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A method is developed for calculating the components of the electric conductivity a ik of an electron gas 
in a spatially homogeneous electric field of frequency 11, with allowance for the polaron effect, when the 
principal role in the scattering is played by the interaction of the carriers with the thermal vibrations 
of the lattice. This approach is a generalization of the Feynman method to the case of arbitrary intensi­
ties of the constant magnetic fields H. The influence phase <1>, which describes the potential (real part) 
and dissipative (imaginary part) properties of the phonon subsystem, is simulated in the zeroth approxi­
mation by functionals that are quadratic in the velocity, with complex tensor coefficients that take into 
account the anisotropy of the problem and are determined from the condition that the first corrections 
to the admittance vanish. By way of examples we present calculations of the longitudinal and transverse 
magnetoresistance, and also of the polaron masses. We consider in detail cyclotron resonance of piezo­
electric polarons in CdS. It is shown that the absorption depends on the orientation of the magnetic and 
electric fields relative to the principal axis C6 of the crystal. It is established that the anisotropy that 
depends on the direction of the field H is stronger than that dependent on the direction of the electric 
field. The anisotropy of the former type was observed in experiment, and agreement was obtained 
with the experimental data. 

ELECTRON -PHONON interaction in semiconductors 
leads not only to scattering of the carriers but also to 
renormalization of their energy and mass (the polaron 
effect). The mobility of optical polarons of large radius 
(in the continual approximation) was calculated by a 
number of authors [ 1- 3 l under different assumptions 
concerning the value of the electron-phonon-coupling 
parameter. A consistent quantum theory of the conduc­
tivity of the polaron was developed by Feynman. [ 3 l The 
component of the electric conductivity tensor crzz( 11) of 
the electron-phonon system, placed in a spatially-homo­
geneous electric field of frequency 11, was expressed in 
terms of the response function (admittance), for the cal­
culation of which a special technique of continual inte­
gration was used. The polaron effect was imitated by a 
fictitious particle coupled elastically to the electron. In 
such an approach, however, it is possible to take into 
account only weak magnetic fields, since the functional 
of the action of the polaron in the magnetic field cannot 
be reduced to an·integrable form. 

In this article we present a method for calculating the 
electric-conductivity tensor f1ik of polarons in a homo­
geneous magnetic field of arbitrary intensity. The pola­
ron effect is taken into account in the weak-coupling ap­
proximation, which is realized in most cases of practi­
cal importance. 

1. ELECTRIC CONDUCTMTY TENSOR IN THE 
REPRESENTATION OF CONTINUAL INTEGRATION 

The components of the tensor a ik( 11) for an aniso­
tropic medium in a weak spatially-homogeneous electric 
field of frequency 11 are expressed in terms of spectral 
representations of the response function Gik( 11) (admit­
tance): 

a,.(v) = e'vG .. (v), (1) 

- 1 -
G,.(v)= Je-""G,.(t)dt, G,.(t)= 2n J e'•'G,.(v)dv, (2 ) 

According to the Feynman method,£ 3 l the components 
Gik( 11) can be calculated with the aid of a specially cho­
sen function g( 11 ): 

1i n• 
G;k (v) = 2e" 8~; iJek g (v) k=•=• . (3) 

Without stopping to discuss the method of choosing 
the trace g(t) and representing it in the form of a con­
tinual integral with respect to the electronic variables 
only, we present the general formulas that will be 
needed in what follows: 

g('t'- a)= Sp J exp [ ~ F(r, r') ]nrDr' dr,.dr,/. ( 4) 

Here Dr is the symbol of continual integration over the 
elec:tron trajectories; 

,., 
F(r,r')=S,(r)-S.'(r')+«D(r,r'), S,(r)= J L,(r,i,t)dt (5) 

,, 
(S' is expressed analogously in terms of L'), Se is the 
action of the electron, described by the Lagrangian 

. ~ 1 (o).z e , 
L,(r,r, t) = .f...J 2 m .. r, - ---;;rA, + er,E., i = 1, 2, 3 = :&, y,z, (6) 

·-· 
where mfi> are the diagonal components of the mass 
tensor of'the band electron, e is the absolute charge of 
the electron, A = (0, r 1 H, 0) is the vector potential of 
a constant and homogeneous magnetic field. The elec­
tric fields E in Le and E' in q:l are chosen with field 
coefficients E and {;: 

