greater detail the kinetic stage of the in­
stability, paying principal attention to the effects con­
nected with the inhomogeneity of the plasma. 

The important role of the plasma inhomogeneity in 
the problem of electron-beam relaxation is due to the 
specific character of the dispersion of the Langmuir 
oscillations: even a small change in the plasma con­
centration leads to an appreciable change in the phase 
velocity of these oscillations and to violation of the 
conditions for resonant interaction between the oscilla­
tions and the beam particles[2-4J. As will be shown in 
the present paper, it is precisely the presence (or 
absence) of inhomogeneity which determines the effec­
tiveness of the interaction between the beam and the 
the plasma. 

A complete theory of relaxation should undoubtedly 
include an allowance for the nonlinear processes. How­
ever, as the first step it is reasonable to confine one­
self to an investigation of the quasilinear equations, so 
as to make use of the cor:r:esponding solution as the 
starting point in the construction of the general theory. 
In addition, the quasilinear solution is of considerable 
interest in itself, for in sufficiently weak beams the 
nonlinear effects are negligible. It is difficult at pres­
ent to estimate quantitatively the limits of applicability 
of the quasilinear approximation, since the nonlinear 
processes with participation of Langmuir oscillations 
are apparently also very sensitive to the influence of 
inhomogeneity. The authors propose to present the 
corresponding estimates in a forthcoming paper. 

2. FORMULATION OF THE PROBLEM AND FUNDA­
MENTAL EQUATIONS 

We confine ourselves to an investigation of electron 
beams with sufficiently large angle spread in momen­
tum space: 
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Ae >me' IE (1) 

where E >> mc 2 is the energy of the beam electrons. 
Under this condition we can neglect the difference be­
tween the modulus of the beam-electron velocity and 
c, and we can assume that v = cp/p, where p is the 
momentum of the electron. If furthermore 

( n' me• )''• 
Ae> -;;y . (2) 

where n' and n are respectively the concentrations of 
the beam and of the plasma, then the instability is 
kineticu. 

To get an idea of the orders of magnitude of the 
quantities, we use the beam and plasma parameters 
given in the paper of Winterberg[sJ in connection with 
experiments proposed there for heating of plasma of a 
solid target: n' ~ 10 18 cm-3, n ~ 1022 cm-3, E ~ 10 MeV. 
Substituting these values of the parameters in (1) and 
(2) we find that, as applied to such experiments, our 
results will be valid already at t::.. e > 0.05. 

Assuming inequalities (1) and (2) to be satisfied, 
let us consider the stationary boundary problem of in­
jection of a beam into a half-space z > 0 filled with 
plasma. With respect to the beam and plasma parame­
ters we assume that they depend only on z, and the 
plasma concentration increases in the direction of the 
beam injection, and the scale L over which it changes 
by an amount of the order of unity is large compared 
with the wavelength of the oscillations excited by the 
beam: L » c/ wp ( wp is the electron plasma fre­
quency). As will be shown later, in those cases when 

nwe note that in [4 ] there is indicated a somewhat more stringent 
condition than the inequality (2). Actually, the instability is kinetic al­
ready if the inequality (2) is satisfied. 
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relaxation is possible at all, it occurs over a scale 
much smaller than L. Therefore n( z) can be approxi­
mated by a linear function: n = n0( 1 + z/L). 

Under the conditions indicated above, the system of 
quasilinear equations can be written in the form rs-BJ: 

(3) 

p, at a at 
C-'-- = -!l>~p-. (4) 

p az ap~ 8pp 

where wp = ( 4?Tn0e 2/ m )112 is the electron plasma fre­
quency at the point z = 0, VT = (Te/m)112 is the 
thermal velocity of the plasma electrons, f = f( z, p) is 
the beam-electron distribution function, W = W( z, k) 
is the spectral energy density of the Langmuir oscilla­
tions, y = y( z, k) is the instability increment, and 
!l>af3 = ma{3 (z, p) is the diffusion tensor in momentum 
space. 

Since it will be shown below that the angle spread of 
the beam remains small all the time during the relaxa­
tion process compared with unity, we can write down 
the left-hand side of (4) in the form cllf/az. This means 
in particular, that the bean concentration does not 
vary along z and remain equal to its initial value n~. 

