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The properties of low-temperature phase transitions are investigated using as an example several 
two-dimensional lattices of the Ising type. It is shown that in the region IT- Tc.l « Tc the Nernst 
theorem does not impose any restrictions, generally speaking, on the behavior of the specific heat. 
Depending on the structure of the lattice, the coefficient a in the relation C Rl alniT- Tel may tend 
to zero, remain constant, or even increase exponentially as Tc - 0. In two of the three models con­
sidered, the region of applicability of the usual temperature dependences as Tc- 0 for the spontan­
eous magnetization, MRl IT- Tcl 118, and for the heat capacity, C ~ lniT- Tel, turns out to be ex­
ponentially narrow; outside of this interval different power laws are obtained for M and C. The 
properties of systems with a "virtual" transition are discussed, i.e., systems in which a slight 
change of the interaction constant leads to the appearance of a low-temperature transition. For 
small values of T, in these systems the specific heat has a maximum, imitating a phase transition. 
In all cases the spin correlations are investigated in detail. 

1. INTRODUCTION 

I T is well known that a number of thermodynamic quan­
tities-specific heat, susceptibility, the derivative of the 
spontaneous magnetic moment with respect to the tem­
perature, and others-have singularities at the point 
corresponding to a second- order phase transition. The 
two-dimensional Ising latticel1 J is an exactly solvable 
model for the investigation of these singularities. In the 
three- dimensional case the singularities are described 
with the aid of considerations based on the hypothesis 
of scaling (see, for example/21 ), which establishes a 
connection between the exponents of the powers of the 
different singularities near Tc· 

In the present article the singularities of the low­
temperature phase transitions are investigated in the 
case of several two-dimensional lattices of the Ising 
type. This may be of interest for several reasons. In 
the first place, it is of interest to see how the Nernst 
theorem influences the nature of the transition: as 
T - 0 the specific heat must tend to zero, whereas from 
general considerations about transitionsl2 J the specific 
heat must tend to infinity as T- Tc· Even if we postu­
late, for example, that in two-dimensional lattices in 
some kind of neighborhood of T c the specific heat C(T) 
tends to infinity according to a universal logarithmic 
law, C('lj = alniT- Tel, the question of the dependence 
of the coefficient a on Tc arises. If as Tc- 0 one also 
has a- 0, then one can talk about the physical feasibil­
ity of the Nernst theorem-the singularity in C(T) as 
Tc- 0 is increasingly less noticeable. On the other 
hand, if a- const as Tc- 0, then one can talk about 
the stability of the singularity relative to the position of 
Tc· It turns out that, depending on the structure of the 
lattice, both the first and the second cases are possible 
(Sees. 2 and 3), and also a third case, which was very 
unexpected, is possible-an exponential increase of a as 
Tc- 0, i.e., the total "suppression" of the Nernst 
theorem in the vicinity of the transition (Sec. 4). 

The stated treatment was also of interest from the 
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point of view of checking the physical resistance to 
change of the above- mentioned arguments based on the 
scaling hypothesis. In this approach, the basic assump­
tion is that in the neighborhood of T c the behavior of all 
quantities is determined by only a single small param­
eter-the proximity T = (T/Tc)- 1 to the transition point. 
point. But in real systems other small parameters 
which are essential for the transition frequently exist­
for example, a small anharmonicity for structural tran­
sitions in crystals, the smallness of the ratio of Tc to 
the Fermi energy in metals, and so on. The question 
arises as to how the presence of these additional param­
eters influences the range of validity of the considera­
tions based on the scaling hypothesis. The quantity T c 
itself may be such an additional parameter (its ratio 
to some characteristic large interaction energy J). It 
turns out that in certain cases (see Sec. 3 and 4) the 
region of validity of the results of the scaling hypothesis 
in this connection becomes exponentially narrow, and in 
the region exp(- 2Jr1) « T « 1 the dependence of the 
thermodynamic quantities on T and the decrease of the 
correlations with distance strongly differ from thtl usual 
results. 

