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The bound states of two quasiparticles which can be effectively described in the lattice-site represen
tation-that is, Frenkel excitons, electrons and holes, and optical phonons-are considered. Equations 
are derived which give the energy levels of the bound states. The general case of different types of 
coupling between the quasiparticles is considered, where the kinematic interaction between them is 
taken into account exactly. It is shown that the bound states divide into two types: symmetric and anti
symmetric. Schemes are presented for the calculation of the bound states for different structures of 
the energy bands of the bound excitons. It is shown that for certain structures of the energy bands an 
arbitrary interaction may lead to the presence of a bound state in the three-dimensional case. A one
dimensional model of a vibron excitation-a bound state of an exciton and an optical phonon-is treated 
in detail. It is shown that the kinematic interaction leads to the result that even in the one-dimensional 
case, in order to obtain a bound state of two quasiparticles, their dynamic interaction must be suffi
ciently strong. 

1. INTRODUCTION 

THE possible existence of the hi-exciton, i.e., a bound 
state of two excitons, was first considered in articles 
by Moskalenko and Lampert in 1958. u,21 The bound 
states of excitons formed out of vibrational and rotational 
excitations of the H2 molecule in solid hydrogen were 
subsequently considered in article [31 • Interest in the 
investigation of such states has constantly increased 
since then because, in the first place, they give a contri
bution to the spectral characteristics of crystais and, 
in the second place, such bound states turn out to have 
an important effect on the Bose condensation of an ex
citon gas. [4' 51 

The bound states of two quasiparticles, which do not 
necessarily have to be excitons, are investigated in the 
present work. By quasiparticles we shall understand 
formations whose wave functions can be written in the 
form of a linear combination of lattice-site functions 
(i.e., Wannier functions). Thus, the quasiparticles will 
be an electron in the conduction band or a hole in the 
valence band, a Frenkel exciton, or an optical phonon 
associated by its origin with an intramolecular vibra
tion. But a Wannier exciton is not a quasiparticle in 
our sense, but rather it is a bound state of two quasi
particles: an electron and a hole. Therefore, a bound 
state of two Wannier excitons (four quasiparticles) is 
not considered in our work, but a bound state of two 
Frenkel excitons (two quasiparticles) is treated. 

The coupling of the two quasiparticles may be due to 
two reasons. In the first place, it may be due to the di
rect interaction between them, for example, the Coulomb 
interaction between electron and hole, the van der Waals 
interaction between two Frenkel excitons, or the ex
change interaction between two excitons, for example, 
between an electronic exciton and an optical phonon. [6• 71 

In the second place, coupling is possible via an interme
diate quasiparticle. The coupling of two optical phonons, 
corresponding to the coupling of the first excited vibra
tional level of a molecule in the crystal with the second 
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excited vibrational level of the molecule, may serve as 
an example of the second type of coupling. Without taking 
this interaction into account, as a rule the second vibra
tional excitation will be localized; however the interac
tion leads to a delocalization of the excitation-it ac
quires the character of a phonon whose energy is close 
to the doubled energy of the phonon from the first vibra
tional excitation, and it may be regarded as a bound 
state of two such phonons. The theory of such states has 
been developed in a recent article by Agranovich [sJ based 
on an expansion in powers of a small parameter-the 
ratio of the energy of anharmonicity to the phonon energy. 
As shown in [91 , the second type of coupling between an 
electron and a hole (via the Frenkel exciton) in crystals 
of naphthalene and benzene gives an important contribu
tion to the energy of the Frenkel excitons. We also need 
to take such coupling into account correctly in connec
tion with the investigation of vibronic excitations-bound 
states of an exciton (or an electron or a hole) with an 
optical phonon. [61 

The general case when both types of exciton coupling 
are present was considered in the article by Philpott. [loJ 

