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A sequence of the perturbation theory diagrams giving the main contribution to the hydrodynamic 
asymptotic behavior of the phonon Green function of an electron-phonon system in a quantizing mag­
netic field is summed. The summation reduces to the solution of a system of equations of the kinetic 
type by the Chapman-Enskog method. In the Green function there appear new poles relative to the un­
perturbed Green function; one pole corresponds to heat conduction, and, in the model in which Coulomb 
interaction and Umklapp processes are not taken into account, there are also poles corresponding to 
second sound. Anisotropy of the sound velocities and of the thermal conductivity and sound damping 
tensors is important. The transverse components of these tensors are calculated explicitly in quadra­
tures. The stability condition ·of the low-frequency energy spectrum is discussed; this condition is 
violated at low temperatures if one of the Landau levels approaches the Fermi surface. 

1. In a number of papers (e.g., u,21 ), the method of equi­
librium Green functions is used to describe weakly non­
equilibrium kinetic processes such as second sound in 
solids. In the present paper an analogous method, de­
veloped earlier in [31 for the electron-phonon system, 
is carried over to the case when this system is placed 
in a sufficiently strong (quantizing) magnetic field. The 
method reduces to distinguishing a sequence of the dia­
grams which give the main contribution to the phonon 
Green function Gph(E, k) in the hydrodynamic regime 
(ET, kl « 1, where Tis the relaxation time and l is the 
mean free path). The summation of the selected se­
quence reduces to the solution of a system of equations 
of the kinetic type. 

For an electron-phonon system in a quantizing mag­
netic field, such an approach enables us to avoid intro­
ducing a temperature gradient; the introduction of a 
temperature gradient is necessary when intrinsically 
non-equilibrium methods are used and often leads to 
ambiguous results when the kinetic coefficients are 
calculated. In the Green function formalism the kinetic 
equations arise automatically in the process of sum­
ming the diagrams, without the use of any additional 
assumptions. 

Usually, [4-Sl the analog of the electron distribution 
function in the kinetic equations depends not only on 
physical variables such as the principal quantum num­
ber n and the longitudinal momentum p 11 (and also on E 
and k), but also on arguments such as the oscillator 
center Yo· Variables of the type Yo cease to be constants 
of the motion on change in the gauge of the vector poten­
tial, and the energy spectrum does not depend on them. 
It is clear that these variables are unphysical, and it is 
desirable to obtain kinetic equations which do not con­
tain them; such equations are derived in Sec. 2 of this 
paper. 

The solution of the resulting system of equations by 
the Chapman-Enskog method is treated in Sec. 3. It is 
shown that the exact phonon Green function has poles 
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relative to the unperturbed function; a pole appears 
which corresponds to heat conduction, and in the model 
in which the Coulomb interaction and Umklapp processes 
are not taken into account there are also poles corre­
sponding to second sound. In the present paper we shall 
confine ourselves to treating a model in which only the 
electron-phonon interaction is taken into account. How­
ever, the method is also applicable when Coulomb inter­
action and Umklapp processes are taken into account, 
with an obvious transformation of a second sound branch 
into a plasma branch. 

In a quantizing magnetic field the sound velocities and 
the tensors defining the sound damping and the heat prop­
agation become essentially anisotropic. We note that it 
is found possible to calculate the transverse components 
of these tensors in quadratures. 

To conclude, we discuss the condition which ensures 
the stability of the low-frequency energy spectrum. It is 
shown that this condition ceases to be fulfilled if, at a 
sufficiently low temperature, one of the Landau levels 
approaches the Fermi surface. 

2. We write the Hamiltonian of the electron-phonon 
system in a constant magnetic field H (H = curl A, 
A= tH x x) in the form 1 > 

H'=H-i.N= 

+ J d'kw, (k) b+ (k) b (k) 
"<Ao 

(2.1)* 

+-g- J d'kd'p (w,(k) )''• a,+(p+k)a,(p) [b(k)+ b+(-k)], 
(.2:rt)''• .<.. 2 

1lWe use a system of units with h = k = I (hand k are Planck's and 
Boltzmann's constants). 