E(s) =sB(a-s) +~B(T-s), E'(s) =sB(a-s) -~6('t'-s).(7) 

The phonon subsystem makes a contribution in the 
form of the influence phase <l>(r, r' ), which is a func­
tional of the electron trajectory; for an aggregate of 
phonon harmonic oscillators interacting with the elec­
tron, in an approximation linear in the oscillator coor-
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dinates, the phase can be calculated exactly:cs, 4 l 

<D(r,r')= L<D.;(r,r') (8) 
MJ 

(IC is the wave vector and j is the number of the branch 
of the lattice vibrations), 

[ 
i ] . t" 

exp h <D.;(r, r') = Sp J exp [ -7l J (£.1 - L./)dt] 
t' 

i ., 
• P ( q.w, q.w) Dq., Dq./ dq.w dq•J<'· (9) 

In (9), p(q, q') is the density matrix of the phonon sub­
system at the initial instant of time t'- oo, when the 
lattice oscillators can be regarded as not interacting 
with the electron, and LKj is the Lagrangian of the pho-

non oscillator, on which an electron with a force YKj 
acts: 

(10) 

The calculation of the integrals in (9) leads to the fol­
lowing result:C 3 l 

<D.;= ! j'j dtds ~y.1 (t)-y./(t)]{[y.,(s)+y./(s)] l(w.,,t-s) 
,, 

(11) 

. _ ( 2 )''• {sinxr, 
YxJ- Vtc; L 3 cos xr, (12) 

The form of VKj for different interaction mechanisms 
will be specified more concretely later on; 

·{ ro-• sin rot, 
/(w,t)= 0 

' 

t>O 
t<O' 

1 ( 'JJiw) A(w,t)=-cth - cosrot, 
2w 2 

(13) 

(14) 

Substituting (11) in (8), we obtain, with account taken 
of (12) 

1 d ~ 

<D(r,r')=2 L J (2:).1v.,l' JS dtds{[cos(x,r,-r,) 
' -~ 

-cos(x,r,' -r,)] f(ro.h t-s) 

+[cos(x, r,- r,')- cos(x, r,'- r.')] /*(wxh t- s) }, 

f(ro, t) = /(ro, t) + iA(ro, t). 

(15) 

Formulas (1) and (3) together with (4), (5), and (15) 
determine the exact values of the components of the ten-

2. METHOD OF APPROXIMATE CALCULATION 

It is impossible to carry out continual integration in 
(4) with the functional (15). Feynman's approximationC3l 
consists of replacing the phonon system with a fictitious 
particle elastically coupled to the electron. After elimi­
nating its coordinates, one obtains a trial functional that 
is quadratic in the electron variables. Continual inte­
grals with functionals of this type can be evaluated, c 3 l 
but when the magnetic field is taken into account this 
method turns out to be suitable only in the case of small 
H, when (4) can be expanded in powers of H. 

We call attention to two circumstances that explain 
the choice of the approximation suitable for all H and 
describing the polaron effect: integration in ( 4) with the 

Lagrangian (6), but without CJ?(r, r'), can be carried out 
exactly; allowance for the influence phase leads to a 
renormalization and dissipation of the electron energy. 

The polaron effect can be described by replacement 
of the mass. Further, we note that the dissipation func­
tion c 5 l leads formally to the appearance in the action of 
a term' in the form 

'" iy .. J -"- r,r.dt. ,, 
Consequently, both effects can be taken into account by 
making the following substitution in the action (5): 

m,~1 6,. ...... M,.(1- i~ .. )""' m,., (16) 

'" 
So(r)= J (L ~ m .. r.r.--znr,r,+er,E,}dt; (.17) 

fl '·" 

here Mik and aik are the sought parameters of the 
trial action S0 • 

We write g( T- a) in the form 

g(-r-a)=SpJDrDr'dr,,dr,/exp[ ~ Fo(r,r')][ 1 

0 1 . z 

+ ~ (F-·FoH2(-i) (F-Fo)'+···l (18) 
0 1 0 \ z 

= g0 (-r-a) [ 1 +-i<F-Fo)o+2 (i ((F-Fo)')o+'•··l 

= g0 (T- a)+g,(-r- a)+g,(-r- a)+ ... 

