
SOVIET PHYSICS JETP VOLUME 33, NUMBER 1 JULY, 1971 

SOUND WAVE DISPERSION IN METALS LOCATED IN AN INCLINED MAGNETIC FIELD 

A. P. KOROLYUK, M.A. OBOLENSKII, and V. L. FAL'KO 

Institute of Radiophysics and Electronics, Ukrainian Academy of Sciences; Khar'kov state University 

Submitted July 20, 1970 

Zh. Eksp. Teor. Fiz. 60, 269-276 (January, 1971) 

The angular dependence of the sound velocity s in metals located in an inclined magnetic field H is 
studied theoretically and experimentally. It is shown that a deviation effect occurs for wr0 > 1 ( w 
is the sound frequency, To the relaxation time), i.e., the velocity s increases sharply near the angle 
cp = CfJcr =arc sin (s/vxmax) (vzmax is the maximal electron drift velocity along the vector H, cp 
is the angle of deviation of the vector H from the direction k • H = 0, k is the sound wave vector). 
For wr0 ~ 1, the line is characterized by a gradual decrease with increase in the angle from the 
initial value cp = 0. This effect affords a method for the determination of the velocities Vzmax, the 
deformation potential constants Aik and the relaxation time To for a group of electrons in the vicinity 
of the reference points on the Fermi surface. The deformation potential tensor components are cal
culated on the basis of measurements of the sound velocity s at the maximum along the trigonal and 
bisector axes IA331 = (1.9 ± 0.2) eV and IA22I = (3.7 ± 0.2) eV. 

THE presence of a magnetic field H has an important 
effect on the character of the interaction of sound 
waves with the conduction electrons in metals. In addi
tion to the magneto-acoustic effects associated with 
absorption, the features of the interaction, as follows 
from dispersion relations of the Kramers-Kronig type, 
should produce a change in the sound frequency. Thus, 
oscillations of the phase velocity have been observed 
in strong magnetic fields under conditions in which 
gigantic quantum oscillations of the absorption are 
recorded. [1, 21 

We have previously considered the deviation effect
the sharp increase in the sound absorption in metals 
upon change in the angle of inclination of the vector H 
relative to the direction of propagation of the soundP1 

The present work is devoted to a study of the disper
sion of the sound velocity in inclined fields H. Although 
the deviation effect for the velocity was predicted in 
1963, [41 until recently there have been no theoretical or 
experimental researches devoted to this problem. 
Communications have now appeared on its observation 
in Sb[sJ and Ga[6l. In this connection, we thought it of 
interest to carry out a theoretical calculation of the 
angular dependence of the sound velocity and compare 
the results with the experimental data for Bi. 

1. THEORY 

Effective interaction of electrons with sound is 
achieved for their motion in phase with the wave, k · v 
= w (k, ware the wave vector and sound frequency, v 
the velocity of the electron). In strong magnetic fields, 
for which the inequality 

kR~1, C>(J), v 

holds ( n and R are the cyclotron frequency and the 
radius of the electronic orbit; 11 = r-\ is the relaxa
tion time), this phase relation has the form 

(1) 

vector H; % 1T - cp is the angle between the vectors k 
and H). Since the electronic velocity v is much greater 
than the sound velocity in metals s, then, for low fre
quencies, 

condition (2) is satisfied for angles cp R: 0. For high 
frequencies, 

ro>v 

the relation (2) is satisfied near the small angles 
cp = CfJcr: 

sin cpcr = s I v H m ... 

(3a) 

(3b) 

(4) 

consequently, when H and k are not mutually perpen
dicular, a decrease in the sound absorption and the 
sound velocity should be observed in case (3a). For 
high frequencies (3b ), the picture is entirely different. 
For inclination of the vector Hat small angles cp = C{Jr, 
a sharp rise takes place in the absorption and the 
velocity in comparison with their values at cp = 0. Upon 
further increase in the angle of inclination cp, the values 
of the absorption and velocity decrease. 

