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The cross sections are obtained for the photoionization of the outer shell of Ne and two outer shells 
of the atoms Ar, Kr, and Xe with Hartree- Fock wave functions. Using these results as the zeroth ap­
proximation, we obtain the cross sections for photoionization with allowance for multi- electron corre­
lations in the random-phase approximation with exchange. It is shown that these cross sections satisfy 
the sum rules and that the cross sections calculated with the aid of the matrix elements of the coordin­
ate and of the momentum are equal. It is shown that the Hartree- Fock wave functions ~f the excited 
states, obtained in the field of the ion, take into account part of the diagrams of the random-phase ap­
proximation with exchange. The cross sections with allowance for multielectron correlations are in 
good agreement with experiment. 

1. Interest in the allowance for multielectron correla­
tions in the atom has increased recentlyu1 , owing to the 
large deviation of the results of the calculations in the 
single-particle Hartree- Fock approximation from ex­
periment[21. To ascertain the role of multi-electron 
correlations in the atom, the authors have previously 
obtained the cross sections for the photoionization of 
the M and L shells of argon in the Hartree- Fock ap­
proximation[3'41. The discrepancy with experiment 
turned out to be large, particularly for the outer shell, 
and reached a factor of 2 and more. In the present pa­
per we obtain the multiparticle corrections to the photo­
ionization cross sections of the atoms Ne, Ar, Kr, and 
Xe, obtained in the Hartree- Fock approximation. To 
find the multiparticle corrections we used the high­
density approximation, and concretely the random­
phase approximation with exchange (RPAE)[51 . It is 
shown that in this approximation there is satisfied a 
sum rule, according to which the integral of the photo­
ionization cross section over the entire energy spec­
trum is proportional to the number of the electrons in 
the atom, and the cross sections aRPAE (length form) 
and a~PAE (velocity form) coincicfe[sJ . These relations 
do not hold in the Hartree- Fock approximation[2•41 . 

The calculated cross sections for the photoionization 
of the outer shells of the atoms Ne, Ar, Kr, and Xe, with 
allowance for the multielectron correlations in the 
RPAE, differ from the experimental ones, as a rule, by 
not more than 10-15%. 

2. In the single-particle approximation, when the 
wave function of the atom can be represented in the 
form of a Slater determinant made up of single-particle 
wave functions, the cross section for the photo-ioniza­
tion of the nl-th subshell is determined by one of the 
formulas[ 71 (h = m = e = 1): 

where 
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Nn l is the number of electrons in the subshell, w = E 

- Enz is the energy of the photon in atomic units, 

(3) 

(4) 

Enz < 0 is the energy of the electron prior to knock-out, 
a = 1/137, and ao is the radius of the first Bohr orbit. 
The radial wave functions of the continuous spectrum 
are normalized to a 0-function of the energy and have 
the following asymptotic form: 

1T2 [- nZ · J P,,(r)~ YQ2a si~ l'2e:r-2 +6,(e) 

In the case of a local single-particle potential, the 
velocity and momentum operators coincide: 

V=p, 

(5) 

(6) 

from which it follows[ 71 that formulas (1) and (2) give 
identical results and that the following sum rule is 
satisfied: 

1 -
S, == .E[.E f.,_,.,,,+ 2n'aa,,J a.,(ro)clro] = N, (7) 

nl tt'l' lnl 

where N is the number of electrons in the atom, Inz is 
the ionization potential of the nl-th subshell, and 
fnz- n'l' are the oscillator strengths for the transitions 
to discrete excited states. The experimental cross 
sections also satisfy the sum rule (7)[81 • 

Equation (6) is not satisfied for a non-local single­
particle potential. In the Hartree- Fock approximation, 
in which the exchange potential is non-local, we obtain 
in lieu of (6) the following relation for the matrix ele­
ments of the vebcity and the momentum: 