*[H'ii'pl =H X 'ii'p. 
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where .\ is the chemical potential, s = ± is the spin in­
dex, and w0(k} = cJf.. In the integrals over the phonon 
momenta in (2.1} there is a cut-off at the upper limit k0 • 

Below it is found convenient to use a variant of the 
temperature diagram technique[71 in which the expres­
sions for the bare phonon function and vertex are writ­
ten with 6-functions corresponding to the momentum 
conservation law. The expressions for the lines and 
vertices have the following form: 

(2.2} 

lk 

P, : !J grztrt31z.rcp-q-KJ. 

We take the Green function G~0> of an electron in a 
magnetic field in a form convenient for calculating 
sums over the frequencies wn = (2n + 1) 1rT: 

G,<•> (iro.,s;p,q)= _EP.(p,q)[iro.-e(pu,n,s)]-'. (2.3) 
n=O 

Here, E (pll, n, s) denotes the energy of the Landau level 
with number n: 

P11 eH ( 1 ) e(p11,n,s)= Zm +-m n+-2 (1-s) -t.., (2.4) 

and the function Pn(p, q) is defined by the formula 

2 - (-2i(H[pq])) (2(p.c-q.c)') 
P.(p,q)=neHI)(pu-qu)exp eH' rp. eH ,(2.5} 

where p 11 is the component of the momentum p along the 
magnetic field, p 1 is the transverse component, and IPn 
is the Laguerre function: 

1 d· 
rp.(:z:) = e-•1'L.(:z:)""" - 1 e"1'-d • (:z:"r"). (2.6) 

n. x 

We note that Pn(p, q) is the kernel of the projection op­
erator on states with the n-th Landau level, and, there­
fore, the equality 

J P.(p,q)Pm(q,r)d'q = 6mnP.(p,r), (2.7} 

is valid and will be used below. 
The exact electron and phonon Green functions Ge 

and Gph are depicted by thick continuous and dashed 
lines respectively. They can be expressed in terms 
of the self-energy parts ~ and P: 

G,=(G}•>-•_~)-', Gp~t=(CJ~-·-P)-•. (2.8) 

The following exact diagrammatic equalities (in (2.9) 
all the lines are thick} 

show that the function P (the polarization operator) is 
expressed in terms of the vertex part D1 and the exact 
electron Green function, while the vertex parts D1 and 
D2 satisfy a system of linear equations. The thick elec­
tron and phonon lines in the diagrams (2.9) correspond 
to exact Green functions. Irreducible diagrams, which 
cannot be cut along a vertical by cutting two lines, con­
tribute to the blocks K1 - K4 • 

The derivation of the kinetic equations from the dia­
grammatic equalities (2.9) is analogous to that per­
formed in the previous article[sJ for a system without 
a magnetic field. Here we shall dwell chiefly on the 
singularities appearing in a quantizing magnetic field. 
As also in [sJ, for the functions ~, P and Ki we confine 
ourselves to the simplest perturbation theory diagrams :2 > 

p ::::Pz = --0-· 
(2.10} 

The system 12.9) reduces to a system of equations 
for the limiting values of the analytic functions which 
arise from the vertex parts D1 and D2 on making the 
analytic continuation iw 1 - z; the system for the limit­
ing values D1i> and n<f> on the inner edges of the cuts 
{lm z = +0, w- 0} is found to be non-trivial. The values 
D1e> and n~e> on the external edges (Im z =- 0, w + 0) 
in the first approximation are equal to 

v,<·>=g(2n)-''•6(p-q-k), v~·> =0. (2.11) 

On integration over the energy variable, character­
istic "energy denominators" arise: 

Z, = E- e,(pu + ku, n, s) + e,(PJ!o n, s) + 2~,(pu, n, s), 

Z~=E- e,(k, + k) + e,(k,) +2~,(k,), (2.12) 

where E1 = E (p 11 , n, s) (cf. (2.4)) and E2{k1) = cJf.-1 are the 
energy spectra of the electrons and phonons, and a1 and 
a2 are their imaginary parts, defined by the diagrams 
(2.10}. The function a2 can be expressed in terms of the 
imaginary part of the polarization operator by the for­
mula 

- Olo~k;) ImP,(E = e2 (k,)+ iO,k.,k,) = L\,(k,)ll(k,- k,). (2.13} 

The function a1 can be obtained from the expression 

~.(iro,s;p,q)= 

-- 2g'T ll( - )"X ( -2i(H[pq]) ) ~ ( 2(P.c- q.c)') 
- neH(2n)' Pu que p eH' "'-'rpm eH 

m=O 

xJ d'k.E ro,'(k) [ (iro1)'- ro,'(k) ]-'[iro- iw,- e,(p11 - k 11, m,s)]-•. 
., 

( - 2i(H[k, p -.q]) ) 
X exp eH' • 

(2.14) 