The dispersion equation describing the propagation 
of sound waves in metals should be introduced from the 
equations of lattice vibrations: 

a'um 
pu,=A<Aim;-;;--""+f,, (5) 

uX~~,ux, 

p is the density of the metal, ~ the tensor of the elastic 
moduli, u = u0 exp[ik•r- iw't] the displacement 
vector, w' the excited sound frequency, and fi the 
volume force density acting on the lattice from the 
electrons. The expression for fi is obtained from 
Maxwell's equations and the kinetic equation for the 
electron distribution function in[?,aJ. In[ 3l, it was shown 
that the deformation mechanism of interaction of the 
electrons with the sound plays a fundamental role in 
the deviation effect, and the contribution of variable 
electric fields does not have to be taken into account. 

kii"Hsinq: = (J) (2) Therefore, only the component 

because of averaging over the period of rotation ( VH 
is the mean drift velocity of the electron along the 
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a:. J d'pA,.(p)F; 
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need be kept in the expression for the force (see[7 l); 
Aik(P) is the symmetric deformation potential tensor, 
which vanishes in averaging over the Fermi surface; 
F is the electron distribution function, which takes 
into account the deformation mechanism only. After 
substitution of the distribution function, Eq. (5) takes 
the form 

.. iJ'Um j) s mdpH 
pu,=A .. ,m·--+-- --

iJx.iJx, OXm •~•P Q 

's" ' [ ·· v - iro' + ikv ] X dtA,.(p) J dt,A,m (p) !i,m exp J ~2 dt,_ . 
0 -CO t 

(6) 

Here € F is the Ferro i energy, t the dimensionless 
time of motion of the electrons about an orbit. We 
introduce the z axis, which is directed along the vector 
H, the ' axis directed along the wave vector k. The 
angle between them is }'2 7T - cp. It is easy to obtain the 
dispersion equation for longitudinal waves from the 
expression (6): 

ro'" + iro'«ll(ro') - Amtlf' I P = 0, (7) 

k' . d •• 
«ll(ro',cp)= p(2:nli)' ~.J. mQp, I dtA11 (p.,t) 

's [''s v- iro' + ikv ] X dt,A11 (p.,t,)exp Q dt, ; 

-· ' 
(8) 

a is the number of the group of carriers in the case of 
a multiconnected Fermi surface. 

The absorption due to the electrons, as well as the 
velocity dispersion, is a relatively small effect. There
fore we can use the method of successive approxima
tions in the solution of Eq. (7). As a result, we get 

ro' = ro- i«ll(ro), (9) 

w is the unperturbed frequency of lattice vibrations. 
The real part of the function ~ determines the sound 
attenuation in the metal and the imaginary the change 
in frequency. 

The calculations of the integrals over t and t 1 are 
elementary: 

7.t Pzmw:: - 1 
,. \ Att (p,) mdp, 

<11 = p (2:rtli)3 ~ J v- iro + ikv sin cp 
a Pz min z 

(10) 

The bar indicates averaging of the period of rotation 
of the electron. It follows from Eq. (10) that the condi
tion for the effectiveness of the interaction of the elec
trons with sound (2) corresponds to the formation of a 
resonance denominator [ il- iw + ikvz sin cp r1 • The 
electrons with the largest drift velocity Vz max. belong
ing to the vicinity of the reference points on the Fermi 
surface pz = Po (Po = Pz max = I Pz min I, determine 
the inclination effectYl Therefore, replacing the func
tions A h ( Pz) and il( Pz) by their values at Pz = Po, 
and separating the real and imaginary parts, we obtain 

"' "" A'"> s Llro = Jm,... = ..::.Jro -(a) • 
a Vz max Sill <p 

A= 2:rtAtt'(p,)mp,, 
s'p(2nli)' 

(11) 

(12) 

(13) 

[ ( v •mox sin <p 
Y = arctg OOTo 5 

)] [ ( V,moxSin<p -\- 1)] 
1 1 + arctg rot, 8 

(14) 

Z 1 1 1+ro'-t,'(1+v,m.,sincp/s)' ) 
=-n to=t(p,. 