Nonorthogonal functions were used as the basis functions 
in order to diagonalize the Hamiltonian, where their non
orthogonality is related to the fact that it is impossible 
for two excitons to stay on one and tile same site, i.e., 
the so-called kinematic repulsion. We shall also con
sider the general case of the coupling of two excitons, 
and from the very beginning we shall consistently take 
the kinetimatic repulsion of the excitons into account 
exactly. Our method resembles the method for deter
mining the bound states of spin waves in a ferromag
netic. [lll Taking the kinematic repulsion into considera
tion is very essential; thus, for example, it leads to the 
result that in the one-dimensional case there is a lower 
limit on the magnitude of the interexciton interaction at 
which a bound state appears (see Sec. 5). Here the sign 
of the interaction is unimportant: for repulsion the en
ergy of the bound hi-exciton state falls into the forbidden 
band above the band for two free excitons, and for attrac-
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tion it falls below this band. The kinematic repulsion 
identically hinders the formation of both the one and the 
other bound state. 

The problem is solved exactly in the two-exciton ap
proximation. One cannot take three-, four-, and higher 
exciton states into account since it is assumed that all 
of the binding energies participating in the problem are 
much smaller than the exciton energy of an exciton. If 
coupling via an intermediate exciton is not present, then 
very frequently the matrix elements of the coupling be
tween the two- and three-exciton states turn out to be 
small, which also permits a solution of the problem in 
the two-exciton approximation. 

2. HAMILTONIAN OF THE SYSTEM AND FORMULA
TION OF THE PROBLEM 

For simplicity we shall consider a crystal lattice 
having a simple basis. Generalization of the results ob
tained here to cases of more complicated basis does not 
present any difficulties. 

Let us write down the Hamiltonian for the system 
under consideration in second-quantized form. Since 
all of the interactions in the system are two-particle 
interactions (between two molecules), then the most 
general form of the Hamiltonian is as follows: 

fM= e,~ a,+a,+ e,~ b,+b,+e.~ c,+c,+ ~[ : v.~·>a.+a, 
i " ( "·"' 

i:::pl!. 

.1 (2) + 1 (3) + (I) + (2) ' h 1 +2 v .. b, b,+ 2 V,, c, c.+ u .. c, a,b,+ U,. c,+b,a,+ .c.j 

+ E [B,.a,+a,b,+b, + G,,a,+a,b,+b,]. 
<.• .,. (1) 

The summation goes over all lattice sites. Here ai and 
ai are the operators for the creation and annihilation of 
an excitation-namely, an exciton of the first type at the 
i-th site; bi, bi and ci, ci are the creation and annihi
lation operators for excitons of the second and third 
types; e:l> e:2 , and e: 3 denote the energies corresponding 
to the different types of localized excitons. We shall use 
the name exciton on the i-th site or localized exciton for 
an excited state localized on the i-th lattice site and de
scribed by the corresponding Wannier wave function. 
Since the exciton-phonon interaction is assumed to be 
weak, hence there are no excitons in the problem which 
are localized due to lattice deformations, and the adopted 
terminology does not lead to any confusion. It is as
sumed that 

8 = e,- (e, + e2 ) ..,.g e., e,, (2) 

but li is comparable with the width of the band ~I v&> I, 
I vf~ I, Since I Vfk.)'(2 ) I « E 1,2 for electronic excitons 
and optical phonons, this does not contradict assump
tion (2). 

The fourth, fifth, and sixth terms on the right-hand 
side of Eq. (1) are interactions which lead to the trans
fer of an excitation of the appropriate type from site to 
site. They lead to delocalization of the excitations and 
the formation of exciton energy bands. The seventh 
term in the sum represents the interaction which leads 
to the formation of excitons of the third type out of ex-

citons of the first and second types, or else leads to its 
decay. Thus, in the case of coupling between an elec
tron, a hole, and a Frenkel exciton, the quantity uUi 
represents the matrix element for the annihilation of 
an electron at the i-th site and the annihilation of a hole 
at the k-th site with the creation of a localized Frenkel 
exciton at the i-th site; U~k> corresponds to the same 
process, but the exciton is created at that site where 
the hole was annihilated. In the case of coupling be
tween an electronic exciton and an optical phonon, Uik 
denotes the interaction which leads to the creation of a 
vibron. tel The eighth term in (1) corresponds to the di
rect coupling between excitons of the first and second 
types; for Frenkel excitons Bik is the difference be
tween the van der Waals interaction energy of two ex
cited molecules with each other and the interaction en
ergy of these molecules with an unexcited molecule. 
For an electron and a hole, the Coulomb interaction is 
also included in Bik· The last term corresponds to the 
exchange coupling, when excitons of both types change 
places. For identical excitons this term is not present. 

