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The rules for the quantization of a system described by a nonlinear second-order equation with slowly 
varying coefficients are derived. Physical problems in which a need for such quantization rules arises 
are discussed. 

1. FORMULATION OF THE PROBLEM 

A number of physical problems lead to the necessity 
to determine the spectrum of the equation 

d'w I dz' + f(w, t. A) = 0. 

In this equation /; = az, f is some arbitrary function, 
and a is assumed to be small because the problem is 
considered in the quasiclassical approximation. 

(1) 

By spectrum is understood the set of admissible 
values A. This set is determined by the form of the 
function f and by the presence of points at which the 
quasiclassical nature is violated, for example, turning 
points or boundary conditions. In this connection the 
spectrum A may turn out to be discrete. We shall call 
the rule for determining the spectrum A the rule of 
quantization. 

We note that Eq. (1) may be regarded as the equation 
of motion of a certain hypothetical particle. Below we 
shall use a corresponding terminology. In what follows 
we shall be interested in periodic solutions of Eq. (1). 
The periodicity conditions together with the boundary 
conditions or the conditions at the turning points deter­
mine the quantization rule. 

In this article we shall use the following as boundary 
conditions: either a boundary condition of the first kind 

(2) 

or of the second kind 

ow· -l =0. 
llz . •·"·"' 

(2') 

The contents of the following sections contain a deriva­
tion of the rules of quantization; here as an example let 
us consider a problem in which it is necessary to find 
the spectrum of Eq. (1). 

The partial differential equation 

' IJ'F La IJz.' + k'«ll { z;, IFI'} F =0 (3) 
,_, 

describes the nonlinear propagation of electromagnetic 
waves in a plasma. Ul The phenomenological Ginzburg­
Landau equationstzl of the theory of superconductivity 
have the same form. This same equation appears in the 
theory of superfluidity, rsJ and also in certain other prob­
lems. r41 

In investigating the propagation of electromagnetic 
waves in a plasma, we shall assume that the propagation 
takes place along the x2 axis, and the electric field has 
a single component directed along the x1 axis, k = w jc 
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is the wave number, w is the frequency of the electro­
magnetic field, and 4> is the dielectric constant. 

If the propagation takes place in a waveguide with 
perfectly conducting walls, then F vanishes on its bound­
aries, i.e., a boundary condition of the first kind exists. 
The dependence of the dielectric constant on x3 may be 
due, for example, to a nonuniform distribution of the 
electron concentration. The quantity l is a measure of 
th~ distance over which the dielectric constant varies. 

In the phenomenological theory of superconductivity 
4> is defined by the following formula:r2 

In this case F is related to the energy gap by a known 
relationship, k will be of the order of the inverse co­
herence length, and the dependence of A and B on x3 

may be caused by the presence of a temperature gradi­
ent in the superconductor. A boundary condition of the 
second kind exists at the boundary between the super­
conductor and the normal metal. raJ 

We shall seek a solution of Eq. (3) in the form 

F = F,e•lU..-•lw, 

where a is a constant. In this connection let us take 
z = kx3 and a = 1/kl. We arrive at Eq. (1) for w, where 

f(w, t, A) = (Cll(z I kl, !Fol'w") - A']w. (4) 

Here it is assumed that w is a real quantity. In order 
to find the field in a waveguide filled with plasma, it is 
necessary to solve the one-dimensional equation (1) with 
the boundary condition (2) and to determine the admis­
sible values of A from the requirement of periodicity. 
The situation is analogous for superconductivity. The 
difference consists in the utilization of the boundary 
condition (2') instead of the boundary condition (2). From 
the condition a « 1 it follows that kl » 1. 

By the substitution v = p;112(/;)w, Eq. (1) reduces to the 
following form: 

d dv 
dz p,(t) dz +P•(v,A,t)=O, (5) 

where 

f<w , A)= Ps(~. A, PJ."'I•w) _ p 'I•(~) cl'PJ. (b) 
' ..,, Pl''• (t) 1 .., clz' • 

An equation of the type (5) is obtained from Eq. (3) 
in cases of spherical or cylindrical symmetry. 
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In concluding this section, we note that the examples 
cited by no means exhaust the problems leading to Eq. 
(1 ). 