Finally, we wanted to discuss the properties of the 
so- called virtual transitions. If for some kind of values 
of the interaction constants a transition occurs at small 
values of Tc, then it is possible that a small change of 
these constants will in general eliminate the given tran­
sition, similar to the way in quantum mechanics in 
which a small change of the interaction constant may 
change a level from real to virtual. If the degree of the 
"virtual nature" is small, the transition is close to a 
real transition, then it is physically obvious that the 
correlation phenomena associated with the transition, 
in particular the growth of C with l~ecreasing T, will 
occur even though at very small values of T the specific 
heat tends to zero according to Nernst. As a result, a 
certain "imitation" transition will be observed, for ex­
ample, a maximum in the specific heat. In two of the 
three models considered (see Sees. 3 and 4) such virtual 
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transitions are possible, and our investigation illustrates 
their properties, in particular, the form of the depen­
dence C(1j and the nature of the correlations in the sys­
tems. 

2. ANISOTROPIC SQUARE ISING LATTICE 

As the first, simplest example, let us consider the 
usual Ising lattice in which the interaction energy J 1 of 
the spins vertically is much smaller than the interaction 
energy horizontally, J 2 = - J. In this connection, in the 
zero- order approximation in y = J 1/ J the system breaks 
up into a collection of noninteracting one- dimensional 
chains, which are ordered only at absolute zero (see, 
for example, [aJ ). Therefore, it is clear that with a de­
crease of J 1 the transition temperature T c decreases. 
Let us find the specific heat and the correlations near 
Tc· 

The free energy per cell, F, is given by the well­
known expression (seel4 J) 

1 (1-x') (1- y') 
~F=Tin 4 !..._ jj dw d~ In[(1 + x') (1 + y') 

2 , (2n) (1) 
- 2x(1- y')cos w- 2y(1- x')cos p] 

Here {3 = 1/T, x =tanh f3J~o andy= tanh {3J; in order to 
be definite we shall consider the "ferromagnetic" case: 
J > J 1 > 0. The equation for the transition tempera­
ture, x(1 + y) = 1- y, gives 

T, ~ 2/ /In (1/y). (2) 

for small values of y. From Eqs. (1) and (2) one can 
see that here the parameter characterizing the nearness 
to the transition is the quantity t = (T- Tc) {3 2J Rj T {3J. 
For It I «: 1 we have the following result for the specific 
heat C(1j: 

9 1 9 ( 1 )' 1 C(T) =-yin'yin-=- - e-"1T.In-. 
4n jtj n T, jtj (3) 

The over-all behavior of C(T) is shown in Fig. 1. The 
high-temperature maximum, just like the total behavior 
of C(1j in the region T » Tc, corresponds to the 
thermodynamics of uncorrelated one-dimensional chains 
for which C = [3 2J 2 cosh-2 {3J. One can understand the 
exponential smallness of the coefficient affiliated with 
ln It! in Eq. (3) by considering the spin correlations. 

One can find t.he correlation functions along horizon­
tals, Gh(r), and along verticals, Gv(r), by using the 
methods of articlesls-sJ. Above T c in the region 0 « t 
« 1 for large values of r we have 
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For y - 0 the numerical constants in Eqs. (4) and (5) 
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(5) 

do not depend on y. The correlations have a similar 
form below Tc, but the spontaneous magnetization M for 
small values of It! is given by the expression M Rj j3tj118. 

From Eqs. (4) and (5) it is clear that near Tc the 
correlation radius r ch is exponentially large: r ch 

C(T)u 9v 2 1 
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FIG. I 
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FIG. 2 

~ exp (2 {3J)r cv· This exponential growth corresponds 
to the usual one-dimensional correlations associated 
with low temperatures, T « J, since in this connection 
each row divides into exponentially long regions of 
homogeneous magnetization (seel3 J). The phase transi­
tion at T = T c consists in the ordering of these regions 
in different rows as a consequence of the interaction J 1· 
Therefore, the entropy ~S of the transition is, roughly 
speaking, proportional to the number of statistical ob­
jects which are ordered during the transition, which is 
exponentially small compared to the number of parti­
cles: ~S ~ Nr(:h ~ Ne-2f3J, which also leads to small 
values of the heat capacity C ~ T~S/ ~Tin the transi­
tion region. Correct to within this " scaling factor" the 
picture of the transition and the nature of the tempera­
ture dependences near T c remain the same as in the 
ordinary Ising lattice. Virtual transitions do not occur 
here, and the transition occurs for arbitrary values of 
J1 and J2. 