Thanks to the inequality (2), in order to calculate the 
binding energy of two excitons we may seek a wave func
tion which diagonalizes the Hamiltonian (1), in the form 
of a linear combination of the states corresponding to 
energies close to e:1 + E 2 r::; e:3 : 

<II=~ /(r;,r;)'¥,;+ ~ ~t(r,)x,, (3) 
i,j 

where 

(4) 

Here I 0) denotes the unperturbed state of the crystal 
and ri is the radius vector to the i-th site. We note that 

(5) 

i.e., no more than one exciton can sit on any single site 
of the crystal. Let us change to new variables, namely, 
we introduce the coordinate corresponding to the "cen
ter of mass" of the two excitons and the relative coor
dinate: 

R = 1/2(r, -i- r;), r = (r,- r,). (6) 

Owing to the translational invariance of the Hamiltonian 
(1), the quasimomentum K conjugate to the coordinate R 
and corresponding to the motion of the system of exci
tons as a whole is a constant of the motion, i.e., the 
eigenfunction of ~ is 

<ll(K) = ~/(K,r)lf(K,r)+ ~t(K)x(K), (7) 

where f(K, r) and so forth are the Fourier transforms 
of the corresponding functions which were introduced in 
Eqs. (3) and (4). 

It would appear that one might attempt to diagonalize 
the Hamiltonian (1), like it is done in r10l, in the space 
of the functions $"(k1, k2) = 1/! 1(k1)1/! 2 (k2 ), where 

\jl,(k,)=-1-~ exp(ik,r,)a,+iO),Ijl,(k,)=~ ~exp(ik,r,)b,+iO) (8) 
yN ' yN ' 

are the wave functions of noninteracting excitons. How
ever, due to the condition (5) the basis (8) is nonorthog
onal (see [1°' 12l). Even though the violation of orthogo
nality is only ~ ~\ still the ratio of the phase volume 
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corresponding to bound states to the phase volume of 
the unbound excitons is also ~~1• Without encumbering 
this article with detailed calculations, let us briefly 
trace the path followed to obtain the final equations for 
the amplitudes f(K, r) and J.l{K) and for the energy eigen
values. 

By virtue of condition {5) the amplitude f{K, 0) does 
not appear in the equations which are derived from 
Eqs. (1) and (7). However, as a consequence of this 
these equations lose symmetry and their solution be
comes difficult. Therefore, in the same way in which 
it is done for the bound states of magnons in ferromag
netics, [131 let us assume that f(K, 0) is also determined 
by these equations which relate f{K, r) for different 
values of r and J.l (K). We note one important property. 
The Hamiltonian {1) commutes with the inversion op
erator t which interchanges the positions of excitons 
of the first and second types. Therefore, the function 
f{K, r) may either be symmetric in r: fs(K, r) 
= fs(K, - r), or else antisymmetric in r: fa{K, r) 
= -fa (K, - r); these functions correspond to the two 
eigenvalues of the operator i: + 1 and - 1. If both of the 
excitons are identical, then f(K, r) can only be symmet
ric: fs(K, r) because w(K, r) = w(K, -r). However, in 
the general case two systems of levels exist, corre
sponding to symmetric and antisymmetric states. 