2 1+ro'to'(1-v,m.,sincp/s)' (15) 

We shall give the value of t::.w for cp = 0, which will 
be used below for an estimate of the constants of the 
deformation potential: 

)2 2ro2To2 
~ro(cp = 0) = roA<"l-,--,....-::--:-

1 +ro'to2 
(16) 

" 
Figure 1 shows the curves of the angular dependence 

of the sound velocity t::..s/sA = 1m ~/wA for one group 
of carriers for different values of the parameter wro. 
As is seen from the drawing, the inclination effect for 
the sound velocity is observed for WTo > 1. For WTo · 

R> 1, the curve is characterized by a smooth decay for 
increasing values of the angle cp. 

The function ~ ( cp) (8) can be computed exactly for 
a metal with a spherical Fermi surface. The deforma
tion potentialtensor Aik(P) for this case will have the 
form 

( P•P• 1 ) A .. (p)=A p:z-"36"' . (17) 

After elementary integration, we get 

{ 1 1 1 1 } Relll=roB -C,Y+--C,Z+-,-C, , 
a a rot a ro-c 

(18) 

{ 1 1 1 } Imcii=roB -C,Z--C,Y+.-C, ; 
a affi"C a' (19) 

1 \= 2ru\. 'mp, 
1 

a = v0 sin cp , 
'P. s"p(2nli)' s 

1 1( 1),1( 6 1) 
C, = 36- 6a' 1 - ro'-t' +4a. 1 - ro•r + ro'-c' ' 

1 1 ( 1 ) c.-.=g:v-• 1-.........- , a a ro 1: 

c.=.!..__.!..( 1-.2..). 
6 2a' m't' 

(20) 

In the case of large values of the parameter wr 
( wr » 1) and cp R> cp cr, Eqs. (18 )- (20) are materially 
simplified. The quantity A 2C 1 is identical, with accu
racy to terms of order ( WT r 2, with the value of the 
component Ah ( p0 ) at the reference points of the Fermi 
surface, and can be used in Eqs. (1~ and (12) for the 
functions Re ~ and Im ~. For wr ~ 2, the shapes of 
the sound velocity dispersion curves computed by Eqs. 
(12) and (19) are identical. This was to have been ex
pected, since the inclination effect is subject only to 
the fulfillment of the condition for the effectiveness of 
the interaction of the electrons with the sound-the 
phase relation (2). 

2. EXPERIMENTAL METHOD 

Figure 2 shows the arrangement for the investiga
tion of the dispersion of the sound velocity in an in
clined magnetic field. The specimen, with LiNb03 

ultrasonic transdueers attached to it, is placed in a 
cryostat which is filled with liquid helium. The trans
ducers with the specimen are connected in the positive 
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FIG. I FIG. 2 

FIG. I. Curves of the angular dependence of the sound velocity 
l!.s/sA and absorption rjr<0> for different values of wr0 for the para
meters Vz max = 2 X I 07 em/sec, s = 2.02 X I 05 em/sec (dashed lines
l!.s/sA, solid lines-rjr<0>). 

FIG. 2. Block diagram of the apparatus for the study of the sound 
velocity dispersion in an inclined magnetic field: !-amplifier, 2-refer
ence generator, 3-mixer, .4-low-frequency amplifier, 5-frequency 
meter, 6-recorder, 7-power supply for magnet, 8-sweep for magnetic 
field of solenoid, 9-sample, 10-solenoid. 