3. MODEL WITH AN INTERACTION BETWEEN NON­
NEAREST NEIGHBORS (NNN-MODEL) 

Let us consider the model proposed in lsJ of a plane 
lattice, consisting of two kinds of spins which are ar­
ranged and interacting as indicated in Fig. 2 a. The case 
of an antiferromagnetic interaction along the diagonals, 
J 2 > 0, is considered. The sign of the interaction along 
the vertical and horizontal (J1) is unimportant for what 
follows; for the sake of definiteness we shall assume 
J 1 ;> 0. A graph showing the dependence of the Curie 
temperature Tc on J 1 and J2 is shown in Fig. 2 b. In the 
region of values J 1 > J2 > 0.94 J 1, upon a reduction of 
T the system experiences three successive phase tran­
sitions: from an unordered to an antiferromagnetic 
state, then back to an unordered state, and finally into a 
ferromagnetic state. According to Fig. 2 b, the regions 
of the low-temperature transitions we are interested in 
correspond to similar values of the constants, when the 
difference o = J 1- J2 is small relative to the half-sum 
J = (J1 + J2)/2 Rj J1, J2. 

First let us consider the thermodynamics. Expanding 
the exact expression (see[sJ) for the free energy per 
cell in the region T << J, to within an unim2ortant con­
stant and exponentially small terms ~ e-2 f3J we obtain 
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1 In d d 
PF =-2 JJ (;n;.ln[1 + 46'- 46 cos rocos p]. (6) 

Here ~ = e-4 f3 6 • The case of real transitions corre­
sponds to o > 0. In this connection, to within the ex­
ponential accuracy being considered, the Curie tempera­
tures T c2 and T c3 coincide and are equal to 

T, = 411/ln 2 ""'4(/, -/,)/In 2. (7) 

The temperature dependence of the specific heat is de­
picted by the solid curve on Fig. 2. In the region of 
transitions IT I « 1 the coefficient in front of the logar­
ithm in the specific heat turns out to be of the order of 
unity (although numerically it is appreciably smaller 
than in the square Ising lattice): 

(ln2)' 1 1 
C=~lnN~0,1lnN 

(8) 

( 2 - 1 1) C~s=nln'(1+l'2)lnTTT~o.5InN. 

If J1 is identically equal to J2, that is, o = 0, then the 
low-temperature transitions vanish, and the region of 
transitions IT- Tel< Tc vanishes, and forT« J the 
specific heat monotonically tends to zero: 
C = 6.4 {3 2J2e-.~ f3J. 

Finally, if o < 0 the thermodynamic behavior of the 
system corresponds to what was called above a virtual 
transition. In analogy with Eq. (6) one can introduce the 
temperature 

T. = -4t5/ln2=4IBI/ln2. (9) 

Then ~ in Eq. (6) is equal to exp ({3 Tv ln 2) > 1. The 
graph of C(T) in this case is qualitatively depicted on 
Fig. 3 by the dotted curve. For T = 0. 7 Tv the specific 
heat C(T) has a low-temperature maximum, which is 
expressed more sharply the smaller the ratio Tv/J. 
Thus, for o/J = 0.1 the height of the hump Cmax ex­
ceeds the value of Cmin at the minimum between T cl 
and Tv by only tens of percent, but for o/J = 0.05 one 
already has Cmax ~ 2 Cmin· 