2. QUANTIZATION DUE TO THE TURNING POINTS 

As already indicated above, quantization of a system 
may be related to the presence of turning points, which 
will be investigated in this section. Here we shall con­
fine our attention to only the case of small nonlinearity, 
i.e., we assume 

f(w, ~.'A)= q'(~, 'A)w- ~<:p(w, ~.'A}, (6) 

where {3 « 1. Physically this may be realized in a 
plasma when the frequency of the propagating wave is 
substantially larger than the Langmuir frequency, or 
when the fields are sufficiently small. A similar situa­
tion may occur in superconductors when the temperature 
is close to the critical temperature. 

Substituting (6) in (1 ), we will have the following equa­
tion for w: 

d'w / dz' + q'(~, 'A)w = ~<:p(w, ~.'A). (7) 

Let us consider the motion of a hypothetical particle in 
the potential well q(l;, A). The turning points at z = a 
and z = b are determined by the roots of the equation 

q(~. 'A) = 0. (8) 

Let us assume that the quantity q2 (?;, A) > 0 for a < z 
< b, and for values of z outside of this interval we assume 
q2(l;, A) < 0. 

Far away from the turning points inside the well, in 
order to determine w one can apply Bogolyubov's 
methodc51 for equations with small nonlinearity and co­
efficients which are slowly varying with time. The cri­
teria for the applicability of the first approximation of 
this method have the form 

W(b- a)~ 1, 

q-'"(P) dq~: 'A) ~a~ 1. 

(9) 

(10) 

It is easy to see that the inequality (10) is not satisfied 
near the turning points. 

We shall seek the solution of Eq. (6) far away from 
the tnrning points in the form 

w = u(z)cosS(z). (11) 

The standard procedure leads to the following shortened 
equations: 

!:!:._= ___ 1_dq(l;;, 'A) u 
dz 2q(~,'A) dz ' 

dS ~ 
""dz"=:=q(I;;,'A) 2u,q'l•(~t.) <:p,(u,I;;,'A), (12) 

where cp1 is the coefficient affiliated with cos S in the 
expansion of cp (u cos S, l;, A) in a Fourier series in 
cos S: 

f 2n 

<:p,(u, 1;;, 'A)=-J <:p(ucosS, ~. 'A)cos S dS .. 
n • 

We note that the first equation of the system (12) is valid 
accurate to terms of arbitrarily high order in {3, whereas 
in the second equation of this system terms of order {32 

have been neglected. 

One can easily solve the system (12) in quadratures, 
and w has the following form: 

w = u,q-'1•(1;;, 'A)cos [ S, + j g(~, 'A)dz], (13) 
d 

where d is some point inside the potential well, and 
g(l;, A)= q(l;, A)- {3cp1 /2u0q112(l;, A). The constant u0 is 
determined from subsidiary conditions. For example, 
in electrodynamics u0 is found from the conditions for 
excitation of the waves, and S0 is found by matching the 
solutions near the turning point. 

In the neighborhood of a turning point the solution 
(13) is not valid since it is obtained under the quasi­
classical assumption (10), which is violated in the im­
mediate vicinity of the zeros of q(l;, A). However, one 
can find the solution near the turning point by iterations 
with respect to the parameter {3. The solutions obtained 
by such a method will have a common region of validity 
with formula (13). From the condition of identity of the 
two solutions in the interval where they should agree, S0 

can be determined. 
The procedure which has been discussed is ideolog­

ically similar to the one which is applied in order to ob­
tain the Bohr-Sommerfeld quantization conditions in a 
linear theory. We shall construct an approximate solu­
tion near the turning point. For this it will be necessary 
for us to find the fundamental solutions of the equation 

d'w 
""dz2 + q'(l;;, t.) w = 0. (14) 

For I z - a I » 1 we define these solutions w 1 and w 2 in 
the following way: 

q- 'I• ( ~. t.) cos [ j q ( 1;;, t.) dz - Y.] , z > a, 

w,= 

lqi;;,'A)I-"exp [j lq(~,'A)Idz], z<a, 
• 

q-'ls(t 'A)sin [S q(~, 'A)dz- y], z >a, . 