< k I v 11> = i <·k I fli- r fill>= i (Ek - Et) (k I r ll> 

= (kJpjl) +it ~q>n'(r')cpl(r')l~ .= ;:~ cp,.(r)cp."(r)clrclr'. (8) 
n=l 

Consequently formulas (1) and (2) are not equivalent in 
the Hartree- Fock approximation and the sum rule (7) is 
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not satisfied. For the cross sections ar we obtain in 
the Hartree- Fock approximation in lieu of (7) 

s; = N + 2 t ~IJln,'(r')IJln(r') ~~z~r~} q>n,(r)q>n'(r)drdr'i'l,n•n, =N+LlS0, - (~ 

and for av 

So V = N - !:iSo + .E .E En• ~En I ~ cp~,' (r') q>n (r') 
n,n1 n' 

( z - z') ( ) - • ( ) d d '~ I' X I ' I tl'm r «<'n' r r r v,n Sn• ' r- r 1 
(10) 

where the summation over n' is carried out over all the 
excited states, and sn is the projection of the spin in the 
state n. The last term in (10) is essentially positive 
and turns out to be smaller than ASo. Therefore, on the 
average a r can be larger than the experimental cross 
section, and av smaller. The difference between a r 
and av is a measure of the non-locality of the inter­
electron interaction in the employed approximation. 

Thus, the photoionization cross section in the 
Hartree- Fock approximation has two essential short­
comings: 1) the cross sections ar and av do not coin­
cide, and the difference between them is large; 2) the 
sum rule (7) is not satisfied. In addition, as already 
indicated, it agrees poorly with experiment (see Figs. 
6-9). 

3. When considering the multielectron correlations 
in the atom, we shall use the formalism of many-body 
theoryl 9J • A convenient zeroth approximation is the 
Hartree- Fock approximation, where it is necessary to 
choose for the unoccupied single-particle states the 
wave functions <PN • 1 obtained in the field of the neutral 
atom, which are orthogonal to the functions of the occu­
pied states and form together with the latter a complete 
system. 

Estimates show that in medium and heavy atoms it 
is possible to use the high-density approximation°0 ' 11 J. 

It is applicable in the case when the average distance 
between particles is much smaller than the effective 
radius of interaction between them. The condition for 
the applicability of the high-density approximation for 
the electron gas is the smallness of the parameter 
a= e2/7Tp0 l5 J, where Po is the Fermi momentum, which 
is inversely proportional to the mean distance between 
the particles: p0 = (37T2P )113, where p is the particle 
density. In the statistical approximation the radius of 
the atom is R ~ z-1/3, and therefore Po ~ Z213. From 
this we obtain for large Z the estimate a ~ z-213 « 1. 

The random-phase approximation (RPA) customarily 
employed in the case of high density, corresponds to a 
Hartree zeroth approximation. The method of random 
phases with exchange presupposes a Hartree- Fock 
zeroth approximation and is a generalization of the 
RPA method, making it possible to determine the per­
turbation-theory series at terms of higher order in the 
parameter a. Such a generalization, as applied to the 
atom, is very important, since the parameter a in the 
outer shells, which are of greatest interest from the 
point of view of the multi-electron correlations, while 
still smaller than unity, is not considerably smaller. 
The use of Hartree- Fock zeroth approximation makes it 
possible to take into account the inhomogeneity of the 
electron distribution in the atom already in the zeroth 

approximation, but leads to the need for solving numer­
ically the equations of the RPAE method1J. 

The cross section for photoionization with allowance 
for multi- electron correlations is determined in the 
RPAE approximation by the sum of infinite sequence of 
diagrams shown in Fig. 1, where a solid line corre­
sponds to a particle or a hole, depending on the direc­
tion of the arrow, a wavy line corresponds to the 
Coulomb interaction, and a dashed line to the incident 
quantum. The square in this figure represents the 
interaction amplitude, which in the RPAE satisfies the 
equation 

(11) 

where the index ki denotes the set of four quantum num­
bers nlms, 

<k,k,l u 1 k,k,> = (k,k,l v 1 k,k,> - <k,k, I vI k,k,>, 

(k1k31 V lk2~) are the Coulomb matrix elements: 

S dr, dr, 
(k,k,IVIk,k,) = 'P•,'(r,)<p.,'(r,)<p,,(r,)<p.,(rz) I I, 

r1- rz 

and nk5 is the Fermi step function 

n, = { 1, 
5' 0, 

k,~F, 

k,>F. 