In order to understand the thermodynamic behavior, 
let us again consider the spin correlations. The corre­
lation function G(r) along the diagonals was evaluated 
inlsJ. The answer is given by the usual formula for 
Ising lattices in the form of a Toeplitz determinant of 
order r: 

2nd 
G(r) = Det c,_,, . c,_, =} ...!!?._ f(oo)e'-<'-'>, 

, 2n 
_ [ (a,e'• -1) (a,e'•- 1) ] y, 

/(w)- (e'•- a,) (e'•- a,) · 

In the present case 

(lOa) 

(lOb) 

1-y 4x'-y(1+x')' 1+y (1-x')' 
a, = 1 + y ( 1 - x') 2 ' a, = - y 1 - y 7( 1,..-+_:_x~')-,-'-__:___,4---,x':--y ~ 

X= th pJ,, y = th p/,. (1.1) 

Confining our attention to the region of very large 
values of r, for the values T << J, o « J under con­
sideration, we obtain by using the method of Wul71 the 
following result for the antiferromagnetic region 

G(r)!=(-1)'M'+ 86' e-'"•'1, rln26;:;..1. (12) 
• nq'(46' -1) (46' + 1)' 

Here ~ is the same as in Eq. (6), and 
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M = (4e- 1)114(4e + 1r114 is the spontaneous magne­
tization. In the case of a real transition, for the ferro­
magnetic region we similarly have 

86'e'' •• ze 
G(r)=M'+(-1)' , rlln2sl>1; 

ml'(1-46') (1 +46')' 

M = (1- 46')''•(1 +46')-''•. (13) 

Formulas (12) and (13) enable us to trace the nature 
of the correlations in the system. In the temperature 
interval T c• Tv « T « J the quantity ~ is close to unity 
and the system behaves as if thermodynamically 
"frozen"-neither the magnetization nor the correla­
tions change with T. Consequently the entropy is ap­
proximately constant, and the specific heat T(dS/dT) 
has a minimum. The quantity ~ begins to change ap­
preciably only for T ~ Tc, Tv; in the case of a real 
transition it decreases, and in the case of a virtual tran­
sition it increases. As a result the distribution of the 
spins and the entropy change, and the specific heat has 
a maximum even in the case of a virtual transition. For 
a real transition, the change in the distribution of the 
spins and in the entropy is generally of the same order 
as that for the transition in an ordinary Ising lattice, 
and therefore the coefficient of ln IT I in the heat capac­
ity is of the order of unity for both transitions. How­
ever, in the region under consideration, 1 ~ IT I 
» e-2 f3 J, which is not exponentially close to the transi­
tion tem~erature, the spontaneous magnetization changes 
like IT 11 4 instead of the usual IT 1118 law for Ising lat­
tices (the latter dependence, as one can show, is valid 
here in :w.rexponentially narrow neighborhood of Tc, 
T << e-2 {3 ). The unusual dependence of MonT is ob­
viously related to the "convergence" of the transitions 
Tc2 and Tc3 in a given temperature interval: instead of 
the usual transition into a disordered phase, the transi­
tion within an exponentially narrow interval T goes from 
the antiferromagnetic state immediately into the ferro­
magnetic state. 

We further note that, according to Eq. (6), in the anti­
ferromagnetic region for T = 0 a residual entropy exists 
which is equal to ln2 per cell. This is associated with 
the fact that upon total antiferromagnetic ordering of the 
circles in Fig. 2 a, each of the crosses is found to be in 
neutral equilibrium with regard to orientation. 

4. TRIANGULAR LATTICE 

The low- temperature transitions in the triangular 
latticel91 shown in Fig. 4 possess the most unusual 
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FIG. 4 

properties. An expression for F for arbitrary values 
of J 11 J2, and Ja is given by Houptappel. uoJ The case of 
equal antiferromagnetic bonds, J 1 = J2 = Ja, was consid­
ered in the article by Wannier. l91 In this connection 
there is no phase transition, as is obvious from geome­
trical considerations, and the entropy does not vanish 
even at absolute zero. 