In (18), F0 = S0 - S~, and( ... ) is the continual mean 
value: 

1 . 
(T(r, r'))o = g.Sp J T(r, r')exp [ TFo(r, r')] Dr Dr' dr,, dr,/. (19) 

In normal coordinates that diagonalize the kinetic en­
ergy in (16), ~ and all the mean values are calculated 
exactly. 

The parameters of the trial action are obtained from 
the condition that the corrections to 

<o> 1i a• I G,. = 2e' ~go o · 

vanish. We shall find them in the first approximation in 
the constants of the electron-phonon coupling lvKj 12 

from the equations 

<I> nlJ' I o G;k (v) = -2 , ;;;;::-a gl (v) t~•~o = . 
e U':)i Ek 

In the calculation in g1 , we can replace S0 by Se. 

(20) 

Let us calculate the trace ~ with the trial actions 
S0 and S~, in which we neglect mik with i * k, i.e., we 
take into account the non-diagonality of O'ik• which is 
connected only with the magnetic field (the Hall conduc­
tivity). This non-principal simplification is justified by 
the fact that usually the mixed components a ik are 
small when H = 0. 

The result of the integration in ~ with respect to r 1 

and r 3 can be written down immediately, by using for­
mulas (9) and (11), as for oscillators with zero frequen­
cies perturbed by the forces 

y, (t) = e E, (t)- m,r,(t}, 
'fmu 

y,'(t)= e E,'(t)-m,r.'(t), 
'lmu 

y,(t) = e E,(t). 
'fm, 

y,'(t) = e E.'(t), 
ym., 
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The functional obtained in this case, as seen from {21), 
contains the terms r 2(t)r 2(s)' and after integration by 
parts it reduces to a quadratic form with frequency we 
and forces 

y,(t) = e E,(t)+ ew. J dt'E1(t'), 
ym, 1m"-~ 

yz'(t) = e E,'(t)+ ew, j dt'E/(t'). 
-ym, fm11_~ 

(22) 

After integration with respect to r 2 and certain trans­
formations, we obtain ultimately 

where 

a 
(0) II ,0) Co(T-a)=g"(T-a) g .. (,;-a), 

co) { 2ie' . , \ 
g,; (T-a)=exp llm}~,e,J(ro;;,T-a)+t~,A(w;;,O))!f' 

co> { 2ie' _ L 
g12 (,;-a)=exp --=[e1~,-e,s1]J1(w,,T-a) fl; 

!t"fmttmzz 
OOii = We, i = 1, 2, Wss = 0, 

{23) 

(24) 

J( l={w-'(1-coswt), t>O 
,w,t O, t<O" {25} 

The function J 1 appears in connection with allowance 
for the magnetic field. In the limit as H1 - 0 we get 
J1 = 0 and g<o> = 1. 

Substituting {23) in {3), we obtain 

(o i 
G;; (v) = -J(w", v), 

mti 

p 00 i 
G., (v)= -G" (v)= --=J,(c'ii"v), 

fmumzz 

iw 1 
J,(w,v)= --:;-J(w,v), J(w,v)'= w'-v'. {26} 

Now, in accordance with the definition (1) we can read­
ily obtain formulas for the components of the tensor 
aik: 

l =I= i, 

ie' 1 
cr,(v)= ---~--· 

M,v 1 - i~,' 

e2mro [ m' a"(v)= -a21 (v)= ---· --roo' 
MuMzz MuM., 

:.._ v'(1- i!iu) (1- i!i,) r·; 
w,=eH/mc. 

{27} 
i,l = 1,2; 

{28} 

In the final formulas (27)-{29) we assume, to simplify 
the notation, that the band mass is isotropic: mW 
= m~~l = m~~> = m. 

We present the real parts of a ik in the limit v = 0; 
these describe galvanomagnetic phenomena in a con­
stant field: 

e'Mu [ 1 ]-' Rea;;=--,-, 1+--, • 
Tum We 'tu'tzzg 

i, l = 1, 2, i =I= l; 

1 
-=v!J.u, 
't;; 

e' [ 1 ] - 1 
Rea,= -Rea,=-- 1 +-,-- ; 

mwc g t'ii'tzz 

here Q 2 = ~m2/M11M22 . 
We obtain also the real part of a ii ( v) when 

and the cyclotron-resonance conditions TV > 1 

{30} 

{31) 

{32) 

v~ we 
are 

satisfied: 

Formulas {30)-{33) and the corresponding classical 
expressions are outwardly similar. The essential dif­
ference lies in the fact that the ordinary masses andre­
laxation times are replaced in {30}-{33) by the polaron 
masses Mu and by the functions Tii that depend on the 
ma!~etic field. 