Changing to the Fourier transform of f(K, r) which 
we denote by f(K, q), 

f(K,r)= ~ ~ f(K,q)exp(iqr), 
iN £..J .. 

we finally obtain 

(9) 

f,(K, q) = [e1 + e,- E + V(K, q) ]-1N-'h{ V(K, q)f(K, 0) 

- .~)[B(n) + G(n) ]/.(K,n)cos(qn)+ [ e,- E +I: V~'l cos(Kn)] -I 
n>O 

X U(K,q) l:2(U!11 + u!'1)cos( ~ )t.(K,n) }. 
n>O 

f.(K,q) = i[e1 + ez -E + V(K,q)]-'N-'n{ L. 2[G(n)-B(n) ]/.(K, n) · 
a>O 

(10) 

Xsin(qn)+ [ e,-E +I: V~'1 cos(Kn)] -•U(K,q) 
a 

~ (1) (1) . (Kn)} X£..1 2(Ua - u. )/.(K,n)sm 2 , (11) 
n>O 

where 

V(K, q) =I: [V!11 + V!'1 ]cos ( ~) exp(iqn), (12) 
a 

U(K,q)= l: [ U!11 exp( -i ~) + u!'1 exp(i~)] exp(iqn). 
a 

With the aid of Eq. (9) systems of linear homogeneous 
equations for fs(K, n) and fa(K, n) are obtained from 
Eqs. (10) and (11). Equating the determinants of these 
systems to zero gives equations for the determination 
of the bound state energies. For the symmetric states 
we have 

Det 11~:~, - 11 •.• , I = 0, {13) 

n', n" = 0, ... , Dr where nr is equal to half the number 

of sites on which the inter-excitonic interaction is be
ing propagated, 

J~;> = ~ l: [e, +ea-E+ V(K,q)}-1V(K,q)cos(qn), (14) 

• -1 • 

J!:!,(n" + 0) = [ e,- E + l: V~'1 cos(Kn)] 2[U~~~ + u~!,] 

Kn" 1 
X cos (-2-)N ,E [e, + e,- E + V(K,q)]-'U(K,q)cos(qn') 

• 
2 

--~ [e1 + e,-E + V(K,q)]-'[B(n")+ G(n")]cos(qn")cos(qn'). N£..1 .. 

The equation for the energies of the antisymmetric 
states is 

Det 11!~~" - 11 ••• , I = 0, 

where n', n" = n11 ••• ,nr, 

(15) 

2 { . J!%, = N l: [e, + e,- E + V(K, q) ]-• [G(n")- B(n") ]sin(qn') 

• 
x sin(qn"J+ [ e,-E+ ,E v~'~cos(Kn)] -•[u!!!- u~!, ]· . 

Kn" Xsin(-':1-) U(K,q)sin(qn') }· (16) 

From Eqs. (11) and (15) it is clear that the impossibil
ity of having more than one quasiparticle simultaneously 
occupy one and the same site does not have any effect 
on the calculation of the antisymmetric states, since 
f(K, 0) = 0 by virtue of the symmetry conditions. There
fore, in order to determine the bound antisymmetric 
states one can use the basis (8). We emphasize that 
such states are possible only for quasiparticles of dif
ferent types. 

3. GENERAL INVESTIGATION OF THE EQUATIONS. 
SCHEMES FOR AN APPROXIMATE CALCULATION 
OF THE BOUND STATES 

Equations (10) and (11) can be solved rigorously only 
if the interactions between the excitons are short-ranged, 
and therefore the rank of the determinants in (13) and 
(15) is not large. The rank of the determinant, which 
must be actually calculated, depends on two factors: 
1) on the energy of the level which is being calculated, 
and 2) on whether the interactions V~11 and V~21 forming 
the one-exciton bands are long- or short-range inter
actions. 

Assume that one can introduce an interaction radius 
for Vn = v:t + v::' (i.e., Vn falls off faster than n-3). 

Then 

S exp(iqn) 
f(K, n) ~ e, + e,--' E + V(K, q) dq, 

and since in this case the one-exciton band does not 
have any singularities (see, for example, [141 ), then 
V(K, q) will also not have any singularities in q, and 
the integral in (17) falls off exponentially with in
creasing n:u5' 181 

/(K, n) ~ exp ( -axn). 