(12) 

(13) 

(14) 

The condition k5 :s F denotes summation over the occu­
pied states, and k6 > F denotes summation over the 
free states, including integration over the continuous 
spectrum. 

-~'< + --~ K + ---fC. + --~K' " 
l J, ~ J, i J, K K 

i jz 

+--~K' K" +-~~K. +--~· K"K + l 
K K j ... 

j, Jz j, K" ' jz i 

i jz I 

--:< +--OC 
l j, i 

Pnc. 1 

After expansion of the Coulomb interaction in spher­
ical functions and integration with respect to the angle 
variables, we obtain 

(k,k,l Vlk,k,) = 

~ ' l l l 
= L, L, ( _ 1) m,+m,+m ( _ ~~ _ m ~2 ) ( 

l, l z, ) 
-m3mm,_ 

1=0 m=-l 

(15) 

where the reduced matrix elements are defined as fol-

lows: (11 l z.) 
(n111 , n313 IIVdln 212 , n414 ) = V(211 + 1)(212 + 1)(213 + 1) (21. + 1) 0 0 0 

!)The results of [ 12 • 13 ], in which the cross section for the photo­
ionization of the 4d 10 subshell of Xe is considered, confirm the assump­
tion that the high-density approximation is applicable to atoms with 
large Z. 
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Analogously, the matrix element of the interaction am­
plitude can be expanded in terms of the momentum 
transferred in the particle- hole channel: 

<k,k, 1 q ro > 1 k,k,> 

X (n,l,.n,l,l!f,(ro) lln,l,, n,l,). (17) 

We substitute expressions (15) and (17) in (11), multi­
plying by 

and sum over ml> m2, m3 , m4 • As a result we obtain an 
equation for the reduced matrix elements: 

<n.l10 n3l3 ~fl(ro)~n211, n4l4 ) = (n1l1 , n.l.~Udn2l,, n,l,) 

_( \"1 _ \"1 )<n.l1 ,n.loiUdn1l,, n.l,)(n.l0 , n3l3 1/f 1 (ro)~n8l8 , n4lt) 
f.ri,, •~F. (2l + 1)[ro- En,+ En,+ i~ (1- 2nn,)] 
n,>F n,.;;F ( 18) 

where 
(n,l,, n,l,ll U.ll n,l,,.n,l,) = 2(n,l, n,l,ll V,ll n,l,, n,l,) 

\""1( 1)'+1'(2 {I'll,} - .i...J - l + 1) l, l' l, (n,l, n,l,ll v,.nn,l,, n,l,). (19) 
I• 

The factor 2 in front of the first term on the right­
hand side is the result of summation over spin projec­
tions which have been left out in the earlier calcula­
tions. In (18), summation was carried out over the spin 
projections in the initial state at six values in the final 
state. 

In accordance with Fig. 1, the dipole matrix element, 
when account is taken of the multielectron correlations, 
is written as follows (k1 > F, k2 :5 F): 

(k.ldlks>+(E -I: )(k4 ldlk3)(k4k1 \:(ro)Jk8k1 ), 

tt,.;;F, k,>F. ro- Ek, + Ek, + ~~ (1- n,.,) 
k,>F ko.;;.F 

(20) 

where w = Ek1 - Ek2. The cross section for photoioniza­
tion with allowance for multielectron correlations is 
determined by formulas (1) and (2), in which the matrix 
elements (3) and (4) should be replaced by the sum 