3. CALCULATION OF THE PARAMETERS OF THE 
TRIAL ACTION 

To obtain Eqs. {20} in explicit form it is necessary 
to calculate the quantity g1 == ili - 1 g0 (F - F0 ) 0 • It is easily 
seen that all the mean values in (F- F0 ) can be ex­
pressed in terms of generating functions of the type 

'¥~') (6, 11) = (exp[i (x, sr (t)- 11r (s))])o. {34) 

(The remaining necessary functions '1'< 2>, '1'< 3>, and '11 <4 > 
are obtained from {34) by replacing r{t) and r{s) by 
other pairs from the set r(t), r(s), r'{t), and r'(s).) We 
then carry out, for example, the transformation 

w w i)' 

( f:1'(t)dt) 
0
=- u dtdsll(t-s)asz<r,(t)r1(s))o. {35} 

In {35} it is first necessary to differentiate with respect 
to s, then integrate with allowance for the delta func­
tion. The quadratic form {35} is connected with '1'}!>: 

1 i)' - (1) ( ) 
(r.(t)r1(s)), =-;,z a~;a 11 '¥., (6.11) 11=•=•· 36 

The calculation of 'l'<n> is analogous to that of !So and 
leads, in particular, to the result 

where 

3 

'¥~1> <s. 11l = 'I'W (s, 11l IT 'l"\P <s. YJ), {37} 
i=l 

ln '¥,fl!(6, 11) = ;:: { e, Ldv e-''"(6e''1- 11e'")J(w", v) 

+ s; jav e'"(se-''1- 11e-'") [J(ro;;,'ll) + 2iA(ro", v)]} 

+ ihx,' j dv[s' + 11'- 2611 cos v(t- s)] [J(w,., v) + iA (w", v)]; 
4nm_w {38} 

(1) ie wJ . 
In '¥1_2 (6, 11) = 2nm_oo dv{- e'"(s•"-•. 

n Ahw 
A(w,v) =-[ll(w- v)+6(w + v)]cth-2-; 

2w 

n _ Ahw 
A1(ro, v) = -;-[1\(w- v) -ll(w + v) ]cth-2-, 

2tro 

<Oii={l)e, i= 1, 2, (ths = 0. 

{39} 

(40) 

Further, the contribution of the first term of formula 
{15) to g1 , denoted Gif1'( T- a), is given by 

<•> 1 ; a• 1 ~ \ dx I 1• Gik (T- a) = 2e' ar. iJe Co (T- a) 4 ~ J (2x)• Vxj 
00 1::1~ k -i 

X ~~dtdsf(w.;, t -s)['¥~>(1, 1)+ 'Y~'l(-1, -1)li•=J;=o· (41) 
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From the definition (18) of &J it follows that when t 
= E = 0 the trace is go = 1 and CJgo/aei = og0 /o/::i = 0. 
Since g for t = E = 0 is the trace of the equilibrium 
density matrix, it follows that g(E = t = 0) = go(E = t = 0) 
= 1 and g1 (E = t = 0) = 0. Therefore in formula (41) it 
is necessary to differentiate only "\lt(l). Substituting (37) 
in (41), carrying out the necessary transformations, and 
changing over to the spectral representation, we obtain 
(we write out only Gii> 1(v)) 

(t)t i '\1 J d-.c 2 { 2 
Gu (v)= Zm'""-.1 (Zn)' lv.;l x, /(w"v) [l(w,,v) 

' 
+ 2iA (w,, v) ]- x,'l, (w" v) [!, (w" v) + 2iA, (w,, v)]} 

~ "h ~ 

X J:tf(w.;,t) (cosvt-i)exp ( ;nmLd!1(1-cos 11t) 

x{x,'[l(O,v)-f"iA(O,v)J+x.c'[l(w"v)+ iA(w"v)]}) (42) 

We calculate analogously the remaining terms in G~~ 1 (v) 
(there are ten of them, four from the averaging of the 
phase and six from the kinetic energy). 