For the actual calculation of the increment y and of 
the tensor ma{3 it is convenient to use the spherical 
coordinates ( p, e, cp) in momentum space and 
(k, (}I> cp 1 ) in wave-vector Space (the angles e and e I 
are reckoned from the z axis). The results of the 
corresponding calculations are given in the Appendix. 

The distribution function of the beam entering the 
plasma will be assumed, for concreteness, to be mono­
energetic 

I _ n,'g,(6) •( ) 
,--2-,-u p-p,. 

np, . 

Such an assumption corresponds to the experimental 
formulation of the problem in those cases when the 
beam is produced by electrostatic sources. 

(5) 

To abbreviate the notation, it is convenient to make 
the following substitutions in Eqs. (3) and (4): 

no'mc 
y-+w.--y, 

n,p, 

p-+p,p, 

(6) 

where the quantities z, k, p, f, W, y, and £2)0 {3 on the 
right sides are already dimensionless. In terms of the 
new (dimensionless) variables, the system of equations 
(3) and (4) takes the form 

, aw ( , aw sine' aw) cos6 --f.l cos6 ------ =2yW 
az &k k ae' • 

at_ 1 a '(!71) at 1 at) 
az -p;: ap P •• ap + p!!l)., ae 

+-.-1_..!!_s1nB (!I> •• 8f +_!.!l>ee 8f). 
psme ae ap p ae 

We have used here the spherical coordinate system 
(p, e, cp) and (k, 8 1 , cp 1 ) introduced above. 

The dimensionless parameter J.L, defined by the 
relation 

(7) 

(8) 

(9) 

t,+ 

o.s, o_rCJ 
. : A 90 

6 ' Ll -o.-:f;z-=--.~...--=o;'"=s-l.L.--:,,'-o -'i!' 

FIG. I FIG. 2 

FIG. I. Dependence of the incremeqt, maximized with respect to k, 
on 8'; b. B-angle spread of the beam. 

FIG. 2. Result of numerical integration of Eqs. (17) and (18). 

characterizes the role of the inhomogeneity of the 
plasma. 

3. RELAXATION IN A HOMOGENEOUS PLASMA 

The limiting case of a homogeneous plasma corre­
sponds to vanishing of the parameter J.L in Eq. (7). The 
resultant system of equations coincides, apart from 
the notation, with that already considered in[ 1J. Never­
theless, we shall pay some attention to it, for this will 
yield a number of estimates important for what follows, 
and, in addition, in the case of one simple model, an 
analytic solution of this system can be obtained and 
shows that as a result of relaxation there appears an 
appreciable number of electrons with energy exceeding 
the initial energy of the beam electrons. 

The main result concerning relaxation of a beam in 
a homogeneous plasma was obtained already by Fain­
berg, Shapiro, and Shevchenko, and consists in the fact 
that the relaxation is almost one-dimensional, i.e., the 
energy loss by the beam occurs without an appreciable 
increase of its angle spread. 

This circumstance can be seen from an analysis of 
the expressions for the increment and for the diffusion 
coefficients, given in the Appendix. Indeed, the depend­
ence of the increment, maximized with respect to k, on 
the propagation angle e 1 has the form shown schemat­
ically in Fig. 1. The width of the maximum on the curve 
Ym ( e 1 ) is approximately equal to t:. e , and the ratio 
ym 1/y m2 is of the order of unity (for the notation see 
the figure). On the basis of the results of[9 l it can be 
stated that the spectrum of the oscillations will be con­
centrated in a narrow region of width of the order of 
t:. e/ fA (A is a quantity of the order of the Coulomb 
logarithm) about the point (} I = (}I ~ f::. (}) where the 
function Ym(e 1

) has a maximum. 
Knowing the position and the width of the spectrum 

of the oscillations, it is possible to estimate with the 
aid of formula (A.6) the ratio of the diffusion coeffi­
cients !l>pp and !l> e e : mpp I !lJ e e ~ t:. e -2 » 1. rt follows 
therefore that the diffusion with respect to momentum 
is more rapid than the diffusion with respect to the 
angle, and within the time during which the angle 
spread of the beam t:. (} increases by an amount on the 
order of its initial value t:. (} 0 , the beam already re­
leases into the plasma an appreciable fraction of its 
initial energy (on the order of unity). This occurs 
over a distance 
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z ~ A/vm ~ Aa9,'. 