feedback loop of an amplifier. The amplifier consisted 
of a resonance system with central frequency 165 MHz 
and bandwidth ~f = 10 MHz; its amplification factor 
could be varied from 0 to 23 dB. To achieve a definite 
amplification factor exceeding the total damping of the 
system specimen-transducers, the amplifier was ex
cited at a frequency determined by the band pass of the 
amplifier, the bandwidths of the transducers, and the 
frequency characteristic of the specimen. In addition, 
the signal was fed into a mixer, to which was also 
applied the signal of a reference generator, which had 
a frequency stability no worse than 10-6 sec-1• The dif
ference frequency after the mixer was fed to a broad
band low-frequency amplifier and amplified to the 
value necessary for registering by a frequency meter. 
A signal of constant voltage, proportional to the fre
quency, was recorded by the frequency meter and fed 
to a recorder through an appropriate circuit. The in
clination of the magnetic field was produced by means 
of superposition of two mutually perpendicular mag
netic fields: the field of the electromagnet H' = const 
and the field of the solenoid H". Upon change in the 
field H", which is produced by means of an electronic 
rheostat, the resultant vector H is inclined at the de
sired angle cp. Since the width of the dispersion curve 
in angular units is small (CfJmax ~ 2°), the absolute 
change in the value of the magnetic field can be 
neglected if the condition of a large magnetic field (1) 
is satisfied. For an exact determination of the charac
teristic points on the dispersion curve, a recording 
was made on both sides of the position k · H = 0, i.e., 
the resulting vector can depart from the perpendicular 
direction relative to k by an angle cp and by - cp. Such 
a recording of the curves does not require an exac~ 
initial orientation k · H = 0. 

For the study of the dispersion, we used Bi samples 
with resistance ratio R 300/R4 • 2 = 330.1> The samples 

nwe take this opportunity to thank B. N. Aleksandrov for kindly 
providing the bismuth for our experiments. 

were cut from a single crystal and had the shape of 
disks of diameter 7-8 mm and thickness d = 1.2 mm. 
The temperature during the course of the measure
ments was determined from the saturated vapor pres
sure of the helium, 

To determine the dependence of the frequency of 
osc:illation of the system sample-amplifier, it was 
necessary to estimate the effect of the change in the 
absorption and sound velocity. In the given case, the 
sample was an acoustic resonator of the Fabry-Perot 
type. Its frequency characteristic is shown in Fig. 3. 
If we denote the initial amplitude of the wave by u0 

= ul, then the complex amplitude of the signal and its 
modulus will be equal: 

-
ii = u, E exp( -(n -1)2rd+(n -i)ikd] 

n=l 

= u,[1-exp(-2fd+ikd) ]-', u =I iii= u,(1- 2e-'"'cos q> 

+e-''"]-", q>=2kd, k=w/s. (21) 

Assuming the sound absorption to be small ( 2rd < 1) 
and expanding Eq. (21) in a power series in 2rn, we 
get u = A((2rs)2 + (w- Wk)2 r 112, where cp ~ (w- Wk), 
Wk is the characteristic frequency of vibration of the 
sample lying inside the complete resonance curve of 
the amplifier and transducers. The resonance frequency 
of the system is found from the condition auja w = 0: 

ar ,,, :n:n 
w.=kns-rs'n;,- k"="7=a; n=1,2, ... 

We estimate the frequency shift of the acoustic 
resonator for a change in the absorption and sound 
velocity: 

[ , ar a ( ar)] 1\oopr =- s ~+ rs•- - 1\r, 
aw ar aw 

[ ar J w. ar 1\w., = kn- 2rs- As =___,As- I's-As. 
aw 8 aw 

(22) 

(23) 

Substituting the corresponding values of the quantities 
in Eqs. (22), (23), it can be established that 
~wpr/ ~wps « 1, i.e., the frequency shift of the 
acoustic resonator is completely determined by the 
change in the sound velocity if the inequality 2rd < 1 
is satisfied, It must be noted that a similar method is 
justified when it is necessary to measure the small 
change in the sound velocity in materials with a small 
absorption coefficient. To the inadequacies of this 
method, we must add the impossibility of shifting the 
frequency of the system over a wide range. 