Using the exclusive form of Glk'(v), we get from (20) 

m - M,. + i _ L J d-.c x.' I v.; I' 
m V"t;; ; (2n)' mv' w.; sh (Mw.;/2) 

J~ . ( iA.h ) [ hx' ] X dt(1-e-"')Imcosw.; t--- exp ---D(t) 
0 2 2mw, 

~ 

== J dt(1- e-''')ImS,.(t), 
0 

D() x.c'[ Ahw, cosw,(t-il.h/2)] t =- cth---__ .:._ _ _;_..:._ 
~ 2 ~(AhwJ~ 

+ ~ [ A.hw, ( w,t - iAhw,/2)' ] 
x' 4 + Ahw, • 

(43) 

Separating in (43) the real and imaginary parts, we ob­
tain the components of the effective-mass tensor and of 
the relaxation time: 

M s~ --;;;-= 1-Im dt(1-cosvt)S,.(t), 
0 

(44) 

1 ~ 

---=vIm J dt sin vt S .. (t). 
't'u o 

(45) 

The function Su(t) has no singularities in the com­
plex t plane in the region 0 :$ Re t :$ oo and 0 :$ Im t 
:$Mi. We therefore replace the integrals in (44) and 
(45) along the real axis by integrals from 0 to ihli/2 
along the imaginary axis and from iili /2 to ihli /2 + oo 

along a line parallel to the real axis. The section of the 
contour from iili /2 + oo to oo makes no contribution. 
The integral in T fi1 over the section 0 - ihli /2 is equal 
to zero, since Su (it) and idt sin ivt are real functions. 

Thus, the final expressions become 

Mil 1 h'J..1ivfa. s ( iA.fi) m = - S 2 J t Sill vt ii t + 2 
0 

M~2 
+ ~ dt (ch vt -1) S,, (it), 

0 

1 A.hv ~ iAh 
- = v sh --J dt cos vt S,. ( t + --) . 

"tii 2 0 2 

(46) 

(47) 

As A.- oo (T -0) and v = 0, the first integral in (46) 
vanishes, but at finite values of .\ this integral is the 

principal one. Therefore, with increasing temperature 
the polaron correction changes from positive to nega­
tive. 

Formula (47) gives the relaxation time with allow­
ance for the inelasticity. In the elastic approximation 
it is nE!cessary to set cos WKjt equal to unity in 
su(t + ihli /2). 

4. LONGITUDINAL AND TRANSVERSE MAGNETO­
RESISTANCE 

The longitudinal magnetoresistance is given by the 
formula 

M, 
Pas=-=-,-, 

0'3a e 't3a 

from which it is seen that the different scattering mech­
anisms are additive. Let us consider some particular 
cases. 

For a deformation interaction of the carriers with 
acoustic oscillations 

I v.;!' = a,'x' /p (48) 

at temperatures that are high relative to the active pho­
non hliWKj/2 < 1 and in weak fields hliwc/2 < 1 we 
have 

M, [ 1 ( A.hw, )'] p,(H) = --;;p,(O) 1 + S - 2 - , (49) 

M, = 1 _ 1 a0'm'1• ( A.hw, )' 

m 12l'2n h' A. 'l•pw' 2 
(50) 

Here aa is the constant of the deformation potential, p 
is the density of the medium, and w is the longitudinal 
velocity of sound. The value of p33(0) coincides with 
that obtained by Davydov and Shmushkevich.[ 6 J The 
correction to the mass (50) at H = 0 vanishes, in agree­
ment with the result of Krivoglaz and Pekar. [7 J 

There is no difficulty in calculating p 33 for the cases 
of piezoelectric interaction with acoustic oscillations at 
hliw,'<j/2 < 1 and iliwc/2 < 1 and with longitudinal opti­
cal oscillations at .\liw/2 > 1 and hliWc/2 < 1, where w 
is the limiting frequency of the optical oscillations. The 
expression for p 33(0) for the piezo-interaction coincides 
with the result obtained in [s l; for the interaction with 
the longitudinal optical oscillations the results agree 
with those of [SJ. 