(17) 

(18) 

If we denote the difference in energy between EK and 
the edge of the two-exciton band by OK and the width of 
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the two-exciton band by V(K), then a ~ ~/V(K) for OK 
~ V(K) and a ~ (oK/V(K))112 for OK« V(K). 

Since all of the interactions also fall off with increas
ing In I, then by taking (18) into account one can effec
tively cutoff all of the sums over n in Eqs. (10) and (11) 
at some value of n. It is quite natural that the deeper 
the level, i.e., the larger o(K), the smaller the number 
of terms which must be taken into consideration, and 
therefore the lower the rank of the corresponding de
terminant. 

It is easy to understand the physical meaning of such 
a cutoff in the summation over n since f(K, n) is the 
analog of the wave function of the bound state of two 
particles, i.e., of the two excitons. [171 The change of 
the interaction potential (in particular, its vanishing) 
in the region where f(K, n) is very small has little in
fluence on the position of the energy level of the bound 
state whose wave function is f(K, n). Thus, the scheme 
for the self-consistent calculation of the levels E(K) 
will be as follows: 1) we introduce Omin-the lower 
limit of the values oK determined by our calculation; 
2) starting from Omin we determine (aK)min according 
to formula (17) and, assigning a definite accuracy to 
the calculation and taking into consideration that f(K, n) 
%.. exp (- (aK)min n), we confine our attention to a sum
mation over a finite number of sites n. The values OK 
found from the solutions of (13) and (15) should satisfy 
the condition oK > Omin· Then the calculation is self
consistent. We note that if B(n), G(n), and U(n) are 
short-range, then we can immediately determine all 
of the levels with a specific accuracy by confining our 
attention to a finite (usually a small) value of n. If it 
turns out that OK < Omin then obviously for the correct 
determination of OK one should take a larger number 
of terms into account in the summation over n. If 
n >> 1, i.e., if the radius of the wave function is con
siderably larger than the lattice constant, then in Eqs. 
(10) and (11) one can change from discrete variables n 
to continuous variables, and Eqs. (10) and (11) become 
the usual Schrodinger equations where the effective 
masses of the particles enter. The appearance of the 
effective masses is associated with the fact that the 
condition n » 1 means oK « V(K), i.e., in the calcula
tion one can actually confine one's attention to the be
havior of yU>(K) and v<2 >(K) near the extrema of the 
corresponding bands. 

If Vri1 > + vg> has the nature of a dipole-dipole inter
action, then as is well-known the exciton bands have a 
singularity of the type of a finite discontinuity associ
ated with zero quasimomentum. From (12) it is seen 
that V(K, q) will have a singularity in q for q = ± K/2. 
Then according to (17) f(K, n) ~ n -3 (see the correspond
ing integrals in Section 4 of the author's article [151 ). 

Since B(n), G(n) and U(n) fall off faster than n-\ then 
the sums over n in (10) and (11) converge, and as be
fore we may confine our attention to a finite number 
of terms in the sums over n. However, now f(K, n) no 
longer depends on oK according to (18), but the depen
dence is more complicated, and f(K, n) ~ oo as oK ~ 0 
(see formulas (34) and (35) in [151 ). Thus, even in the 
case of short-range interactions B(n) and U(n) it is im
possible in general to limit ourselves to one and the 
same value nr in order to determine all levels. Calcu
lation of the bound states with OK~ 0 requires a sum-

mation over an increasingly larger number n, i.e., the 
ranks of the determinants in (13) and (15) increase. 

One can use just this described calculational scheme 
in order to investigate the energy spectrum and struc
ture of a Wannier exciton of small radius, when the 
''hydrogenlike nature" completely vanishes. 

