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For an electron gas in the presence of constant crossed E and H fields, an expression which is non­
linear in the electric field is obtained for the dissipative current in terms of the operator for scatter­
ing by randomly distributed impurities. In the particular case of an impurity having a short-range 
interaction, a formula is derived, describing the dependence of the transverse conductivity on E in 
the ultraquantum limit, in the region of electric field strengths which are not strong enough to cause 
heating of the electron system. 

1. INTRODUCTION 

IN article [11 by the authors it was shown that in that 
case when scattering by impurities is the dominant scat­
tering mechanism, the linear theory of galvanomagnetic 
phenomena is strictly speaking valid only for electric 
fields satisfying the conditionE« E0 = E 0 /ea (a 
= (c/eH)112 is the magnetic length, e is the absolute value 
of the electron charge, and li = 1). The energy param­
eter E0, which appears in the linear theory as the cut-
off parameter in the logarithmically divergent expres­
sion for the transverse conductivity, may have a differ­
ent physical origin. For a sufficiently large impurity 
concentration, Eo is determined by collision broadening 
of the one-electron energy levels; for a small impurity 
concentration the parameter Eo in order of magnitude 
determines the limiting value for the "longitudinal" en­
ergy of a particle, below this energy the Born approxi­
mation is not valid for the scattering. As a rule, Eo is 
the smallest energy measure in the theory, and in these 
cases the value E0 associated with it is the smallest of 
the possible characteristic values of the electric field. 
In particular, E0 is usually much smaller than the field 
strengths at which heating of the electron system appears 
(E0 « E1 = Vs/ea2, [ 21 Vs is the velocity of sound). 

In article [11 the nonlinear behavior of the transverse 
conductivity in constant crossed E and H fields was stud­
ied for the case when the electric field satisfies the con­
dition E0 « E « E1• The lower limit on the electric 
field strength appeared as a result of the condition for 
validity of the Born approximation for the scattering 
and from the condition that collision broadening of the 
levels can be neglected. The transition to the linear 
theory (E- 0) was achieved by the formal introduction 
of the cut-off parameter Eo in connection with integra­
tion over the energy. By the same token an interpolation 
formula was obtained, giving the correct behavior of the 
conductivity for E « E0 and E0 « E « E1 • However, the 
interpolation carried out in [11 was very arbitrary in na­
ture, since in order to construct the function axx(E) only 
its limiting value at zero and its asymptotic behavior 
for E » E0 were utilized. The basic object of the pres­
ent work consists in the derivation of a formula which 
is also accurate in the intermediate region (E :::; E0 ). In 
this connection the physical model assumed in article [31 
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will be considered: 1) the impurities have a short-range 
interaction (r0 «a); 2) collision broadening of the lev­
els is negligibly small. 

2. DERIVATION OF THE FORMULA FOR THE DISSI­
PATIVE CURRENT 

In order to derive the formula for the dissipative 
current in the steady-state case, it is convenient to 
start from the following expression which is cited in [41 : 

ie 
;.=-v<Sp{p[~ •• ,p.]}), (1) 

mw 

where &78int is the Hamiltonian describing the interaction 
with the impurity centers, w is the cyclotron frequency, 
py is they-component of the electron's momentum op­
erator, Vis the volume of the system, the angular brack­
ets denote averaging over the configurations of the im­
purities, and p = p( oo) is the steady-state density matrix. 

In order to determine p(oo) we use the relation p(oo) 
= p(+O), where 

-
p(s)= s J p(t)e-•'dt 

0 

is the Laplace transform of the density matrix, satisfy­
ing the equation 

[~. p(s)] -isp(s) = -isp(O). (2) 

Here &78 = &780 + &78int• where cfJC0 is the Hamiltonian of an 
electron in crossed E and H fields. The formal solution 
of Eq. (2) can be represented in terms of the resolvents 
R±(E) = (E - <JJe ± is/2r1 : 

(3) 

Let us choose the initial density matrix p(O) accord­
ing to Adams and Holstein:[51 