In the case of strong fields hliwc/2 > 1 and high 
temperatures hliwKj/2 < 1, for piezo-interaction of 
electrons with lattice vibrations described by the con­
stants 

where i3i, kn are the piezo-moduli, we have 

= 2 1/ 2 M,m'I•:Jt'!n ~hw, 
p, V n h'A.'h 4 ' 

-vPz '\1 J (B.e/)' . 
.a = ""-.! ---~m ti dti dcp,_ 

J e/pw/ 

(52) 

(53) 

The main relation p 33 = T1 / 2 coincides with that given 
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by Adams and Holstein. [9 l We note that the dependence 
of the polaron mass on H may change p 33 in CdS (by 
about 30% at T "'1 o K) and can lead to a decrease of p 33 

with increasing field. 
For the optical interaction 

(54) 

(where 0! is the Fri:ilich interaction constant) the case 
of importance is that of low temperatures Aliw/2 > 1. 
Interest attaches to strong fields w c "' w, in which os­
cillations of the longitudinal magnetoresistance, which 
were investigated by Gurevich and Firsov, r 11 J were 
observed.[ 1oJ The non-oscillating part of p 33 is given 
by 

,,-M (J) 
Paa = y 2n ~ al.nC!)0 frM"'• 

e 
(55) 

The linear increase of p 33 with H (a similar depend­
ence is obtained for strong fields in the deformation in­
teraction, see (64) with v- 0) is in agreement with the 
experimental results.uoJ The value of M33 is given by 
formula (3) of [12 l. The oscillating part of l:l.p 33 is small 
and is given approximately by 

Ll - 4 Maa(J) ( f.n(J) )''· -M"' Paa - e• a -2- e . 

l.n!(J)-(J)cl K ( M!{J)-(J)cl ) . (56) 
2 1 2 ' 

Here Kn(z) is the Macdonald function. Formula (56) 
gives a maximum at we = w, in agreement with the 
conclusions of Gurevich and Firsovr 11 J for the case 
when the scattering by the optical oscillations plays the 
principal role. 

The transverse magnetoresistance p 1 = a11/(a~1 +ai2 ) 

in the case of strong fields weT > 1 is determined in 
the isotropic approximation as follows: 

P.c = Uu I u.,' = Mu I e'Tu. (57) 

Considering different interaction mechanisms, we can 
obtain from (57) the results of Adams and Holstein r9 J 
and of Gurevich and Firsov, [ 13 l refined by allowance 
for the polaron mass Mw which depends on the temper­
ature and on the field. We shall discuss in greater de­
tail the case of the interaction with optical oscillations, 
wherein p 1 experiences resonant oscillations. As are­
sult of neglecting the dispersion of the optical phonons 
and other mechanisms that limit the heights of the oscil­
lations, p 1 (H) diverges logarithmically at the points 
we = w/N. In the case Aliwc/2 > 1 we have 

P.c=~ Mu(J), a ('A/i(J))'iz{Ko(Mw)+--1 __ 
2in e' sh('A/i(J)I2) 2 2 ch('A/i(J),I2) 

xKo(M[w;-(J),[ )+ 4ch'(~/i(J)J2)·K, (M[w;-2w,[) +···}·(58) 

For Aliw/2 < 1 (high temperatures) we have p 1 
""HT112 , just as in [9 l, If We> w and Aliw/2 > 1, then 
P1 '"' Aliwc exp (-Afiw), which agrees with formula (38) 
of Gurevich and Firsov.[ 13 l 

It is interesting to note that M11 also has resonant 
peaks at the points We = w/N, but of delta-like charac­
ter. Taking into account the cutoff due to the broaden­
ing of the levels, [9 J we obtain 

Mn=i- a 
m fn 

5. CYCLOTRON RESONANCE OF POLARONS 

The cyclotron resonance is described by formula 
(33). We consider the piezoelectric interaction, since 
there is no complete agreement between the theoretical 
papers[ 14 - 17• 20 l and the experiment of Baer and Dex­
ter. r 19 J The decrease of the effective mass m * 
= eHmax/cv, determined by measuring the shift of the 
maximum of the band in CdS, was first observed by 
Sawamoto. [19 l Later Baer and Dexter observed an 
anisotropy, connected with the orientation of the mag­
netic field, in this effect. It turned out that at H II C6 