Let us consider one interesting special case when an 
arbitrary interaction, no matter how weak it may be, 
leads to the formation of a bound state. Let us consider 
a cubic crystal, and in vg> and vif> only the interaction 
with nearest neighbors is taken into consideration, 
where for simplicity we assume the interaction to be 
the same for all six neighbors. Then the structure of 
the one-exciton band will be 

and one can easily see that the two-exciton band will 
be given by 

[ 
I Kxd) e(K,q)=e,+ez+(V(IJ+VI'I) cos - 2- cos(qxd) 

+cos (~.d) cos(qyd) +cos (~,d) cos(q,d)]. (19) 

For K = ~. where ~ y z = ± 11jd, E(~, q) = E1 + E2 

= const and all of the 'off-diagonal elements in the de
terminants (13) and (15) vanish. Setting each nK-th di
agonal element of these determinants equal to zero, we 
find the energy of the bound state which corresponds to 
two excitons located at a distance nK from each other. 
For example, for the levels of the symmetric states 
assuming that u<1 >, <2 > also differs from zero only for 
nearest neighbors, from Eq. (13) we obtain 

(20) 

From Eq. (15) we obtain a quadratic equation for the 
determination of the antisymmetric states, and this 
yields the solution 

a-b 1/(&+b)' 
E.,(K') = e, + e, +-2-± y £ + 2U_', (21) 

where 

\"1 (!) 
fl = 83-~ Vn - Bt- Bz, b=G(n,)-B(n,), U-=(U!'l-U~';). 

It is not difficult to show, by considering the solu
tions of (13) and (15) forK near~ (I K- ~I« 11jd), 
that 

E(K)=E(K')+ ~ a,,(K-K'),(K-K'),, 
ct,~=:o:,TJ,Z 

where the aa{3 are the coefficients of a quadratic form 
of fixed sign, i.e., the energy E(K) has an extremum at 
the point K = ~of the reciprocal lattice. Thus, the 
states (20) and (21) correspond to bi-excitons at rest, 
since their group velocity is equal to zero. In addition, 
the excitons themselves in these states also do not move 
relative to each other, because for the state with energy 
Eh(~) the wave function f(K0, ni) ~ Onni. Such a type of 

phenomenon involving the compulsory occurrence of 
bound states arise for those values of the total momen
tum K at which the total energy of the two free excitons 
does not depend on their relative quasimomentum q. If 
both excitons are identical: vg> = VA2 > and their energy 
band E(k1 2 ) = E1 + V <1 > (k1 2 ), where V <1 > (k 1 2) 

' ' ' 
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V(K,q)=V<'>(~ +q)+v<'>(~ -q). (22) 

For those values of K at which the relation 

V<'>(~ +q)=-V<'>(~ -q), (23) 

is satisfied, the fixed bi-excitons considered above must 
appear. In the case of identical excitons it is only nec
essary to solve Eq. (13). If in analogy to (23) U(K', q) 
= - U(K', - q), then in (14) only the second term is left, 
and we obtain expression (20) for the energies of the 
bound states. 

4. ONE-DIMENSIONAL CASE. THE COUPLING OF AN 
EXCITON WITH A PHONON 

Let us illustrate the solution of Eqs. (13) and (15) in 
the one-dimensional case where all of the interactions 
involve interactions with a nearest neighbor. Let us 
consider the coupling between a Frenkel exciton and an 
optical phonon-that is, an intramolecular vibration, 
where the formation of a vibronic exciton is possible 
(when the exciton and the phonon sit on the same site). 
This special case was also investigated in [eJ. 

We shall assume that the width of the exciton band 
is much larger than the width Of the phonon band, i.e., 
Vri1> » Vri2 > and therefore Vn = vg> + Vri2 > R< Vri1 >. Let 
us assume that the direct coupling between the exciton 
and the phonon is guaranteed due to the exchange inter
action G(n), but B(n) = 0. Since y<a> « y<1l then it is 
natural to assume that u<2 > « U(l). Then Eqs. (13) and 
(15) go over into two equations for the determination 
of E: 

[ 4U' cos' (Kd/2) 

~ (K) + ( e1 + e2 - E) 
] 1 a' 

2G =---- (24) 
e,+e,-E 1-1"1-a' 

[ 4U'sin'(Kd/2) + 2c] 1 =-----,a'== 

~(K)+(e,+e,-E) 'e,+e,-E 1-1"1-a' 

Here U = u<1>, 

ll(K) = e3 + 2V<'> cos (Kd)- (e, + e,), 

2V<'l cos(Kd/2) 
a=-----,-------'-------::=-'

e,+£,-E 

The bound states correspond to the condition 

Ia! < 1. 