We shall consider a "weakly distorted" Wannier 
lattice in which the antiferromagnetic constants J 1 and 
J2 are equal and slightly different from the third con­
stant Ja: 

J, = J, = J, {j = J,- J,, 161~1· (14) 

According tol101 the exact expression for F with J 1 = J2 
is written in the form 

•• d 
flF =- _!_ JJ dw p ln[1 + 211' +a'+ 211(1- a') (cos w +cos p) 

2 0 (2n)' 

+2(11'-a'}cos(ro+p)], (l 5) 

where 71 = e-213° and a= e-2f3J. 
Just as in Sec. 3, for o > 0 there is a transition into 

the antiferromagnetic state in the system. The tem­
perature Tc is determined by the relation 

1-211(T,)-a'(T,)=0, (16) 

corresponding in (15) to the point where the value of the 
logarithm has a minimum: cos w = cos p = - 1; for 
small values of o we have Tc ln2 = 2o. For o < 0 the 
transition is absent, it becomes a virtual transition 
since here the "disruptive order" of influence of J 3 

becomes larger than the ordering influence of the bonds 
J1 and J2. 

The temperature dependence of the specific heat C( T) 
is depicted schematically on Fig. 5. For T >> o the 
specific heat does not depend on o and has a maximum 
for 1 ~ J, corr~sponding to the appearance of ''short­
range order," a partial ordering of the spins in a struc­
ture of the type considered by Wannierl9 l (which is not 
simply ferromagnetic or antiferromagnetic, but corre-
f _ponds to a more complicated law of alternation of the 
orientations). With a reduction ofT in the region Tc, Tv 
<< T << J the size of these regions of "short- range" 
order begins to grow exponentially, similar to the way 
this occurs, for example, in the case mentioned above 
of a linear Ising chain, and the specific heat falls ex­
ponentially. For T ~ lo I the growth of C(T) starts 
again. In the case of a virtual transition the behavior of 
C(T) in general is close to the case of the NNN-model 
described above, although the low-temperature anomaly 
is expressed more strongly (the dotted curve in Fig. 5). 
Thus, for lo IIJ = 0.1 the height of the maximum Cmax 
at the point T = 0.35 Tv is larger than the value of the 
minimum lying between Tv and T ~ J, roughly by a fac­
tor of 2.2. The nature of the dependence of C on T for a 

C(r) 

, 

r 

FIG. 5 

real transition turns out to be extremely unexpected. 
Right up to temperatures which are exponentially close 
to T c• et2 « T « 1, instead of the usual logarithmic 
laws the specific heat C( T) increases like 1 I fT; how­
ever, in the region IT I<< a 2 the coefficient affiliated 
with the logarithm in the dependence C R:; a ln (1 I IT I) is 
exponentially large: a~ e2 {3J, Below Tc the specific 
heat also changes according to a power law: C(T) 
~ et 2 IT r312 , and only for T « Tc do the usual dependen­
ces C ~ e-4 {3J exist. 

In order to understand these results, let us again 
consider the correlations. By the usual methodslsJ we 
find that the correlation function in the direction of the 
coupling J 1 (in the general case of different values of 
J 1, J2, and Ja) is given by formula (lOa) with f(w) given by 

f(w) =' [4yz(1 + x')- 2x(1 + y') (1 + z')- (e'"x'- e-'~) (1- y') (1- z')] 
X {[ (1 + x') (1 + y') (1 +z') - 8xyz]' + 4x'(1- y')'(1- z')'cos'ro­
- 4 ( 1-x') '[ (1- z')'y' + (1- y') 'z'] - 4 (1 + x') ( 1 - y') ( 1 - z') 

X[2yz(1+.1') -x(1+y')(1+z')]cosw}-'f,, (17) 

where x =tanh {3J1 , y =tanh {3J2, and z =tanh {3Ja. For 
z = 0 Eq. (17) agrees with the expression for correla­
tions along a row, and for x = 0, y = z it agrees with the 
expression for the correlations along a diagonal for the 
usual square Ising lattice. Ut,sJ 