The constant y depends on the law according to which 
q(l;, A) tends to zero at the point a. For example, if it 
tends to zero according to a linear law, then y = 1Tj4. 

The fundamental solutions of Eq. (14) in a form suit­
able for all values of z can be constructed by the stan­
dard-equation method; however, for our purposes it is 
sufficient to construct their asymptotic solutions. 

Let us select u0w1 as the zero-order approximation. 
The next approximation is obtained by the method of 
variation of constants and has the form 

~ . 
w = u,{w,(z,'A)+~[ w,(z, 'A) J <:p(u,w,(z, 'A),~,'A)w1 (z,'A)dz 

- w, (z, 'A) _t <:p(u,w, (z, t.), 1;;, 'A) w,(z, 'A) dz]}. 
(15) 

The arbitrary constants associated with the construction 
of the solution (15) were selected such that w(z, A) is 
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exponentially damped as z - oo. In this connection, it 
is assumed that cp (w, t, A )/w tends to zero for small 
values of w, since in the opposite case the second inte­
gral in formula (15) diverges. This is not an additional 
restriction. In fact, let 

lim cp(w, ~. "-) = T(~. "-)=I= 0. 
w 

Let us assume cp(w, t, A)= T(t, A)W + cp'(w, t, A). By 
definition cp'(w, t, A)/w tends to zero as w- 0. Having 
substituted cp (w, t, A) in the form given above into Eq. 
(1) and having introduced the notation q~(t, A) = q2(t, A) 
- T (t, A) we again arrive at an equation of the type (1) 
with cp'(w, t, A) on the right-hand side, which satisfies 
the required condition. It is also considered that 
cp (w, t, A) increases more slowly than the exponential 
of t. 

Let us consider the solution of Eq. (15) in the region 
z > a, I z - a I » 1, for values of z sufficiently large so 
that over the major portion of the interval of integration 
one can replace w1 and w2 by their asymptotic forms. 
The contribution from the region where it is impossible 
to do this is small. One can easily see that for such 
large values of z the second integral inside the square 
brackets can be neglected. 

This is associated with the fact that on the major por­
tion of the interval of integration w2 behaves like a sine 
function, and cp (u0w1, t, A) is a cosine function of the 
same argument. Expanding cp in a Fourier series with 
respect to the cosine and performing the integration, it 
is not difficult to verify that as a consequence of the or­
thogonality of the sines and cosines one can neglect this 
integral. Estimates based on these considerations lead 
to the same result. 

Let us transform the first integral inside the square 
brackets. We represent this integral in the form of a 
sum of two integrals: the integral with the limits of in­
tegration [- oo, d] and the integral with the limits (d, z]. 
Let d - a » 1; then in the integral with the limits [ d, z] 
one can replace w1 by its asymptotic form, and then ex­
pand cp (u0w1, t, A) in a Fourier series with respect to 
the cosine. Neglecting the integrals of rapidly oscillat­
ing functions, we obtain 

' 1 ' J cp(u,w,,~,"-)w,dz~ 2 J cp 1 (u,q-'h(~,7;),~,7;)q-'l•(b,7;)dz. 