A complete quantitative description of the process 
of relaxation is very difficult, since its concrete de­
tails depend essentially on the form of the initial dis­
tribution function. We shall therefore consider a sim­
ple model, in which the spectrum of the oscillations is 
assumed to be exactly one-dimensional2): W(k, e') 
= W(k) li( 1 - cos e '). In the investigation of this model 
it is convenient to regard f as a function of the inde­
pendent variables e and p 1 = p sin e, and W as a 
function of the variable 1J = [2(k- 1)]1/ 2• 

Using relations (A.2) and (A.7), and also the condi­
tion e « 1, we rewrite the system of equations (7) 
and (8) in terms of the new variables: 

a n a 
--;- W(z, 9) =---W(z, 9)-h(z, 8), 
vz e ae (11) 

a 2n'9' a a 
-;-;; f(z. 8, p.1_) = ---, --:--8 [e'W(z, 8)-;-8 f(z, 8, P.L) ] , 

0 · P.L d v 

h = 2n J fP.L dP.L. (12) 
0 

We indicate here two integrals of this system, the 
validity of which can be verified directly: 

f~ d8 g,(P.L) 
-8,/(z, 8, P.L) = - 2---, 

o np~ 

IP.L'f(z,8,P.L)dP.L+8' :a9'W(z,8)= :~ g,(9). 

(13) 

(14) 

The first of them is the law of conservation of the 
number of particles with specified p1 , and the second 
is the analog of the well-known quasilinear integral [6• 71. 

We obtain a solution of the system (11) and (12) cor­
responding to the "step" function g0 : 

g,(S) = { 2/aS,', 8 < M,, 
0, 9>M,. 

The solution method is analogous to that employed in 
the theory of one-dimensional relaxation of a nonrela­
tivistic beamf 101 : in this region of values of e where 
the spectral density of the oscillation energy greatly 
exceeds the thermal level, the distribution function can 
be regarded as independent of e ("plateau"); on the 
other hand, where the oscillation energy is close to 
thermal, the distribution function is equal to its initial 
value. In other words, the distribution function can be 
written in the form 

1
1 (P.L ) nM,'Il 8-1 , 8<8-(z), 

f(z,B,p.L)= !Jl(p.L,z), 8-(~)<8<8+(z), 

0, 8 > 9+(z), 

where the function .9'(p1, z) determines the height of 
the plateau, and the functions e- ( z) and e + ( z) deter­
mines its boundaries, with .9'(p1 , z) expressed in 
terms of (I_ and e+ with the aid of the integral (13): 

\ 

0, P.L < 9-, 

!J>( ) 1 8+9-P.L,z = ---.---8 , -8 _ 8 ,8-<p.L<ae,, 
rtL.l o P.1... + -

o, P.L > ae,. 

2) Such a formation of the problem is perfectly correct if a strong 
magnetic field parallel to the z axis exists in the plasma. 

As to the spectrum of the oscillations, it can be easily 
found with the aid of the integral (14): 

•+ 
1 [ • a -• - a-• ] 

W(z, 8) = 2ne' J 8'g,(8)d8- 9_-:_, _ 8+ •.J 8'g,(8)d8 . (15) 

It now remains to determine the position of the 
boundaries of the plateau. To this end we integrate 
both parts of Eq. (11) with respect to e from (!_ - 0 
to e_ + 0: 

ae_ W(a_ + O) n 
-In . =-[h(B-+O)-h(B--0)]. 

dz W(B-- 0) a_ 

~ecognizin[ that the logarithm of the ratio 
W( e _ + 0 )/W( e _ - 0) is equal with good accuracy to 
A (see[ 101) and substituting in the right-hand side of 
(16) the explicit expressions for h(e+ + O) and 
h( (I_ - 0), we obtain the following equation: 

(16) 

de_ e+ • 2n (17) dr- =-a_+ 8+ _ 8_ (M,- 8-), "'= AM,' z. 

An analogous result is obtained also for e+ by inte­
grating (11) over the interval [ e + - o, e + + 0]: 

de+ a_ 
~= S+-B- (Mo-8-). 

(18) 

Since the instability increment calculated from the 
initial distribution function is positive only at one point 
( e = 6. eo), it is not difficult to write down the initial 
conditions for the system (17) and (18): e. (0) = (1_(0) 
= t:. (1 0 • In spite of the relatively simple form of Eqs. 
(17) and (18 ), they can be integrated only numerically. 
The results of the corresponding calculations are 
shown in Fig. 2. 