( 1. 1 l,) 
\", \""1 )i 0 0 0 ,/ (21.+ 1)(21, + 1) 

<ntZ.Idln,l,) + ( .i...J - .i...J 3 (l1 1 l,) V (2l1 + 1) (2l, + 1) 
~:;~· ~~· 0 0 0 
(n4l4 ~ d II n3l8 ) (n4l41 n1l1 ~ f.(ro) II n3l3 , n1l1 ) 

X ro-E,..+En,+i~(1-2n~,) (21) 

in which (n1 l.ildlln2l2) = RE z + and is determined by 
' _l 

one of the formulas (3) or (4). 
4. We shall show that in the RPAE the photoioniza­

tion cross section satisfies the sum rule (7), and the 
cross sections a~PAE and a~PAE coincide. It is con­
venient to obtain the proof within the framework of the 
time-dependent Hartree- Fock approximationl 14 J, which 
is equivalent to the RPAE methodusJ. The wave func­
tion in this approximation has the form 

I<I>(t)) = exp(- iE,t)exp ( L L Cm,(t)am +a,} I <Do), (22) 
i..;JI' m>l! 

where ib0 is the ground state of the system in the 
Hartree- Fock approximation, Eo is its energy, ain and 

~ are the operators of creation and annihilation of the 
particles, Cmi(t) are complex coefficients, which can 
be represented in the form 

(23) 

The coefficients Xmi and Yriti do not depend on the time, 
and if Cmi(t) « 1 they satisfy the equations 

(Em -E,)Xm<+ L L ((miJUiin)X.;+ (mniUiii)Y.;)= eXm<• 
;.<011 •>11 (24) 

(Em -E,)Ymt+ L L ((iiJUimn)X.;+ (iniUimi)Y.;)=- eYmt, 
J<P n>l' 

where Ei is the energy of the single-particle state i in 
the Hartree- Fock approximation. We denote the solu­
tion of these equations, corresponding to the eigenvalue 
En by the symbols ~i and Y~i• and the total wave 
function by 'bn(t). The wave function of the ground state 
ibo corresponds to a solution of (24) with E = 0, and those 
of the excited states-with E i"' 0. Equations (24) are 
conveniently written in matrix form llaJ : 

where 

( !. ~· ) ( ~: ) = e. ( _x;. ) ' 

Ami, ni =(Em -E,)ll;;llmn+ (mjiUiin), 
Bmt,oJ= (mniUiij). 

(25) 

(26) 

The matrix elements of the single-particle operator 
between the time-independent RPAE wave functions are 
represented in the following formuaJ: 

(<l>o!MI<l>•> = L E [(iiMim> X!.;+ (m\Mii> Y!,1]=:(Mi!)(x:), 
I<Fm>F y 

(27) 

where (iiMim) are the matrix elements calculated be­
tween the Hartree- Fock single-particle wave functions 
(the symbol ~ denotes the transpose). It can be shown 
that the matrix elements of the single-particle operator 
satisfy the relation 

2L ek I <<Do IM I <I>k> I'= <<I>o I rk. rfl. 11flll <~>.>. (28) 
k 

where H is the exact Hamiltonian of the system, and the 
summation with respect to k is carried out over all the 
excited statesl16J. If we take for M the dipole moment 
operator dz of the atom, then the left-hand sides of (7) 
and (28) coincide. The double commutator in (28) can 
be easily calculated: 

N 

(<l>ol [d., [if, d,JJ l<l>o) = L (<1>0\ [z1,[H,z;)]l<l>0 ) 

i,j 

N 

= L (<l>o 1- i [z;. Pz1ll <l>o) = N. 
i=l (29) 

Thus, the cross section ar satisfies the sum rule (7) in 
the RPAE. 