In the case J 1 = J 2 = J which is being considered, for 
the correlations in the directions J 1 and J a, respec­
tively, we have the following results: 

_ ( e'"11(1- a)'+ e-'"11(1 +a)'+ 1- a')'" 
f,(ro)- e-•~11(1- a)'+ e·•11(i +a)'+ 1- a' '· 

Just as above, we find the asymptotic behavior of 
G1(r) and Ga(r) for large values of r by using Wu' s 
method. l71 Above the transition for all values of T ex­
cept those exponentially close to T c: T >> a 2 (and for 
all values of T for a virtual transition), from Eq. (18) 
we have 

G, (r) = ( -1) 'y2 cos w,r e-'"' ar ~ 1,. 
1t frsinwot ' 

i+a' 
cos w, = --z;:;-, sin ro 01 > 0, 

1/2 cos ro 03r G,(r)=(-i)'V . e-2aclr., 

n frsin ffio3 

ar 
-- :!> 1, 

11 
211'-1-a' 

cos ro., = 2(11 ' _a') , sinro., > 0. 

(19a) 

(19b) 

(We note that the asymptotic expressions (19) indicate 
the presence of complex singularities for the Fourier 
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G() (-1)' 1 ( n:ln2) 
'r = (2n'ln2)''• (r'-r)''• exp -~ ' 

components of the correlation functions G(k), and thus 
this possibility should be taken into consideration in the 
analytical approaches to the theory of correlations near 
Tc which have been developed recently.L121 ) 

From Eq. (19) it is seen that inside regions of dimen­
sion r cl ~ a -1 >> 1 the spins are ordered and form 
something like a periodic ''domain'' structure with the 
periods rd1 = 27rw~~' rd3 = 27rw~~· Far away from the 
transition in the region jo I « T « J the value of a is 
small, and T} is close to unity so that the periods rd are 
of the order of unity and the ordering of the spins in 
"domains" corresponds to the Wannier structuresL 9J 
which have been mentioned. But with a reduction of T 
the periods rd begin to change. In the case of a real 
transition, as T- Tc, 17- 1/2 so that the periods grow 
like 1 I .fT. This apparently corresponds to the fact that 
inside the common exponentially large radius r cl of 
correlation, "nucleating centers" of a new antiferro­
magnetic (in the directions J 1 and J 2) phase begin to ap­
pear, and these start to displace the phase correlated 
"according to Wannier". With the approach to Tc the 
dimensions of the nucleatin~ center grow so that in the 
important regions r d ~ 7-1 2 a simple antiferromagnetic 
ordering still exists, although among themselves these 
"domains" are no longer correlated in an antiferro­
magnetic way but somehow ''according to Wannier''. At 
a certain temperature 7 ~ a 2 which is exponentially 
close to T c• the size of the domains is comparable with 
the correlation radius r cl (formally the point rd = oo is 
determined by the equation 1 + a 2 = 271 ). After this the 
largest correlation dimension is the transition- associa­
ted radius of the simple antiferromagnetic correlations 
rd ~ 0'7-1, and for 7 « 0'2 the functions Gi(r) have the 
forms 

1 1 ( n:ln2) 
G,(r)=-(8n2 ln2)''• (r'-r)''• exp --a- I; (20) 

The asymptotic behavior at small distances can also 
be found by using the methods of articles[e-sJ (as is 
done in (4) and (5)), and also the correlations below Tc 
can be found. Thus, in the region 11 = 1- 271 ~ a 2 the 
function G, (r) has the form 

e_,,s;; { 1/16nr' ar » 1 
G,(r) = ( -1) 'M' +(-1) 'M'~ a' 'ltl'rt <t: r <t: l/a , (21) 

and the spontaneous magnetization M is given by the ex­
pression 

{ 
(2-1 1 T 1 a-• In 2)'1•, IT J < a 2 

M _ (1 + a') 'I• [ (1- a2) 2 - 41]2 ]'I:__ 1 a• 
- 1-a2 (1+a2)'-4T]2 ~ 1- 41n 2 TrJ' a'~/T/~1. 