Pap(O) =/(ea')liap 55 /aliap, 

where f is the Fermi function, E~ is the part of the elec­
tron's energy which does not depend on the electric field, 
and a = {n, ky, kz} is the set of quantum numbers which 
determine the electron's state in the presence of crossed 
fields. The choice of p(O) which has been made assumes 
the absence of heating of the electron system. We note 
here that, to the lowest order in 1/W'T ('Tis the charac-
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teristic relaxation time), the entire investigation carried 
out below can be generalized to the case where heating 
is taken into consideration if as p(O) one takes the asym­
ptotic (wT- oo) density matrix.[4 l 

For the choice of p(O) which has been made, substi­
tuting (3) into (1) and introducing the scattering oper­
ators T±(E): 

R±(e) = R,±(e) + R,±(e) 1±(e)R,±(e), R,±(e) = (e- are,± is/ 2)-', 

we can reduce the expression for the current to the fol-· 
lowing form 

ea' I: · j.=-.-lims t.J de(A •• (e)). 
2:ruV •-+o . --

The operator A(E) in Eq. (4) has the form 

A(e) = R,-p,T+R,+- R,-T-p,R,+ + R,-T-R,-p,T+R,+ 
- R,-T-p,R,+T+R,+. 

In the limits- +0 from Eq. (5) we find 

lim -2
8 A..(e) = 2ip,. Im T •• +(e.).S(e- e.) 

s-+o 1t 

+ 2ni I: .S(e- e~) IT~. +(e) I'.S(e- e.)p,~. 
~ 

Having utilized the optical theorem 

Im T •• +(e) =- n I: b(e- e,) I T±(e,) I'. 
~ 

we arrive at the following expression for h: 

;. = e; I:x.~u.- M.S(w.~)<IT~.+(e~) I'>. 

"·' 

(4) 

(5) 

(6) 

(7) 

Here Waf3 = Ea - Ef3, Xa{3 = Xa - X13, where Xa 
= -a2kya- Vd/w, and Vd = cE/H. Confining our atten­
tion to the lowest-order approximation in the concen­
tration of the impurity centers (as indicated in [61 , in 
this case T = :6t(Ri), where t(R) denotes the operator 
for scattering by the impurity center located at the point 
R), we obtain the final formula for the dissipative cur­
rent: 

(8) 

where nd denotes the impurity concentration. 
After linearization with respect to the electric field, 

formula (8) goes over into the expression cited in the 
review by Kubo et al., [71 and its Born limit coincides 
with the expression for the current obtained in [41 and 
in m. However, if in (8) one simultaneously carries out 
linearization in E and passes to the Born limit, then we 
arrive at the well-known formula of Titeica. 

In what follows we shall confine our attention to an 
examination of a short-range interaction potential (r0 

«a). In this case the scattering operator t13a may be ex­
pressed in terms of the scattering length f (f denotes the 
amplitude for the scattering of a particle with zero en­
ergy in the absence of external fields). By the method 
used in article [31 we obtain 

t~. +(e,R) = 2nf qJ.(R)qJ~'(R). 
m 1 + ifK(e, R) 

(9) 

Here <fJa is the wave function of an electron in crossed 
fields. The function K(E, R) is determined by the rela­
tion 

K(e R) = _ 2ni a , . 
' m alr-RI [lr-RIG (r,R, e)Jii,-RI~o, (10) 

where Gr(r, r'; E) is the retarded Green's function of 
an electron in cross fields. 

The expression for the scattering operator (9), cor­
responding in form with the analogous relation of ar­
ticle [3J, differs from it by the fact that it includes the 
dependence on the electric field, which is contained both 
in the wave functions and in the function K. Furthermore, 
in our case the function K turns out to depend on the po­
sition of the scattering center. 

Thus, from Eqs. (9) and (10) it is clear that the search 
for the scattering operator reduces to an investigation 
of the behavior of the Green's function Gr(r, r'; E) for 
lr- r'l- 0. 