Takin~ account of this pr~perty, and also the asymptotic 
behavior of w1 and w2 one can rewrite formula (15) in 
the following form: 

' II ] w = u,q-'1•(~,7;) {cos [ J q(~. J.)dz- y] + u,sin [S q(~, 7;)dz- y 
" " 

d 1 
X [ J cp(u,w1 (z,7;),s,J.)w,(z,J.)dz+ 2 J cp,(u,q-'1·(~."-Lb."-) 

-~ d 

x q-'1·(~, 7;)dz]} ~ u,q-'1·(~, 7;)cos { ~ q(~, 7;)dz 

II • 
-- scp(u,w,(z,7;),~,i.)w,(~,i.)dz 

Uo -"X} 

After elementary transformations we finally obtain 

w=u,q-'l'(~,i.)cos{f g(~,J.)dz-y+ fq(~,J.)dz 
d • 

II • } -- J cp(u,w,(z,i.),z,i.)w,(z,i.)dz . 
u()_"" (16) 

There is a common region of validity of the approxi­
mate solutions (13) and (16) of Eq. (6), namely: 1 
« I z - a I « (3-2 • The right-hand side of this inequality 
guarantees the applicability of the iterations, and the 
left-hand side ensures the possibility of using the asym­
ptotic forms. In this region the solutions (13) and (16) 
must agree. Comparing these two formulas, we obtain 
the following expression for S0 : 

d d 

S,= 'Jq(~,7;)dz-! Scp(u,w,(z,7;),~,7;)w,(z,7;)dz-y. (17) 

As an application of the obtained result, let us find the 
coefficient of reflection of a weakly nonlinear electro­
magnetic wave from a turning point. 

Let a generator emitting a wave with amplitude Eo 
be located at the point d. With reflection taken into con­
sideration, the field at the point d has the form 

E=Eo(1+e;"). 

On the other hand, with the aid of relation (13) E at the 
point d is written as: 

(18) 

Comparing these two formulas, we find 

Uo=2q'!.(d,7;), a=2S,, 

(19) 

The coefficient of reflection is denoted by R. If the co­
efficient of reflection in the absence of nonlinearity 
(for (3 = 0) is denoted by R0 , then 

II • } R/R, = exp{2iU, J cp(u,w,(z,7;),z,7;)w,(z,7;)dz • (20) 

Notwithstanding the smallness of (3, for large propaga­
tion paths the advance of the phase of the coefficient of 
reflection may be comparable with or larger than unity. 

Now let us find out the quantization rules. We deter­
mine the constants appearing in Eq. (13) from the con­
ditions for matching the solutions at the point b (in this 
connection we shall denote them by u~ and S~). The pro­
cedure, which is analogous to the one which was carried 
out above, leads to the formula 

I II w 

So'=- J q(~, J.)dz + ~ J cp(u,'w, (z, J.), ~. 7;)w, (z, A.)dz + y. (21) 
d d 

In order for the solutions obtained by matching at the 
points a and b to coincide in the region a < z < b, the 
following equations must be satisfied: 

S,- S,' = ln, uo' = (-1)'u,, (22) 

where l is an integer. Substituting S0 and S~ from for­
mulas (17) and (21) into (22) and taking into considera-
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tion that the integral of cp is an odd function of u~, 1> we 
finally obtain 

• d 

Jq(~,A.)dz-:. J cp(z,u,w,(z,A.))w,(z,A.)dz =Zn+2y. (23) . 
This relation, regarded as an equation with respect to 
A, is the desired quantization condition. The corrections 
to the eigenvalues A may be calculated if it is taken into 
account that in the quasiclassical approximation the dis­
tance OA between two eigenvalues is small in comparison 
with the eigenvalue itself. 

Let us denote the eigenvalue of the linear problem, 
satisfying the equation 

• J q(~,A.)dz=Zn+y. (24) 

by X'/. It is obvious that o'Az = xt1 - Xz is determined by 
the following formula: 

(25) 

Now let us calculate the change of the eigenvalue due 

to the nonlinearity. We shall seek xr -the eigenvalue of 

the nonlinear problem-in the form Xi+ oxf assuming 

that oxf « xy. From Eq. (23) one obtains the following 

formula for oxf: 
d 

l'ii..r' = ~I)J..,' ·r cp(u,w,(z, A.,'), ~.A.,')w,(z,J..,')dz. (26) 
3tUo J --A formula equivalent to (26) may also prove to be use­

ful. If one sets X'/ = A(1Tl), then 
d 

At'= A (nl + :. J cp(u,w,(z, J..), ~. J..,')w,(z, J..,')dz}. (27) 