The obtained solution of the initial system of equa­
tions (11) and (12) describes only the initial stage of 
the relaxation (!; <0.77). The point is that the spectral 
density of the oscillation energy, formally calculated 
in accordance with (15), turns out to be negative at 
!; > 0.77 in the vicinity of the point e = (!_, 

It is impossible to find the distribution function at 
{; > 0.77, but it is nevertheless possible to follow 
qualitatively the course of the relaxation. To this end 
we turn to Fig. 3. In the figure the circular arc of 
unit radius represents that part of momentum space, 
where the initial distribution function of the particles 
differs from zero, while the horizontal straight lines 
represent the line p1 = const, along which diffusion 
equalization of the distribution function takes place. It 
is seen from the figure that during the relaxation pro­
cess there appear "accelerated" electrons (with mo­
mentum p > 1), and their number is comparable with 
the number "slowed down" electrons (with momentum 
p < 1). Thus, at the end of the first stage of the relaxa­
tion, the fraction of the "accelerated" electrons is 
equal to 0.13 of the total number of beam electrons. 

''\ ,_, ~~' 
1 P 11 

FIG. 3. Beam relaxation for one-dimensional spectrum of the oscil­
lations. 
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4. RELAXATION IN AN INHOMOGENEOUS PLASMA 
(QUALITATIVE CONSIDERATION) 

When a Langmuir oscillation propagates along a 
plasma that is inhomogeneous in the direction of the 
z axis, the longitudinal component of its wave vector 
changes with time 3>: 

dk, OWp w, 
dt=----a;-=- 2L. 

On the other hand, the only oscillations that can inter­
act with the beam (and consequently can become am­
plified) are those for which kz lies in a narrow inter­
val about the point kz = wp / c : 

-~k,- :··~ ~:· Ae'+k.~.M 
(the last circumstance can be readily seen, e.g., from 
formula (A.1)). Therefore in an inhomogeneous plasma 
each oscillation interacts with the beam during a short 
time interval 

L ( , k.1.c ) At-- M +-. Ae , 
C Wp 

which can turn out to be insufficient to satisfy the 
condition4> 

(19) 

under which the oscillation can exert a noticeable re­
action on the beam. It is precisely for this reason that 
the relaxation in an inhomogeneous plasma can be much 
less effective than in a homogeneous one. 

Recognizing that the increment of the two-stream 
instability can be estimated from the formula (see, 
(A.3)): 

COp no' me ro/ 
y - Aif~"P.""w.' + k3.1.c' 

we write relation (19) in the form 

1 + kJ.c!w.M";i!; A (20) 
1 + (kJ.c/w.)' 11 ' 

where the parameter J.L is determined from formula 
(9). We see therefore that the inhomogeneity has dif­
ferent effects on oscillations with different k1. For 
those values of k1 for which the criterion (20) is 
satisfied, the role of the inhomogeneity is immaterial 
(since the corresponding oscillations have time to be­
come strongly amplified in the time during which they 
interact with the beam). Conversely, if for certain 
values of k1 it is satisfied, then such ·oscillations are 
actually not excited at all. 

As was shown in Sec. 3, the relaxation of a beam in 
a homogeneous plasma is due to excitation of oscilla­
tions with k1 ~ A ek ~ A ewp/ c. For these, the criter­
ion (20) takes the form 

(21) 

Attention is called to the fact that now this criterion 
does not contain A e at all. This means that the influ­
ence of the plasma inhomogeneity on the relaxation of 

3lin this section we use dimensionless variables for clarity. 

4lin fact, the relaxation can occur also under the condition -yAt <A 
(including also on thermal noise), but the relaxation length becomes too 
large in this case. 

the beam is determined completely by the quantity iJ.A: 
if it satisfies the inequality (21 ), then the role of the 
inhomogeneity is negligible; on the other hand, if the 
inverse inequality is satisfied 

Jl/1. > 1, (22) 

then oscillations with k1 ~A ewp/c are not excited, 
and the entire dynamics of the relaxation changes. 

For the experiments proposed by Winterberg[sJ 
(n0 ~ 10 22 cm-3, n~ ~ 1018 cm-3, E ~ 10 MeV, 
L ~ 0.2 em), the product J.LA is equal to 30, and the 
role of the inhomogeneity is very important. 