In this formula the integral over the momentum k is a 
function of (p 1 - q1)2 , the product of which with 
1Pm(2(p1 - q1)2/eH} can be expanded in the Laguerre 
functions IPn· As a result, the expression (2.14) for ~2 
can be rewritten in the form 

I • 

~,(iro, s; p, q) = .E P.(p, q)A.(iro, s, p 11), (2.15) 
n=O 

where 

2l For Er;::;: I the value of P differs substantially from P2 • However, 
in Eqs. (2.9) the approximation P"" P2 is legitimate since the phase vol­
ume of the region in which it is not true is smalL 
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>(J d'kmo' (k) [ (iro,)'- m;2(k)] -• [im.- iro,- e, (p 11 - k 11, m, s)] -• 

X exp ( - 2i(H, ;~,p- q]) ) . (2.16) 

al is expressed by the imaginary part of the function 
An(iw, s, p 11 ) after the replacement iw - E1(p 11 , n, s) 
+ iO. 

We are interested in the analytic continuation iw - E 
;S T-l fork :S rt, Where T iS the relaxation time and l iS 
the mean free path. We can put E = 0, k = 0 in the ex­
pressions for the diagrams K1 - K4 and in the bare ver­
tex in the first of Eqs. (2.9), as is usually done in deriv­
ing the kinetic equations without a magnetic field; this 
can also be justified when the magnetic field is taken 
into account. As a result, the dependence on the vari­
ables E and k remains only in the energy denominators 
Ze and Zph (2.12). 

We see the function D1 in the form 

D,(im, im, s, p, q,k) = (2!)'f,t P.(p,q)F .(iro,, iro,s, p 11 , k). (2.17) 
n=O 

In place of D1 and D2 we introduce, as the unknowns, 
the new functions h and f, defining them by the formulas 

h(n, s, Pu,E, k) = z,-'F .(iro,-+e,(pu, n, s)', tm-+E, s, pu, k), 
(2 .18) 

ge,(k,) . . 
/(k,, E, k)ll(k,- k,) =(2';}'I•ZZw D 2 (zro 1 -+ e2 (k1), zm-+E, k,, k2, k). 

'Then the system (2.9) takes the following form: 

(E- 2e.' (k.) 11k 11 ) h + il, (h, /) =•1, 

(E- 2e,' (k,k)) f + il,(h, /) = 0. (2 .19) 

The first of the Eqs. (2.19) is obtained if, having repre­
sented the a-function a(p- q) in the form 

6(p-q)= I:P.(p,q), (2.20) 
n=O 

we then equate the coefficients of Pn(p, q) on both sides 
of the first Eq. (2.9); in doing this we must make use of 
property (2.7). 

In the system (2.19}, for k1 » k we have made the 
replacements 

e, ( (k,) n + ku, n, s) - e, ( (k,h, n, s) . -+Be, I 8(k,) u'2 (k,)uk1: 

""' 2e,' (k,) 11ku, 
e,(k, + k)- e,(k,) -+Be, I 8k,'2(k,k) ""'2e,'(k,k). 

I1 and I2 in (2.19} denote the expressions 

I,= (2!')' (1 +exp{- ~e,(p 11,n,s)}) .tJ d'k,dq 11 Wm.(\1:,). 
m=O 

e,(k,) (2.21) 
(-2 -} n, (qu, m, s)n,(k,) [exp{~e, (qu, m, s)}ll(e,(p 11, n, s)- e1 (q 11, m, s) 

+ie, (k,)) ll(Pu- q11 + (k,) 11 ) (h (p 11 , n, s)- h{q 11 , m, s) + f(k,)) 
+ exp{~e, (p 11, n, s)} II (e, (p 11 , n, s)- e, ( q11 , m, s) 

- e,(k,)) ll(Pu- qu- (k,)u) (h(p 11 , n, s)- h(q 11 , m, s)- f(k,))], 

g'eH ~ J ( e2 (k1)} 1,=~(1-exp{-~e,(k,)}) .i...l dpudquWmn(k,) - 2-
n, m, • 

X n, (Pu, n, s)n, (q 11 , m, s)exp{~e, (p 11 , n, s)} ll(e,(k,)- e, (p 11 , n, s) 