--
We note that it follows from Eq. (26) that 

(JU ~!_(b-a)!cpwdm=• 
l)i.., :rr 

and since b - a » 1 in virtue of the quasiclassical na­
ture of the problem, then in spite of the smallness of {3 

the quantity oxf may be comparable with and even exceed 

oX'/, ~.e., lead to a substantial rearrangement of the spec­
trum. Starting from the conditions of quasiclassical char­
acter, one can also easily show that oxf «X'/. 

3. QUANTIZATION RESULTING FROM THE BOUND­
ARY CONDITIONS 

In this Section first the quantization conditions will 
be obtained for an arbitrary nonlinear homogeneous sys­
tem (in Eq. (1) f does not depend on l;), and then the con­
ditions of quantization will be found for an inhomogene­
ous weakly nonlinear system, and finally we consider a 
weakly inhomogeneous system having an arbitrary non­
linearity. 

For an f which does not depend on l;, Eq. (1) has the 
first integral 

1>Even though the proof of this assertion for arbitrary t/J is elemen­
tary, it is nevertheless somewhat cumbersome. For problems described 
by Eq. (3) this assertion is obvious. 

W = (dw / dz)' + U(w, J..). (28) 

The constant W is obtained from some kind of additional 
conditions (which were mentioned above), and U (w, A) 
= 2jf (w, A)dw. From Eq. (28) one can easily obtain the 
solution of Eq. (1), determining w (z) in implicit form: 

r dw 
z-a= J l'W-U(w,i..) · 

"(•) 

(29) 

In order for w to periodically depend on z, the exis­
tence of two nondegenerate roots of the equation eel 

U(w, J..) =W. (30) 

is necessary. Let us denote these roots by w 1 and w2 • 

From Eq. (28) it is seen that w1 and w2 are extremal 
values of w. We shall assume that w 1 corresponds to 
a minimum of wand w2 corresponds to a maximum. The 
period D of the function w is, as is well known, deter­
mined by the formula eel 

ooiA,W) dW 
D(W,/.)=2 J . (31) 

l'W-U(w,J..) 
w1('-,W) 

First let us consider the boundary condition (2). In 
order to satisfy this boundary condition at the point a, 
it is necessary to set w (a) = 0 in formula (29). Let us 
require fulfilment of the boundary condition at the point 
b. At the beginning of the period we shall regard the 
extremum of the function w (z) nearest to the point a 
as a maximum. Let us investigate expression (29) at 
the point b. 

Here several cases may be represented. Let the ex­
trema nearest to the points a and b be minima. Then 
one can easily see that from Eq. (28) it follows that 

b- a l 2 ~.<•.wJ dw ' 

D(W, 1.) = 2 + D(W, 1.) I J l'W- U(w, 1.) I' (32) 
0 

where l is an integer indicating how many half-periods 
fit into the segment [a, b). The integral in formula (32) 
describes the "remainder" adjacent to the points a and 
b. If U is an even function of w, then w 2 = - w 1 and the 
integral in formula (32) is equal to D/2. Under this as­
sumption we simply have 

(b- a) I D(W, J..) = l I 2. (33) 

Formulas (32) and (33), regarded as equations with re­
gard to X, are the desired rules of quantization. If the 
extrema nearest to the points a and b are maxima, 
then the quantization rule for an arbitrary U (w, A) is 
given by formula (32) in which it is necessary to replace 
w1 byw2 • For even U formula {33) is valid. This for­
mula also describes the quantization of the system if on 
the one hand the nearest extremum is a maximum, and 
if on the other hand it is a minimum. 

The same kind of discussions lead to the quantization 
rule (33) if a problem having boundary conditions of the 
second kind is solved. 