Let us stop therefore to dwell on the case J.LA » 1 
in greater detail. It is easy to see that when J.LA » 1 
and 

(23) 

the inequality (20) is not satisfied for any value of k1. 
Consequently, if the initial angle spread of the beam is 
sufficiently large, A8 0 > 1/iJ.A, then there is no re­
laxation5>. 

On the other hand, when 

(24) 

relaxation is possible, since there exists an interval of 
values of k1, 

00" AAe~k ~ w. - 1- (25) 
c J1 J. c 11AA8 ' 

for which the inequality (20) is satisfied. But now, un­
like in a homogeneous plasma, only such oscillations 
are excited, for which the angle e 1 is large in com­
parison with Ae(e 1 Z iJ.Al!..e), i.e., the relaxation is 
essentially three-dimensional. It is clear that the re­
laxation terminates when the angle spread of the beam 
becomes of the order of ( J.LA t 1 « 1. 

5. RELAXATION IN AN INHOMOGENEOUS PLASMA 
(QUANTITATIVE CONSIDERATION) 

In seeking the analytic solution of the problem, we 
shall assume that conditions (22) and (24) are satisfied; 
these mean that, on the one hand, the role of the in­
homogeneity is already appreciable, and on the other 
hand, relaxation is still possible. Under these condi­
tions, the beam excites in the plasma only such oscil­
lations, for which the angle e 1 lies in the interval 

(26) 

The lower limit on 8'1 is connected with the fact that 
the longitudinal oscillations appear as a result of the 
inhomogeneity effect, and the upper limit is connected 
with the fact that increment of the instability decreases 
with increasing 0 1 • 

The presence of the inequality (26) makes it possi­
ble to calculate the increment from the formula (A.4). 
Substituting in it (7) and integrating with respect to the 
characteristics, we can easily obtain W: 

W(z, 81, e)= Wrexpv(s, 81 , e), (27) 

5l1t follows therefore that under the conditions of the experiments 
of the type of [5 ] the initial angle spread of the beam should be in any 
case smaller than 2-3 degrees-a very stringent limitation. 
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where 

v(z, e', e)= ( 1- ~· ) j:s dz' j de og(z~, ~/~e 
o 111 re 6 (27') 

6 = 8 +; (z -z'), g(z, e)= 2n j pf(z, e,p)dp, 
0 

and WT is the spectral density of the energy of the 
thermal oscillations. Here and below we shall assume 
W to be a function of the variables z, e ', and ~:: = e' 
- [2(k- 1)] 112• 

Formula (27) is valid only when v > 0. On the other 
hand, if v < 0, then W R; WT. Since we disregard in 
any case the influence of the thermal oscillations on 
the relaxation, we shall assume henceforth that W = 0 
when v < 0. 

As will be shown later, the beam releases in the 
plasma only an insignificant fraction of its initial 
energy. This means, in particular, that the change of 
the momentum of the beam electrons is small com­
pared with their initial momentum, which in dimension­
less notation is equal simply to unity. Introducing 
therefore into (8) a new variable q = p - 1 and assum­
ing that I q I « 1, we write this equation in the form 

aJ a ( aJ · aJ ) 1 a ( af . at ) -=- !!!) •• -+!!!).,- +--e !!!).,-+!!!) .. - . 
az aq aq ae e ae aq ae 

Integrating it with respect to q and recognizing that, 
at the assumed accuracy we have . 

g(z, e)= 2n s f(z, e, q)dq, 
0 

we obtain 
ag 1 a ag 
az-=e-aa-e!!f) •• ae, (28) 

where the quantity !!!) ee in accordance with the inequali­
ties (26), can be calculated from the formula (A.8): 

!!!)•• =~ j S''de' j W(z,e1,e)e'de. (29 ) 
e• 0 -· _re• - e' 

Assuming that the angle spread of the beam on enter­
ing the plasma is small compared with the value that it 
reaches at the end of the relaxation, we shall use the 
following boundary condition for Eq. (28): 

g l..o =+ll(e). (30) 

The system (27) and (28) contains two unknown func­
tions, namely, W(z, e', ~::)and g(z, e), and is a closed 
system. To solve it, we note that the diffusion coeffi­
cient !l)ee is appreciably different from zero only when 
e ~ E: 0 , where ~:: 0 denotes the characteristic value of E:. 