+ e.(qu, m, s) )II( (k,) u- Pn + qu) (f(k,)- h(pu, n, s) + h(q1h m, s) ), 

where 

n.(pu,n,s) = (exp{~e,(p 11,n,s)} + 1)-', 

n,(k,) = (exp {~e,(k,)}--: 1)-•. (2.22) 

The function Wmn(k) in (2.21) is the integral 

~ 

= J dxljl.(X)IJlm (x)/0 (2)'xy), 
(2.23} 

where 

(2.24) 

Evaluation of the integral (2.23} (cf. [81 , formula 7.422.2} 
gives 

Formula (2.25} shows that Wmn is non-negative, as for 
physical reasons it should be. 

Equations (2.19) form a system of linearized inhomo­
geneous kinetic equations in which the functions h and f 
play the role of corrections to the equilibrium electron 
and phonon distribution functions respectively, while 
I1 and I2 play the role of collision integrals. The analog 
of the electron distribution function h, as noted already 
in Sec. 1, does not contain unphysical variables of the 
type Yo (the oscillator center). 

The polarization operator P(E, k) (the coefficient of 
the a-function in the expression P(E, k, k') = a(k- k') 
x P(E, k)) for ET :s 1 is expressed in terms of the func­
tion h by the formula 

P(E, k) = g'~(Eh -1), (2.26) 

where ( ... )1 is the first of the abbreviations: 

k eH Jak ~ ~ k . exp{~e,(k 11,n,s)} 
('!'( u,n,s)),= (2n)' 11 .i...l.i...l'l'( u,n,s) (exp{~e,(ku,n,s)}+1)' 

n=O s=± 

e~•,(>) 

(1Jl(k)) 2 =(2n)-' Ja'kiJl(k) (e~·i•>- 1 )'. (2.27) 

The derivation of formula (2.26} is analogous to that 
given in [31 for a system without a magnetic field. 

3. Solving the system (2.19) in the hydrodynamic re­
gime (ET, kl « 1} by the Chapman-Enskog method en­
ables us to treat the propagation and damping of the 
sound vibrations, and also the phenomenon of heat con­
duction in a quantizing magnetic field. 

We seek the first (acoustic) approximation for the 
functions h and f in the form of linear combinations of 
functions which cause the collision integral to vanish 

h((k,)u, n,s) =a+ b(k,)d- ce,((k,) 11,n,s), 
f(k,) = b(k,)u+ce,(k,); (3.1) 

For I1 and I2 the following orthogonality conditions 
hold: 

(/,), = 0, (/,(k,) u>• + (/,(k,) 11>• = 0, (.(,e,), ~ (/,e,), = 0, (3.2) 

which, for the coefficients a, b and c, give the expres­
sions 

a = ~. I~. b = ku~z I~. c = 1~, I.~. (3.3) 

We obtain for the determinants a, a 1, a 2 and a 3 the for­
mulas 

~ = E'(k 11').,( (i),(e').,- (e),') 
- 4Eku'((e')"(e'k11')/ + (1),(ee'k11').,'- 2<e),(e'k 11'),(ee1k11').,) 

""'(k11').,((1),(e').,- (e),')E(E'- u'k 11'), 
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~. =.E'(k11'),.((1),(e'),.- (e),') 

- 4k0'((1),(ee'ku").,'- (e),(ee'ku'),.(e'ku'),.), (3.4) 
I&;= 2E(e'ku'), ( (i),(e').,- (e),'), 

11\, = 4ku"(e'k1'),,( (f),(ee'ku'>••- (e),(e'ku'),), 

where, e.g., (€)1 = (€1(k 11 , n, s))1, (€a)12 = (€~)1 + (€~)a· 
Knowing h, we find from (2.26) the first approximation 
for P(E, k): 

4g'jl (e'k8'),' k1' fJ'k•' 
P(E, k) = (kn')., E"- u.'kn' ""' E'- u.'kn' . (3.5) 

By equating the denominator of the function Ciph to 
zero we obtain the equation 

(E'- co'k') (E'- u'ku') - cNJ'k'k11' = 0, (3.6) 

which gives two anisotropic sound branches in the en­
ergy spectrum. The appearance of second sound is a 
consequence of the choice of model, which does not take 
Coulomb interaction and Umklapp processes into ac­
count. If the indicated interactions are small, so that 
the relaxation time T 1 corresponding to them is appre­
ciably greater than that T 0 for the electron-phonon inter­
action, second sound can exist in reality in the interval 
T~1 « E « T~1 • 

To study the heat conduction and sound damping, the 
second (viscosity) approximation of the Chapman-Enskog 
method is necessary. To calculate this, we find the cor­
rections Oh and Of to the functions (3.1) of the first ap­
proximation, and calculate the coefficients a, b and c 
with greater accuracy. 