FIG. 3. Frequency characteristic of the sample (photographed with 
a measuring screen Xl-19). The marker corresponds to a frequency of 
160 MHz. 



SOUND WAVE DISPERSION IN METALS 151 

3. DISCUSSION OF RESULTS 

Figure 4 shows a comparison of the theoretical 
curve with the experimental points. The experimental 
recording refers to the case in which the sound is 
propagated along the trigonal axis C 3 and the vector 
H (for (jJ = 0) lies in the plane of the binary and bi
sector axes cl. c2 with angle of inclination {3"" 6° 
relative to the C2 axis. The drift velocity of the elec
trons from the vicinity of the reference points Vz max 
= 2 x 107 em/sec, the sound velocity along the C 3 is 
equal to 2.02 x 105 em/sec. The parameter wr0 ~ 1 
at a frequency f = 165 MHz and T = 1.4°K, The theo
retical curve is constructed by Eq. (12) for the values 
of Vz max. sand wr0 given above. As is seen from the 
drawing, there is excellent agreement between theory 
and experiment. 

It follows from the theory that the deviation effect 
(the growth of the sound velocity with increase in the 
angle (jJ) is observed for wr0 > 1. For comparison, the 
absorption curves are plotted in Fig. 1, in addition to 
t::..s/ sA. The maxima of the dispersion curves are 
located at the same values of the angles (/Jcr as the 
inflection points on the absorption curves. From the 
position of the maxima, one can calculate the velocities 
of the electrons from the neighborhood of the reference 
points Vz max, using Eq. (4). The measurement of the 
quantity t::..s at (jJ = 0 makes it possible to estimate the 
constants of the deformation potential I At;?;( p0 ) I (see 
(16)). 

For wr0 "" 1, as was observed previously, the dis
persion curve is a smoothly decreasing one for in
crease in the angle (jJ • The values of !::.. s/ s at (jJ = 0 
were measured in our experiments for the purpose of 
determining the constants of the deformation potential. 
For longitudinal sound, the measurements were made 
in the directions: 

ki!C,,<X H, C, ~ 6°; ki!C,, HIIC,. 

In the first case, t::..s/s = 1.06 x 104 , 

jA,(p,)J = (1,9±0.2) ev 
In the second case t::..s/s = 1.36 x 10-4 

IA"(p,) I = (3,7 ± 0.2) eV 

(24) 

(25) 

(the values of the cyclotron masses are taken from [9 J 
and the values of p0 fromP0 l). 

In the specified directions, the sound interacts ef
fectively with the electrons; therefore, we can say 
nothing about the corresponding components of the de
formation potential for holes. In the direction k 11 C 1, 

it was not possible to obtain a satisfactory resolution 
of the absorption and dispersion. The other components 
of the tensor Aik can be measured in a similar way by 
using transverse sound. 

It is of interest to com pare the values of I A 22( Po ) 
and I A33( Po ) I, obtained by us, with the results of other 
authors. For example, the components Aik, computed 

FIG. 4. Comparison of the theoretical curve 
and experimental points for the sound velocity 
dispersion l:::.s(op)/sA for wr0 ""' I. The solid curve 
represents theory, the circles, experimental 
points. 

4sfsA 
! 

from the anisotropy of giant quantum oscillations in the 
sound absorption, are given in [uJ. It is known that the 
giant quantum oscillations (GQO) are due to electrons 
belonging to the extremal cross sections of the Fermi 
surface (in the case of convex surface--the central 
cross section with pz = 0). The components of the de
formation potential for the corresponding electron 
groups are equal to 

JA,J = (5,9±0,8) ae, JA,J = (1,71 ±0,36) ae. 

from the data of[ 11l. 
In conclusion, it is our pleasant duty to thank E. A. 

Kaner for useful discussions and V. I. Beletskil for 
help in the measurements. 
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