It follows therefore that ~:: 0 should be small compared 
with D. e: 

e.~~a. (31) 
for in the opposite case an appreciable fraction of the 
distribution functions would not be captured by the 
quasilinear diffusion and there would be no self-sup­
pression of the instability. Assuming therefore that 
~:: 0 « D. e, we can represent (29) in the form 

F( ) • +• 
!!!)•• = T' F(z) = 2n s e"de1 s W(z, e1

, e)e'de. (32) 
0 --

It is now easy to find for (28) a solution satisfying the 
boundary condition (30): 

2 [ e • 
g(z,e)= r('J,)[M(z)]' exp- M(z) ] ' (33) 

M(z)= [25 jF(z')dz 1 r. 
0 

(34) 

From the known function g(z, e) it is easy to calcu­
late the quantity v(z, 0 1

, E:) characterizing the spec­
trum of the oscillations (see (27)): 

z 

( EY') 6 [ s ] e" v(z,e1,e)= 1-2 f [M(z1)]'G ~e(z1 ) dz1 ==(1- 2 )I,(35) 

where ~ is defined in (27 1 ) and 
co 

10 t'".o-~'5 

G<s>=-f ds'· · r (' /.} 111 l's"- 6' 

For the subsequent solution of the problem we shall 
use the following reasoning. Let the maximum of the 
function v with respect to the variables e 1 and E: lie 
at the point e 1 = e~( z), E: = E: 0 ( z) and let it equalv 0 ( z), 
and let the corresponding value of W be W0(z). Then 
it follows from (27) that v0 = ln W0 /WT. But since the 
ratio W0 /WT is very large, it follows that its logar­
ithm is insensitive to W0 and is almost constant (ap­
proximately equal to the Coulomb logarithm A). We 
thus arrive at the conclusion that the maximum value 
of v (with respect to the variables e 1 and E:) should be 
equal to A independently of z. 

The form of the spectrum of the oscillations is de­
termined by the dependence of v on e 1 and E: near the 
point e' = e ~ and E: = ~:: 0 • It is clear that in this region 
of values of e 1 and ~:: there should be satisfied the 
conditions (26) and (31). On the other hand, as noted in 
Sec. 4 under condition (26) the inhomogeneity of the 
plasma does not exert an appreciable influence on the 
oscillations. This means that in expression (35) for v 
it is possible to regard (purely formally) 1J. as a small 
parameter. Since, in addition, the value of E: is also 
small (see (31) ), the integral I which enters in (35) can 
be expanded in powers of 1J. and E: (the parameters of 
the expansion are discussed more exactly below), and 
in accordance with the statements made above, the 
zeroth term of the expansion should be equal to A a>. In 
order to realize the indicated expansion, we change 
over in the integral I to a new integration variable 
17 = ~/D. e ( Z 1 ). As a result we get 

I= S dTJTJG(TJ) [~M+l_;M'] -•, (36) 
olde(•) e 2 dz 

where D. e and d D. e 2/ dz 1 are regarded as functions of 
11· In the derivation of the last relation we have assumed 
that E: > -11.z/ e ', since in the region E: < -IJ.zl e 1 the 
quantity v is negative and the energy of the oscillations 
is close to thermal. 

The presented form of the integral I makes it possi­
ble to conclude that in the limit 1J., E: - 0 it has a finite 
value independent of z only when D. e ( z) = A -IZ, where 
A is a constant. Simple calculations show that in this 
case 

6>strictly speaking, the maximum of the function P should be equal 
to A. But under conditions (26) and (31) this maximum is close to the 
zeroth term of the expansion of 1: the difference between them is of the 
order of the first term of the expansion of I. 
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2 • ?~ 

I,., .. ,= A" o G(TJ)dTJ = A'f('/,) • 

Determining the constant A from the condition 
IJ.I. ,t: _ o = A, we obtain ultimately that 

,,~ :t/7 
Ae(z)= y f('/,)A =2,7y A' (37) 

Thus, from the condition IJ.I. ,t:-0 = A we have found 
the dependence of the angle spread of the distribution 
function on the coordinate z. As noted in Sec. 4, the 
relaxation terminates when A() ~ ( J.LA r\ This value 
of A e is reached at z ~ ( J.L 2 Ar1 • With further increase 
of z, the angle spread remains unchanged. 