The quantization condition (33) can be given in a more 
customary form if we change from the period D (W, X) to 
the frequency n (W, X) = 27TD-1 (W, X). In terms of the new 
notation (33) is rewritten as 

Q(W,J..) =nl/ (b-a). (34) 
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We note that for a boundary condition of the second kind 
the quantization rule was first given in article [7l. 

Let us go on to an inhomogeneous system with a small 
nonlinearity, described by Eq. (7). Since by assumption 
no points are present where the quasiclassical conditions 
are not satisfied, the solution is given by formula (13). 

The quantization condition is obtained by the same 
method as in Sec. 2, and for boundary conditions of both 
the first and the second kinds it has the form 

• f g(~, J..)dz = nl. 
a 

Formula (35) is applicable for arbitrary values of l. 
Substituting q (t, .\)we finally obtain 

• • 

(35) 

f q(~, J..)dz -Lf <p,(u,q-'1'(~, J..), ~. J..)q-'1'(~, J..)dz = nl. (36) 
a 2uoa 

The general case of arbitrary nonlinearity of an in­
homogeneous system may be considered with the aid of 
the method of averaging in the form proposed by Volo­
sov. [8J The essence of this method consists in the fact 
that the integration constants in the solution of Eq. (29) 
for the case of an explicit dependence of f on t are 
treated as functions oft, for which equations are found 
by using the method of averaging. 

We shall seek a solution of Eq. (1) in the form 

1 f dw f!(z)-JJ.(a)= , 
D(W,~,I.) I'W(~,J..)-U(w,~,J..) 

w(a) 

(37) 

where D is determined by formula (32); w, which is thus 
determined, is a periodic function of Jl. If f does not de­
pend on t, then J-t(z) = z/D, and we again arrive at for­
mula (29). 

First let us find the equation for W. In order to do 
this we differentiate formula (28) with respect to z, after 
which with Eq. (1) taken into consideration we obtain 

dW I dz = afJU I a~. (38) 

Let us average Eq. {38) over the period. After simple 
transformations (see [8J) we obtain 

dW 2 w,(W~ >;, l.) dw 

~- D(W, ~.A.) w,<Wo >:. '> l'.W- U(w, ~.A.) 
(39) 

This equation has the integral 

wo(W,>;,l.) 

~ V W (~.A.)- U (w, ~. A.)dw = const. {40) 
Wi(W.t. A) 

From expression (40) one can find Was a function of t. 
One can also show that W = W + 0 (a). Similarly the fol­
lowing differential equation is obtained for J-t: 

{41) 

Thus, Jl is determined with the aid of a quadrature, and 
the substitution of W found from Eq. {40) into Eq. (41). 

From Eq. {41) it follows that 

11 = f D-'(W(~, f.)~, J..)dz. (42) 

Now, by starting from Eqs. (41) and {37), one can obtain 
the quantization rules by reasoning in the same way as 
at the beginning of this Section. For a boundary condi­
tion of the first kind, these conditions have the form 

• f - l -
D-'(W, ~. J..)dz = z+D-'(W(aa, J..), aa, J..) 

a 

wj(eta,A) 

I f dw I -X + D-'(W(ab, J..),ab, A.) 
t'W(aa, J..)- U(w, aa, J..) 

i and k take the values 1 or 2 depending on whether the 
extrema nearest to the boundaries a and b are minima 
or maxima. 

For boundary conditions of the second kind the quan­
tization condition looks like: 

f - l 
D-'(W(~, J..)~, f.)dz = 2 . 

Changing from the period to the frequency, one can 
write the quantization rule in the form 

f Q(W(~, J..)~, J..)dz = nl. 