The corrections Oh and Of have the form 

6h = -i[bkn(TJ,) 11 + ak11(k,) 11fJ, + ck11(k,) 11{-r,) 11], 

6/ = -i[bku(TJz) n + ak11(k,) 116, + ck11(k,) u(-r,) n 
+ b(k,) ll(k,-Lk-L)TJu + c(kuk-L)-ru]. (3.7) 

The five pairs of functions ((171)u, ('17 2)u), (<'>1, <'>a), (T1, Ta), 
(0, '17a1k11(k1)u) and (0, Ta1k11) occurring in (3.7) are ob­
tained by inversion of an operator, which is defined by 
the collision integrals 11 and Ia and will be denoted by 
M, from the formulas 

((1],)11, (TJ,)n) =2M-'(F,,F,), 

_, ( ( , (e'k~'), ) (e'ku'), ) 
((k,~ 116,,(k,)ullz)=2M (k,)ll e, -. (k11'), • -(k,)u (ku'), • 

where 

_, ( ( , (ee'k11'), }· 
((k,) 11't., (kt) 11't2) =2M (k,)u e,e, - (ku'), ·, 

( , (ee'k 11'),}} 
(k,) 11 e,.e, - (kll'), , 

(0, (k,) llkuTJu) = 2M-'(0, e,' (k,) llku), 
(0, ku-ru) = 2M-'(0, e,e,'ku), 

F _ '(k) 2 + e , (e), (e'k11'),- (1), (ee'k11')" 
I - e, I II I ( 1), (e')u _(e),' 

(e), (ee'k11'),.- (e'),. (e'k11'>• 
+ (1), (e')u- (e),' ' 

F _ '(k) 2 + (e),(e'k11'),- (1),(ee'kll'),, 
z- 8z 1 u e, ( 1),(e'), _(e),' • 

(3.8) 

(3.9) 

We find the second approximation for a, b and c from 
the orthogonality conditions (3.2). The function P(E, k) 
in the second approximation is given by formula (2.26) 
in terms of the second approximation for the function h 
and is found to be equal to 

{j'k'(E "E'+" k'+" k') (3.10) P(E k)= 11 -!a IX211 11 !Xu .1. 

' (E + iX,ttku' + ixuk-L') [ (E + iT] 11k 11' + iT]-'-k-'-')'- u'k 11'] 

In (3.10), Oa and u2 were defined above, and the kinetic 
coefficients a, 1111, '171• K1u, Kail• K11 and Ka1 are defined 
by the formulas 

(ko')u(e'ku'6), 
a= 

2(e'ku'),' 

(e'ku'TJu)" 
f]u = (ku')u 

4 (e'ku'6),p' + (ee'k~'-ru)uq'- ( (ee'ku'fJ)., + (e'k11'-r11),) pq 

+ u'(k 11')u((1),(e')u- (e),')' -' 

<e'k 'k •., ) (ee'k. '-r .),q' 
- n -'- ·•-'- '+ 2 ~ ~ (3.11) 

1).1.- 2(ku')u u.'(ku')u( (i),(e').,- (e),') ' 

where 

x, 11 = 2(1), [ (e'ku'6),(ee'kll'),.' + (ee'ku'-rll),(e'ku'),' 

- ( (ee'k11'6)" + (e'k11'-r11),) (ee'kti')u(e'ku'),] · 
· [ (e'k11'),'( (i),(e')u- (e),')] -•, 

(i),(ee'k-'-''t"-'-)' 
xu= (1),(e').,-(e),'' 

Xzu Xu (i),(kll'),.u' 
4(e'ku'),' • 

p = (e'),.(e'kll'),- (e),(ee'k11'),., 

q = (1),(ee'kt1')u- (e),(e'kll'),. (3.12) 

Formula (3.10) leads to the appearance of one more 
(thermal) pole in the phonon Green function 