It is easy to write down the next term of the expan­
sion of I in terms of the parameters t: and J.L. Using 
the A()(z) relation obtained above, we obtain from (36) 
(for the time being, exactly): 

2 00 4J.LZ 8 J.LZ } _.,. 
I= A' J TJG(TJ){TJ'+ 61d6(z)[M(.z)+61M(z)l. dTJ.(38 ) 

e/A8(a:) . 

We see first of all that actually the parameters of the 
expansion are the quantities J.L z/ () 1 A () ( z) and t:/ A () ( z). 
We shall verify later that they are really small. Ex­
panding I in terms of these parameters with accuracy 
to terms of first order, we arrive at the following 
result: 

[ Sf('/,) ( 2J.LZ)] J.I..Z 
l=A i-21IM(z) s+7 , s>-8'. 

Turning to formula (35), we find that in the region of 
values of t: and () 1 of interest to us 

I [ 611 Sf('/,) ( ,2J.LZ)) J.LZ 
v(.z,e ,s).~ A i-2'- 2nd6(z) s+.B'" ' s> -7. 

Recognizing that the quantity 11 is positive only when 
t: > - J.LZ/ () 1 , we obtain from this 

1 _ [ 5f(9f.)J.I.Z ]'/o J.I.Z 
re, - 2nM(z) ' 8o = -7+0. 

The presence of the large parameter A in the 
formula for 11 enables us to state that the spectrum of 
the oscillations is concentrated near the maximum of 
the function 11, i.e., near the point ()~, t: 0 • 

At small deviations of () 1 and t: from ()~ and t: 0 , 

we have 

3 A("' a I)' A Sf("/.) ( :.LI J.I.S ) > J.I.Z 
v-v,=-2 "- 0 - 2nd6(z) 8 ''7 ' 8 -7, 

It follows from the last relation that the width of the 
spectrum of the oscillations with respect to () 1 is of 
the order A -1/2 , and with respect to t: of the order 
A()/ A. It can be easily verified that in this region of 
the variables the parameters J.LZ/ () 1A ()(z) and 
t:/ A() ( z), with respect to which the expansion was 
carried out in (38), are indeed small up to the very 
end of the relaxation (i.e., up to z ~ ( J.L 2 A r 1 ) • 

In accordance with formula (27}, the spectrum of 
the oscillations can be written in the form 

W=Wo(z)exp[-~A(61 -601)'+A Sf('/,) 's+-E)] s>-J.LZ. 
2 2nd6(z) 61 6' ' 

W=O, s<-J.LZ/6', 

where the normalization factor W 0( z) is determined 
from the relations (32), (34), and (37). Knowing the 

(39) 

spectrum of the oscillations, we can calculate their 
energy density U: 

- +• 
U = 2n J 61'd61 J Wds, 

0 

which properly speaking is the purpose of our paper. 
Leaving out the cumbersome intermediate steps, we 
present only the final result : 

U z _ 2nf('/,) 1 1Jl[a(z)] 
( ),- 3f'('/,) J.I.A x[a(z)]' 

(40} 

where 
1/ 3A 

a(.z) = y 2 ao'(.z), 

ljl(a) =a'[( a'+~ )I(a)-H; e-"'], 

x(a) = a['f,a'- 'f,a' +'/,a'+ 3]I(a) +['/,a'- 1/,a' + a• + 1]e-', 

-
I(a)= J e-1'1f6. 

-· 
An analysis shows that with increasing z the function 

U( z) first increases in proportion to z 112 , reaches a 
maximum at z = Zmax = 82/ J.L 2 A 4 , after which it de­
creases like z-113 : 

U = _i_ 3,76, Z = Zmu• { 
O,S7 (!11A 4z)'ls, z ~ Zmao:• 

11A 8,31(!1"A'z)-'i•, z>zm..,. 
(41) 

An interesting feature of the obtained solution is 
that the relaxation proceeds in two stages. During the 
first stage, when z < zmax. the oscillations are ex­
cited by the beam, while during the second stage, when 
z > Zmax• the oscillations are absorbed to a consider­
able degree by the beam. This phenomenon is charac­
teristic of an inhomogeneous plasma. In the case of a 
nonrelativistic beam, an effect of this kind was de­
scribed inC 3l, 

As already noted above, the relaxation terminates 
at z :$ ( J.L 2 Ar1 • The corresponding value of the energy 
density of the oscillations is of the order of lO(iJ.A 2r 1 • 

With further increase of z, the energy of the oscilla­
tions no longer changes. Thus, the beam releases in 
the inhomogeneous plasma only a very insignificant 
fraction of its energy, ~ lO(iJ.A 2t 1 (we recall that in 
dimensionless variables the initial beam energy is 
equal to unity). 