(25) 

(26) 

(27) 

(28) 

Equation (24) gives the bound states of symmetric type, 
and (25) gives the bound states of antisymmetric type. 
We emphasize that in this one-dimensional case a bound 
state is possible for arbitrary values of the interaction 
only when K = ± rr/d (see the previous section), when 
a= 0, and from (24) we obtain E = e: 1 + e:2 + G, and from 
(25) 

· ll-G 1/(~+G)' , 
E = e, + e, + - 2- ± V 4 + 2U. 

For any other values of K bound states are formed 
only for a quite definite value of the interactions. Thus, 
if U = 0, then from (24) and (25) we obtain 

G a 
± ----- = -----=== 

V cos(Kd/2) 1-)'1- a' 
(29) 

Taking (28) into consideration, we obtain the condi
tion for the existence of a bound state: I G/V cos (Kd/2) I 
>1. 

For K = 0 one antisymmetric bound state having an 
energy E = e: 1 + e:2 - G is determined by only the ex
change interaction. The amplitude of the vibron excita
tion in the wave function of this state is equal to zero, 
and therefore in it an optical transition from the ground 
state is not possible. However a different antisymmet
ric state having an energy E = e: 3 + 2V<3 > (purely vibronic) 
is possible if e: 3 + 2V(3) is located outside the energy band 
of the unbound exciton and phonon. 

Bound states of syq1metric type do not divide into 
purely vibronic and purely exchange types, but they cor
respond to a mixture Of both states. 

Thus, for K = 0 the antisymmetric bound states divide 
into purely vibronic aQA purely exchange states. Measur
ing the energies of these states, we may accordingly sep
arately determine t:.. = e: 3 - (e: 1 + e: 2 ) and G. This conclu
sion is common not only for the one-dimensional case 
but also for a three-dimensional problem. 

From (24) and (25) ~t is clear that for 

I. 2V cos(Kd/2) I 
. ll(K) < 1 

there will always be two bound states, but in the general 
case not more than four bound states are possible, and 
for K = ± rr/d only three bound states are possible. A 
typical picture of the dependences of the energies of the 
bound states is shown in the accompanying figure. The 
calculation was made for uu>;v<1> = t:..j2Vm = v(3);v<1> 
= 1, G/3V<1 > = 1, and yU> < 0. The cross-hatched region 
represents the energy of the unbound exciton and phonon. 
Curves 1 and 2 indicate the energy levels of the sym
metric states, curves 3 and 4 correspond to the antisym
metric states, where curve 3 represents a purely vibronic 
state for K = 0, and curve 4 represents a pure exchange 
state. 

5. CONCLUSION 

The bound states of two excitons have been considered 
for a general type of coupling between them. The only 
restriction is the smallness of the binding energy in 
comparison with the excitation energy of any of the ex
citons. The kinematic interaction between the excitons 
is rigorously taken into consideration. It is shown that 
bound states of two types exist-symmetric and antisym-

£ 
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metric-and algebraic equations (13) and (15) are ob
tained for the determination of the energy levels and, 
correspondingly, for the determination of the wave 
functions of these states. A scheme is given for the 
calculation of the bound states even in the presence of 
long-range interactions between the excitons. The 
scheme of calculation essentially depends on the ana
lytic dependence of E(k) for the excitons whose bound 
states are being considered. Thus one can consider 
Wannier excitons of small radius. It is shown that in 
certain cases, for example, in a cubic lattice with ex
citon bands being formed by the interaction with only 
nearest neighbors, bound states of two excitons are 
always possible. A one-dimensional model of the cou
pling of an exciton with an optical phonon is considered 
in detail. 

In conclusion I express my sincere gratitude to 
A. S. Kompaneets and to the participants in the semi
nar of the theoretical section of the Institute of Chemi
cal Physics for fruitful discussions. 
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