(C 6 is the hexagonal axis in CdS), the shift of the maxi­
mum is smaller than at H 1 C6 • Mahan and Hopfield[ 14 l 

attributed this shift to the piezopolaron effect, but in 
calc:ulating M they neglected the influence of the mag­
netic field and the anisotropy. Larsen [ 15 J calculated 
M11 in the approximation T = 0 and obtained M11 > m. 
Saitoh and Kawabatar 16 l used the Kubo formula and em­
ployed the Mori method to calculate the correlators. 
But a 1 as obtained by them contains sums over the 
quantum numbers of the electronic states; since these 
sums are difficult to calculate, Saitoh and Kawabata 
confined themselves to the zeroth Landau band, a pro­
cedure that is valid only in the case of the strong in­
equality Ali we>> 1, and obtained M11 , m. Miyake[ 17 l 

used the temperature Green's functions method, but 
put kz = 0 in the calculation and went beyond the accu­
racy of the method, taking into account the corrections 
in the energy denominators. 

The present authors [ 20 l obtained the correct order 
of magnitude of the shift of the maximum of the cyclo­
tron resonance (CR) band, but could not obtain the 
weaker anisotropy effect. Furthermore, for a compari­
son with [18 l they used the experimental values of T. 

We note that unlike the galvanomagnetic phenomena, in 
whieh the polaron change of mass is weakly pronounced, 
experiments on CR are of particular interest for pola­
ron theory, since M and T are measured independently, 
respectively from the shift of the maximum and the half­
width of the CR line. 

In the discussed experiments of Baer and Dexter [ 19 l 

m = 0.2me, v = 4.26 x 1011 sec -1 , T = 1.3 °K, and Aliv /2 
= 1.25, corresponding to intermediate magnetic fields. 
Two calculation methods are possible, starting from the 
strong-field approximation, when Su(t + iAfi/2) is ex­
panded in powers of cos wet/cosh (Aliwc/2), and of rela­
tively weak fields, when the expansion of the quantities 
cosh (Aliwc/2)- cos Wet and cosh (Aliwc/2) 
- cosh wc(t- Ali/2) in Su (it) is carried out with respect 
to u!c· The first approach calls for summation of many 
terms of the expansion, which is equivalent to inclusion 
of many Landau bands. In the second approach it was 
sufficient to retain two terms of the series, thereby en­
suring an accuracy of "'1 %. 

The energy of the effective phonon is AliwZ-1 ·- 0, 1, 
Z2 = cfi/eH and it can be assumed that the phonon tem­
peratures are high. In the elastic approximation we ob­
tain 
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~ + _i_ = 161211: e'm'l• ( 2 sh ( Aliwo/2) ) '!. 
m vt" v'li'A'1'eo'r Aliw, 

{ 1 [ • (t) (2) x ---:; ~.,,1,. (x) + 2~ •. ,(~ .... + 2~ •. .,)1,. (x) 
w,· 

1 + (~a.u + 2~ .... )'1~? (x) 1 
' <•> (a) .+ w,• [~ .... 1 .. (x)+ 2p,,.,(~a.aa- Pa,u- ~ .... )!., (x) 

+ (~'·"- ~ .... - ~ .... )'1~•> (x) 1}, 
l= 1, 2=x, y; x= 1- 2sh (Mw,/2) iMw,. (60) 

In the case C6 11HIIz we have 1- Mrl/m = 1- M22/m 
and 1/T 11 = 1/T 22 , since Il~> = ~~~> = 1< , with 

I<'>(x) = '/.,j,(v)F,,,(x)- 'f,.,j,(v)F,,,(x), 
J<'>(x) = '/.,.j,(v)F,,,(x)- '/,.,j,(v)F,,,(x), 

J<'>(x) = 18/,..j,(v)F,,, (x) - "f,.,j,(v)F,,, (x), 
I<'>(x) = "'/mf,(v)F,,o(x)- "'f,,,f,(v)Fa,o(x), (61) 

where 

( 2m+ 1 3 11 ) 
F,,,.(x)=.F, --2-,2;2;x ' 

1 ( Aliw, ) ' ( 2m +' 1 5 13 ) F,,,.(x)=T2 -2-. ,F, ---2-,2;2;x ' 

2F1 is the hypergeometric function. 
The real and imaginary parts of the function f are 

equal to 

Rej,(y) = 1/2nyshy[L,(y) -!,(y)1- (1- 1/ 4n)y', 
Re j,(y) = 1/211: sh y(2y(L,(y) -l,(y)) - (l,(y) - L,(y)) 1 

- ('/,- '/,n)y', (62) 

Im j,(y) = y sh yK,(y), 
Imj,(y) =shy[2yK,(y) -K,(y)1, y=Mv/2, 

Ln(Y) are Struve functions and In(Y) are Bessel func­
tions of imaginary argument. The second terms with f2 

in (61) determine the corrections for H, which under 
the conditions of the Baer and Dexter experiment turn 
out to be of the order of 1%. 