It is possible that some increase of the energy re­
lease can be attained by artificially suppressing the 
relaxation in the region z > Zmax· This can be attained, 
in particular, by making the plasma in this region 
strongly inhomogeneous. But even then, as seen from 
(40), the energy released by the beam will be insignifi­
cant (on the order of 3( iJ.Ar1). 

In concluding this section, we point out one more 
feature of the obtained solution. As can be seen from 
(39), when z » zmax the spectral density of the oscil­
lation energy turns out to be exponentially small if 
It: I « I E:o 1. Formally this means that the coefficient 
of quasilinear diffusion is exponentially small when 
()«I E: 0 I, i.e., in the region of angles () < I E:o I there 
is no quasilinear relaxation, and a sharp peak of width 
~I E:o I « A() 0 appears on the distribution function. 
Simple estimates show that the presence of this peak 
leads to excitation of oscillations with I E I :$ I E0 I, but 
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the energy of these oscillations remains much smaller 
(by a factor (a 9/l € 0 I )5 than the value of U obtained 
above. 

6. SUMMARY OF RESULTS 

We have shown that the influence of the inhomo­
geneity of the plasma on the quasilinear relaxation of 
an ultrarelativistic electron beam is characterized 
completely by the product iJ.A, where 

1cpollo JJ.=----, 
2 Lro, me no' 

and A is a quantity on the order of the Coulomb 
logarithm. 

When I-LA ~ 1, the relaxation is insensitive to the 
influence of the inhomogeneity, the energy released by 
the beam in the plasma is of the order of the initial 
beam energy, and the scale of the relaxation is equal 
to 

(we are using here the dimensional variables). 
When iJ.A » 1, the role of the inhomogeneity is 

very important, and there are two possibilities. If the 
initial angle spread of the beam a 9 0 is sufficiently 
large, a 9 0 ~ ( iJ.At\ then there is no relaxation at all. 
On the other hand, if the spread a 9 0 is small, a 9 0 

< (I-LA t\ then relaxation is possible, but the energy 
lost by the beam is only a small fraction ( ~ 10/ I-LA 2) of 
its initial energy. This occurs over a scale 

1 c v,• P• no '- ,....__--~-­f.12.t\ ro, c2 me no' 

APPENDIX 

We are using here the dimensionless variables de­
fined by relations (6). 

The instability increment is 

y(k,0')=-1-J (cos9-kcos9')8g/ae-2gsin9 dO. (A.l) 
2k' •• l'(cos61 -cos6).(cos9-,.nq9:)1 

Here 
~ 

c=2n Jtpdp, . 1 --
cos e •.• = k(cos 9' ±sin 9' l'k' -11. 

If 9' = o, then 

Y==.,(k)=-'--sin'Og . 6 a ).1 
• 2k' \' a cos e •••• - .-. 

(A.2) 

If 9' » a 9 is the angle spread of the beam, then 

=~J-~_!! 
" 2k' "'0'-6' aa' ,., r 

(A.3) 

Where I) : ( 1 - k COS 9 I )/k Sin 9 1 
o If furthermore 9 I 

« 1 (but 9' >> a9), then 

8 <1 · ") J- ae a g v=- -a -=-· 
2 ,., l'O'- 81 ae 

(A.4) 

where 
8=81 -l'2(k-1) (A.5) 

The diffusion tensor is 

:PP} = 2nr ~ 8( sinO'W(k, 9')d9' ( ~) (A 6) 
!F)= i k e.-f(cosO.'-cos9')(cos9'-cos9,') a• . . 
Here 

a cos9-kcos91 , 1 --
sinO , cose,,, = k (cos a± sin9l'k' -1). 

If W = W(k)O(l- cos 9 1 ), and 9 « 1, then 

!Flpp} ( 1 ) !Flpe = l't1 - e w lt-1+9'/t • 
!Flea e• 

(A.7) 

If 9 « a 9 1 , where a 9 1 is the angle width of the 
spectrum of the oscillations, with a 9 1 « 1, then 

::}=2n~9'd9' ~y":~ .( £9~/9 ). (A.8) 
!Joe 0 -1 -e 8 8"9'1/91 

where € is defined by the relation (A.5). 
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