To prove the equivalence of the cross sections ar 
and av, it is convenient to verify that the velocity and 
momentum operators coincide. Using the relations 
given above, we obtain (we use matrix notation) 
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- i (<l>o I v.l ID~) =(!Do I Hz- zh I ID~) =- e~ (!Do I z I"'·> (30) 

= -e~(zz) ( ~:) = -Bk(z -z)(_;:) = -(z- z) (!. !.)(~:) 
o., changing over to the usual notation 

-I( ~Dol v,l !D,) = - .E .E {[(Em - E,) ll;;ll .. ,.X,./ 
'l,;c;:r m,n>.l' 

+ (imiUini)X.l+ (mniUiii)Y ..,']<tlzlm) 
-[(E .. -E,)Il,;llm.Y,./ + (tni'Uimi)Y.l+ (iiiUimn)X..,'](mlzli)}. 

(31) 

Using the density of the single-particle wave func­
tions, we sum over one of the indices m and n. After 
summation, the expression simplifies to 

(!Dol'i,,I~D•> =- t E . .E { (E,. -E,) [(ilzlm)X,.,'- <mlzlt)Y .. t] 
i<.P m>.l' 

The matrix elements of the coordinate and of the mo­
mentum are connected in the Hartree- Fock approxima­
tion by relation (8). Substituting it in (32), we get 

<~Do I vi I <~>•> = L, L, l<il II. I m> X!.1 + <m I ]1, It> Y!.11 =<~Do I .P.I <I> A>· 
1.;;F m>I!' (33) 

It follows therefore that in the RPAE approximation the 
cross sections CJ r and CJv are equal. 

5. The numerical solution of Eq. (18) for the ampli­
tude of the interaction, with the functions cpN • 1, encoun­
ters difficulties connected with the divergence of the 
diagonal matrix elements (n1l1, nzlziiVolln1l1, nzlz) when 
n1 5 F and nz > F, when the state n2 is in the continuous 
spectrum. We shall show that the use of the functions 
cp~1 €(r) obtained in the field of the ion is equivalent to 
summation of RPAE-method diagramsl3 J diagonal in the 
hole state and directed forward in time, and in particu­
lar, summation of all those diagrams containing the in­
dicated divergent matrix elements. The wave functions 
cp~1 €(r) satisfy the equation 

where 

( - V2'_ zr +~ s l<p;(r') l'dr') N () 

~ 1~-r'l <i'<•>• r 
• J,.;;;l'', 

lot=' 

~ J<p/(r')<i'<•r,(r')dr.' ~- , N (34) 
- ~ lr-r'l <p;{r)- ~E;,.<p;{r)=e(j)(<l•{r), 

i<.F, J<;.F ;,., 

(35) 

are the nondiagonal parametersl71 • The solution, ex­
pressed in terms of the Green's functions of the equa­
tion for cpN • 1 

E ' 

-~J<p/(r')<p.NH(r')dr' <>- N+<<> 
~ lr-r'l (j); r -e<p, r' 
!<P 

(36) 

The matrix elements of this integral equation contain 
the sought wave functions cp~1 €(r), a fact marked by the 
bar over the corresponding index. We substitute the 
solution of (37), obtained by iteration, into the dipole 
matrix element: 

( ·Nidi )=( NHidl >+ ~ (mt!Uiie) ( N+tldl ) <i'<•>• <i'< <i'• <i'< ~ e -E,. +ill <p,. <~'• 
m>P 

+' ~ ~ (nijUite)(mtiUitn) ( N+tldl .) (38) 
~~ (e-E .. +ill)(e-E.+ill) (j)m (j)< + .... 
m>ll' n>JI' 

This expression corresponds to a definite sequence of 
the diagrams shown in Fig. 2, in which the state of the 
hole does not change. In addition, unlike in Fig. 1, the 
time sequence of the interactions in these diagrams is 
fixed, i.e., they are Goldstone diagramsu71 , whereas 
the diagrams of Fig. 1 are Feynman diagramsl 91 • These 
differences can be readily seen when expressions (38) 
and (20) are compared. 