At the experimental configuration C6 11 y 1 H we have 
1/T11 < 1/T 22 and 1- M11/m < 1- M22/m. The functions 
I take the form 

1,<:> = 'f,.J<'>, 1::> = '/J<'> + 'f,.J<'>, !,~•> = 'f,I<'> + '/,1<'> + 'f..I<'>, 

[,~> = /(') + '/.1<'1 + "!J<'> +"/..I<'>, 

!,~> = "/..1<'>,1~~ = '/J<'1+ 'f,,J<'>,I~:> ='/.I<'>+'/.!<'>_+ '/ .. I<'>, 

I,~·>=!<'>+ '/.I<'>+ '/.I<'>+ 'f,,l<'>. (63) 
Substituting (61) and (63) in (60), we obtain 1- Mu/m 
and 1/T ii which are needed for the calculation of a ii 
from (33). Owing to the indicated relations for 
1 - Mii /m and 1/Tu, the values of a ib generally 
speaking, are not equal to each other, and this reflects 
the anisotropy of the absorption. 

Substituting the numerical values of the parameters 
of CdS (taken from the work of Pokatilov[ 21 l), we have 
plotted (see the figure) a 22(H) for the case C6 II y 1 H, 
E IIC6 (1) and a11(H) for the cases C6 11y 1H, E IIX (2) 
and C6 II H, E II x 1 C6 (3). The position of the maximum 
and the form of the absorption band in case (2) agree 
well with experiment l 18 J (dashed curve in the insert). 
For case (3), the maximum position indicated in [18 l 

agrees with curve 3. There were no measurements 
made in variant (1 ). 

Thus, we can state that the results of the calculation 
agree with the available experimental data. In addition 

a,ar~~~·-----

~ 6 

5 

3 

2 3 

3 , 5 1 

H,kOe I 

5 6 
H,kOe 

I 

Plot of o(H) in accordance with 
formula (33): curves: l-o22 , H 1 C6, 
2-ou. H 1 C6, 3-ou = Ozz: H II c6. 
Insert: solid line-theory, dashed-ex­
periment. 

to the experimentally observed relatively strong aniso­
tropy of the directions of the magnetic field H II C6 and 
H 1 C6 , calculation predicts a weaker anisotropy at a 
fixed magnetic field H 1 C6, and in an electric field 
E II C6 and E 1 C6 (curves 1 and 2). 

In conclusion, we call attention to certain oscillatory 
effects in a longitudinal alternating electric field. At 
large values liT 33 > 1, according to (28), we have a33 

Rl M33 v2 T 33• Calculating 1/ T 33 with allowance for the 
acoustic scattering, we can obtain a formula analogous 
to (55), but with an argument 11 - Nwc in place of 
w- Nwc: 

_1._ = ( ~)''• m'1•a0'w,sh(A/iv/2) th Alim, 
t 30 n pvw'li'A'1• 2 

{ Aliv (Aiiv) 
X -2-K, 2 

1 Alilv-m,l 
+. 2ch ( Aliw,/2) 2 

K ( Alilv-m,l ). 1 
X ' 2 + -4c_h_' (-Aii.,-w-,/.,-2~) 

X Ali I v - 2m, I K ( Ali I v - 2w, I ) + } (64) 
2 I 2 .,, • 

Formula (64) was obtained under the assumption of a 
relatively strong field Aliwc/2 Z'. 1, and high tempera­
tures of the active phonons AtiwKj < 1. It gives oscilla­
tion peaks a 33 at 11 = Nwc. A similar calculation with 
scattering by optical phonons leads to the appearance of 
oscillation maxima at the points 11 'F Nwc ± w = 0. In 
the limit as 11 -- 0 we obtain the oscillation of the lon­
gitudinal magnetoresistance, obtained by Gurevich and 
Firsov l 11 l and referred to in connection with for-
mula (55). 
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