E .1- g'jl(1),[ k '_L k '] 
= - ~ , 2 'Xtn 11 "Xt.L ..1. • 1-6 u- {3.13) 

The sound branches in the spectrum acquire imagi­
nary corrections ~k2 . The corresponding formulas 
have the form 

E,(k)=E,<')(k) E,'~E,' { (E,'-c,'k')(TJIIku'+TJ-'-k-'-') (3.14) 

1 2 2 2k'[ ( )ku2 · )k-'-2 ]} +2 c.{jk 11 a- X211-x,u E,,-(xu-Xu E,' , 

E,(k) = E,<•) (k) E,' ~ E,' { (E,'- c,'k')'(TJ 11 k 112 + TJ-Lk.L') 

+ 1 2 'k'k, [ ( ) ku' .)k.L2 ]} 2Co 6 II a- X2!!-%t1! &2-(x2.L-Xt..L Ez2 ' 

where E!0 )(k) and E~0)(k) are determined by Eq. (3.6) for 
the spectra branch in the acoustic approximation. 

The "longitudinal" kinetic coefficients 0!, K1u, K2 11 and 
'171i• occurring in the formulas (3.11) and formally ob­
tained by inversion of the operator M in accordance with 
(3.8), must in practice be calculated by approximate 
methods. It is possible to calculate the "transverse" 
coefficients K11, Ka1 and '171 in explicit form in quadra­
tures, since inversion of the operator M in the corre­
sponding formulas (3.8) reduces to division by the func-
2a2(k1): 

(k,) 11k1.LT]u= (k,)llkue,'A,-', ku-ru=kue2e,'A,-'. (3.15) 

As a result, explicit formulas 
(ee'k,'-cu), = (e,'(e,')'k-'-',1.,-1),, 

(e'k11'k-L'TJu)z = (k112k-L'(ez')'.:\,-'),. {3.16) 

are obtained for the averages (€€'k~Tal)a and 
( E'kf1k~ '17 a1 )2 ; the transverse kinetic coefficients 
can be expressed in terms of these averages. 

Formulas, analogous in structure, for the transverse 
kinetic coefficients have been derived by other methods, 
e.g., in [4-sl. 

To conclude we consider the question of the stability 
of the low-frequency energy spectrum defined by the 
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poles of the phonon Green function. One can show that 
if the inequality 

g'p(1), < 1, (3.17) 

holds, the spectrum is stable, since all its branches 
have a negative imaginary part. The condition (3.17) 
for a system without a magnetic field reduces at low 
temperatures, as was shown in [31, to the constraint on 
the coupling constant obtained by Migdal. [oJ 

In a quantizing magnetic field, the inequality (3.17) 
can be violated even when Migdal's constraint on the 
coupling constant is satisfied. This violation occurs 
when, at a sufficiently low temperature, one of the 
Landau levels approaches the Fermi surface. When the 
Fermi and Landau levels coincide, we have a lower 
bound for g2{3 (1 )1 

. 2g'peH •s eP•'I''" 
g'p(1), > ~--dp (eP•'t•m + i)' = g'(2miJ)'1•eHa, (3.18) 

where a = 2(21Tr 5/ 2 (1-2- 3/ 2H;(1/ 2 ) is a numerical con­
stant. It is clear from (3.18) that the stability condition 
(3.17) is violated at sufficiently low temperatures. 

To study the system when the condition (3.17) is vio­
lated requires a modification of perturbation theory. It 
is possible that it is necessary to introduce anomalous 
Green functions to take into account the formation of 
pairs of the Cooper type. The formation of particle­
hole 8,airs in a two-band model was studied by Abriko­
sov. 10• 111 In the case considered here, however, such a 
symmetry-breaking mechanism is clearly impossible. 
We remark again that, in the model we have treated, 
coincidence of the Fermi and Landau levels, and not 
only a large value of the magnetic field, is important. 
The experimental observation of the instability, and 
possibly of the phase transition associated with it, re­
quires low temperatures and strong magnetic fields. 

For example, for g2m\rF1T-a ~ 'l:, EF ~ 1 eV, a possible 
phase transition occurs at HT_ 1, 2 ~ 107 Gauss. deg- 112, 

i.e., at temperature T = 1oK, a magnetic field H ~ 107 

Gauss is required. 
The author is grateful to L. D. Faddeev and A. L. 
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