3. THE GREEN'S FUNCTION OF AN ELECTRON IN 
CROSSED FIELDS 

The time-dependent Green's function 

r ,, -{ (rje-i:~<,tlr'), t>O 
G (r,r,t)- O , t<O 

for the problem under consideration may be expressed 
in closed form in terms of elementary functions with 
the aid of the methods developed by Schwinger [Sl and 
Feynman. [OJ Thereby we obtain a convenient integral 
representation of the required Green's function for the 
steady-state problem: 

1 -
G'(r,r'; e)=-:-J G'(r,r'; t)e'<•+''}dt, lj-++0. 

t 0 

(11) 

Without discussing the derivation, we cite the final ex­
pression for Gr(r, r'; E): 

G( '· )_(2m)'f,e'"'i' [ ,(x+x')(y-y') .eE(y-y')] 
r r, r 'e - 3 exp - ~ - l---"t--=--'-

8nl'a2 2a2 w 

• dt e~'+'"l' [ i wt mi 
X J _ exp -jp-p'j'ctg-+-(z-z')' 

, l't sin(wt/2) 4a' 2 2t 

it wt it it it' wt J +-2 eE(y-y')ctg-2 --2 eE(x+x')--mv?+-va'ctg- , 
2 4a' 2 

(12) 

where lp- p' 12 = (x- x' )2 + (y- y')2 • 

In the limit E - 0 formula (12) goes over into the 
expression for the Green's function obtained by Schwing­
er's method in article uoJ. (For this only certain trans­
formations and the correction of the errors allowed in 
[lOl are required.) For H- 0 from Eq. (12) we obtain 
the Green's function in a homogeneous electric field and, 
finally, for E- 0 and H- 0 formula (12) goes over into 
the well-known expression for the Green's function of a 
free particle. 

From expression (12) it follows that, as r - R 

G'(r.R;e)"""-~(lr~RJ'+iK(e,X)). (13) 

where K( E, X) is defined by the integral 

K(e,X)= e'"1~f dt_{_!_- exp[i(e-y+iTJ)t+tv't'ctgt-2lyXt }• 
2a l'n , "ft t sin t . 

(14) 
In formula (14) we arrived at dimensionless quantities: 
the energy is measured in units of w/2, the length in 
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units of a. In addition the notation y = eEa/w has been 
introduced. One can regard the integral in (14) as the 
limit of an integration along a contour lying in the lower 
half-plane of t (-rr /4 < arg t < 0) upon the approach of 
this contour to the positive semi-axis, going around the 
points tn = nrr from below. This makes it possible tore­
place the function 1/sin t by a series representing it in 
the lower half-plane: 

1/sin t = 2i .E e-('"+'J". 

Using this expression, let us write K(E, X) in the form 

iein/t. oo 

K(e,X)=-a-.E (J~'l -J~l (e,X)), (15) 
n=O 

where 

(20) 

where n denotes the density of the electrons, ~ = eEa/T, 
'A = e /2a2y = 5/~ {o = e /2ma4T is the cut-off parameter 
introduced in [ll), 

00 

&-(£,A)= 2ri ~ u'e-•"-"'(I,(u')- I, (u')) <D(u, A) du, (21) 

;-.(2 00 dx e-'(x-u)' 

<D(u, A)=tv -J ----­
n -oo W(x,r-) 

W(x,r-)= 1 + nAix~e-"' [h',(x;) +I~•,,( ~') 1 
+(n"-lxl) '1•e-"'''[ L•,, (~')-h. ( ~) signx]. 

(22) 

{23) 

Here I1;{x) are the Bessel functions of imaginary argu­
ment. 

(') 1s~dt . . , 
J, =--= --:::.exp[w,t+<yt ctgt]; 

l'n , l't 
a,= e -y'- 2yX -(2n + 1). 