(22) 
It is evident that saturation of the magnetic moment oc­
curs here even exponentially close to T c· 

Thus, the unusual square-root growth of the specific 
heat in the region a 2 « 7 « 1 is here associated with 
the unusual nature of the transition, consisting in the 
displacement of one quasi- ordered phase by another in 
a narrow temperature interval (for low-temperature 
transitions such a situation may not even be very rare). 
Using the result about the size of the antiferromagnetic 
regions in the interval a 2 << 7 << 1: r d ~ 7 -1!2, one can 

simply obtain this square- root law with the aid of 
dimensional arguments, similar to those used in the 
methods of scaling (see[2]). Let us start from the fact 
that the free energy associated with an expansion in 
powers of the small quantity ref is represented in the 
form of a sum of terms corresponding to each of the 
correlation regions: 

(23) 

In the zero order approximation in rd the dependence 
(23) would in general lead to the law F ~ A7 ln 7, since 
the logarithmic terms cannot be detected by dimen­
sional arguments. But as 7 - 0 this would give a 
logarithmically divergent value of the entropy, so that 
the constant A must be equal to zero. Therefore, the. 
expansion of F must begin with the next power of ref 
(which corresponds, possibly, to taking" surface" boun­
dary effects into consideration). Then F ~ 7 312 and 
C ~ 7-112. An exponentially large value of the coeffi­
cient affiliated with ln /71 in the region 171 « a 2 is ob­
tained as a result of joining the square-root formula for 
C with the logarithmic formula at the limit of applica­
bility of the law rd ~ 7-112 , i.e., for rd ~ rcz ~ e2f3J. 
Physically the exponentially large magnitude of the 
specific heat evidently reflects the fact that there is a 
substantial change in the structure of the state and in 
the entropy in a very small, exponentially narrow, tem­
perature interval. 

Let us again discuss the nature of the correlations 
associated with a virtual transition. In this connection 
in formulas (15) and (18) the parameter 71 = exp(f3Tvln2) 
> 1, so that one can neglect terms ~ a everywhere ex­
cept in the argument of the exponential in (19). With an 
increase of 71 from 71 ~ 1 to 71 - oo the period of the 
correlations rd1 with regard to J 1 decreases (from 12 
to 4) whereas in the direction of the larger coupling J3 
instead of Wannier correlations total antiferromagnetic 
ordering begins. The maximum in the specific heat at 
T ~ Tv reflects this change of the structure, the ap­
pearance of simple antiferromagnetic ordering along 
the filaments of the direction J3. 

5. CONCLUSION 

From the examples which have been considered it is 
clear that a reduction of the transition temperature T c 
has a universal effect only on the width of the region 
associated with the transition of correlation phenomena: 
IT- Tel :S Tc. However, the scale and character of 
these phenomena may be very different, and the specific 
heat near T c may be either exponentially small, of the 
order of unity, or exponentially large. The presence of 
a small parameter T cr1 may also lead to a deviation of 
the temperature dependences of thermodynamic quanti­
ties from those predicted by the scaling hypothesis in 
the region e -2{3 J « 7 « 1 which is not exponentially 
close to the transition-the law M ~ 171 114 in Sec. 3 and 
the laws C ~ 7-1/2 and C ~ /71-312 above and below Tc 
in Sec. 4. In the case of virtual transitions a "partial 
ordering" of the system occurs in the region T ~ Tv, 
and there is a maximum in the specific heat. As men­
tioned, this should be taken into consideration in con­
nection with the experimental investigation of low-tern-
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perature transitions: a maximum in the dependence of 
C on T may not actually indicate a real transition, but 
it may only correspond to some kind of change in the 
short-range order (although at the low temperatures 
under consideration the corresponding radii of ordering 
may turn out to be extremely large). 

The authors sincerely thank A. I. Larkin and A. V. 
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