(44) 

(45) 

4. SPECTRUM OF ELECTROMAGNETIC WAVES IN 
AN INHOMOGENEOUS AND CONFINED PLASMA 

As already indicated in Section 1, the propagation of 
waves in a plasma under definite conditions, which are 
specified there, is described by Eq. {1) in which the 
function f is given by formula (4). · 

The dielectric constant <P for a plasma has the fol­
lowing form: 

w' ( F' ) ID = 1-~n ~.-;-w' . 
w F, 

(46) 

Here w~ = 41Te2N0 /m, e is the electron charge, m is its 
mass, N0 is the equilibrium concentration of electrons 
at the point z = 0, w is the frequency of the electromag­
netic field, 

n = N,-'N(~, F,'w' IF,'), 

N is the concentration of electrons in the plasma, and 
F 1 is the characteristic field defined by the mechanism 
which leads to a dependence of the concentration on the 
field. 

For a heating mechanism the quantity F~ is deter­
mined by the following formula :{1l 

F,'= :,;; t't(~)[w'+v'(s)], (47) 

where J.(!;) denotes the temperature, v(!;) is the fre­
quency of collisions in an equilibrium plasma, and M 
is the mass of a molecule. For a striction mechanism, 
the dependence of the concentration on the field (2J has 
the form: 

F,' = 8tt(0mw' I e'. (48) 

In the present section we are only considering small 
nonlinearities because for them very simple results are 
obtained. One of the reasons for the smallness of the 
nonlinearity may be the weakness of the field (F~w2 /F~ 
« 1). Expanding expression (46) for <Pin a series in powers 



206 F. G. BASS 

of the square of the field and substituting this expansion 
into Eq. (4), and then substituting (4) into (1), we arrive 
at Eq. (7), where 

q'(~."-)=1-/,.'- oo,' n(~,O), 
w' 

F,' 
~ =-F,, <P(~,w)='llmw', (49) 

10 

where F;0 denotes the value of F~(t) at the point t = 0, 

colla ' Fuz 
'IJ(~)=-:;zn (~,0) F,'(~), 

where a prime indicates differentiation with respect to 
F~2 /F~. The smallness of {3 corresponds to the weak­
ness of the field. 

The smallness of the parameter w~/w 2 (the frequency 
of the electromagnetic field is larger than the Langmuir 
frequency) may be another reason for the smallness of 
the nonlinearity. In this case we again arrive at Eq. (7) 
with the following values for the functions and param­
eters appearing in it: 

q'(~) = 1- "-', ~ = oo,' / w', <P(~, w) = n(~, w). (50) 

Now in order to determine the spectrum of the system, 
one can use the formulas singled out above, and also 
obtaining the final answer reduces to the evaluation of 
integrals (formulas (23) and (36)). This occurs both for 
quantization due to turning points as well as for quanti­
zation determined by boundary conditions. 

Specific calculations can be carried out if the expli­
cit dependence of F 1 on t is known. We shall confine our 
attention to the very simplest example, when F 1 does not 
depend on t, and the boundary conditions are the reason 
for quantization. In this case the calculation is carried 
out according to formula (36). 

If the nonlinearity is related to weakness of the field, 
then the expression for ;\. has the following form: 

"- = {1 - oo,' _ [ nl 1/ n'l' 3F,'w,'n'(O) ]'}'" 
w' 2(b-a) + V 4(b-a)' + BF,'w' 

(51) 
Now let us consider a small nonlinearity associated 

with the smallness of w~/w2 • If the electrons are char­
acterized by the Boltzmann distribution and a striction 
mechanism plays the major role, then (see the second 
article cited in £11 ) 

( IFI") F,' •} n fiT = exp{ -F[w 

and the following formula holds for ;\.: 

/,.-{1-[ J(l 
2(b-a) 

(52) 

( JL'l' ooo' { Fo' + 4(b-a)' +-;;;zexp - 2F,'} 

(53) 

Here In are the cylindrical functions of imaginary argu­
ment. Formula (53) is applicable for arbitrary values of 
FV2F~. For FV2F~ » 1 the asymptotic formula for;\. 
is obtained by replacing the coefficient affiliated with the 
term w~/w2 in formula (53) by F 1 /fiF0 • 

In conclusion the author thanks E. A. Kaner for a val­
uable comment and I. L. Verbitski1 and Yu. G. Gurevich 
for helpful discussions. 
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