(17) 

As 'A~ 0 (~ » o) the function <I>{u, 'A)~ 1 and Eq. 
(21) goes over into formula {7) of article [1l. In the op­
posite limiting case, when 'A ~ oo (~ « o), the regions 
of large values of the integration variables x ~ u ~ 'A 
give the major contribution to the integrals (21) and (22). 
Since for large values of x the function W changes little 
per unit interval, we obtain 

In the range of electric field strengths of interest to 
us, the quantity y is small (y « 1); therefore we may 
replace the integral JA2 J by its asymptotic expression as 
y ~ 0. In order to obtain the asymptotic expression for 
J~J let us rotate the contour of integration in the lower 
half-plane through a certain angle e (-rr /4 s e < 0). We 
can verify that the integral along the infinitely distant 
arc vanishes, and to the lowest-order approximation in 
y we obtain 

1 ( an' ) ( ia, ) 
= (2y')''•cxp - Sy' D-'" - y2y ' 

where D_112(x) is the parabolic cylinder function. 
From formulas (16) and (18) it follows that for large 

values of n the terms of the series (15) behave like n -312 , 

i.e., the series convsrges. In the limit y = 0 (E = 0) ex­
pression (15) takes the form 

limK(e, X)= K 0 (e) = _!__ ~ [ )-- + i f2(Vn+ 1- Vn)J, 
V-•{l a n=O J' ct~O) 

(19) 

where a~0> = E- (2n + 1). An approximate expression 
for K0(E) is given in article [lll. 

4. TRANSVERSE CONDUCTIVITY IN THE ULTRA­
QUANTUM LIMIT 

Let us perform a specific calculation of the conduc­
tivity under the assumptions which were adopted in 
article [1J: 1) the absence of heating (eEa « vs/a), 
2) Boltzmann statistics, and 3) the ultra-quantum limit 
(w/T » 1). Under these assumptions, after simple 
transformations we obtain the following results from 
formulas (8), (9), and (15)-(18): 

10-.5 I tQ-4 I 5-10-

\!(~) 8.80 I 8.80 I 9.10 

~(~. 6/~) 8.80 8.69 8.30 

<D(uA)<:::::-1-= 1 +0(1/A). {24) 
' W(u, ),) 1 + )./u 

Substituting (24) into (21) and using the asymptotic be­
havior of the functions I0 and 11, we find 

,;--;oo e-• 
um&-(s,AJ = v -S---au, 
,_, 2 0 u+b 

which is equivalent to Skobov's result. [3 J 

{25) 

The nature of the dependence of the change in the 
conductivity on the electric field is illustrated by the 
results cited below of a numerical calculation of the 
function ET(~, 6/~) for the value o = 0.5 X 10-3• (We ob­
tain o of the order of 10-3 assuming f ~ 10-8 em, a 
~ 10-6 em, H ~ 105 oersted, T ~ 10-15 erg, and m ~ 10-28 g. 
For such values of the parameters, one does not need to 
take the heating of the electrons into consideration for 
~ < 10-1.) Values of the quantity &-{~) are also given in 
the table; these values being determined by the interpo­
lation formula derived in article [1J {formula {8)). From 
a comparison of both functions it is seen that interpola­
tion leads to the appearance of a false maximum in the 
dependence of the conductivity on the electric field. 

The nonlinearity in the behavior of the dissipative 
current which is being considered in the present work 
is of a weakly expressed character. Nevertheless, it 
appears to us that its experimental investigation may 
turn out to be rather interesting. Here it is important, 
in the first place, that an appreciable change of the con­
ductivity already appears at very small values of the 
electric field, when the other possible nonlinear mecha­
nisms have not yet come into play. In the second place, 
it is essential that the form of the dependence axx(E) is 

8-10-• 10-3 2-10-----3 5-10-3 10-2 

9.10 8.98 8.29 7.19 6.34 

8.08 7. 95 7.47 6.68 5.98 
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only determined by the amplitude for the scattering by 
an individual impurity center, and it does not depend on 
the concentration of impurities. In connection with this, 
an experimental investigation of the behavior of axx(E) 
may be used for an independent determination of the 
scattering amplitude. 
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