--~ +--~ 
l 

d 
+--~ 

K' 

+--~ i K" 

l K 

I 

+ --~ v + --~K"~ 
;--~~ ~~ 

• K 

+--~ + 

' I i i 

FIG. 2. 

Equation (34) arises when the total wave function of 
the atom in the final state is sought in the form of one 
Slater determinant. Since in the final state there is one 
unfilled shell {besides the electron in the continuous 
spectrum), it follows that in order for the wave function 
to correspond to the state of the atom with definite 
values of the total angular momentum L and the spin S, 
it is necessary to seek it in the form of a linear com­
bination of several Slater determinants, with different 
values of the angular momentum and spin projections of 
the particle and of the holel 71 • We denote the wave func­
tion of the excited electron, corresponding to such a 

state of the atom, by the symbol cp~~~S)(r). It can be 

shown that the use of the functions cp~(LS) in place of 
(1)€ 

cp~ + 1 in the calculation of the photo- ionization cross 
section is equivalent to the summation of the Goldstone 
diagrams shown in Fig. 2, in which the hole belongs to 
one subshell, but can change the values of the angular 
momentum m and of the spin s. N L 

In the numerical solution of the equations for cp <i~E S)' 
the nondiagonal parameters were assumed equal to 
zero. Consequently, the functions cp:r'f{LS) turn out to be <ll€ 
not orthogonal to the functions of the occupied states 
with the same l, and the second term on the right- hand 
side of (37) is missing, leading to the appearance of 
additional terms in the expansion (38). These terms 
correspond to diagrams not taken into account in the 
RPAE. However, as shown by a numerical analysis, the 
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contribution of these terms to the total cross section is 
small and does not exceed several per cent. 

6. The use of the functions cp~ or cp(~LS) in place 
<llE <llE 

of cp~ + 1 in the calculation of the Coulomb matrix ele­
ments is also equivalent to summation of an infinite 
sequence of Goldstone diagrams of the RPAE method, 
analogous to those shown in Fig. 2. Therefore, when 
solving the equation for the interaction amplitude with 
such functions, it is necessary to discard the contribu­
tion of the terms already accounted for. We note that 
among the accounted-for terms are also those of the 
type shown in Fig. 3, where the double line corresponds 

to a particle described by the function cp~>E or cp~~~S). 
The contribution of the diagrams of Fig. 3 is contained 
in the term corresponding to the diagram of Fig. 4. 

FIG. 3 FIG. 4 

FIG. 5 

In the equation for the interaction amplitude there 
are matrix elements of four types, shown in Fig. 5. The 
examples presented above show that when the functions 

cp~>E are used as the zeroth approximation in (11), 
there is no need to take into account the contribution of 
the terms that contain matrix elements diagonal in the 
hole, shown in Figs. 5a and 5b. Subtraction of the con­
tribution of such terms is equivalent to the solution of 
Eq. (11) with matrix elements (k1k31Uik2k4) in place 
of (12): 

<k,k, I rJI k,k,) = <k,k,l Ul k,k,) (1- n.,.s.,.,l\,,,,1\m,m,ll,,,,) 
(39) 

If the wave functions cpm~s) are used as the zeroth ap­

proximation, then it is necessary to substitute in (11), 
in place of (12), the matrix elements (k1k3 luLSik~4 ): 

<k,k,l [JLs I k,k,) = <k,k,l U I k,k,) ( 1 - n,,ll.,.,l\,,,,) 
(40) 

In the numerical solution of the equation for the 
interaction amplitude, the integral with respect to the 
energy is replaced by a sum, which is terminated at a 
certain sufficiently large value of the energy. The 
integrand has a pole, and therefore the usual formulas 
of numerical integration were applied not to the sought 
integral, but to a difference, containing no pole, in the 
form 

f(x) -r/ (x-x.), (41) 

where r is the residue of the function f(x) at the pole 
xA. As a result, the integral equation reduces to a sys-

tern of algebraic equations, the solution of which calls 
for inversion of the matrix[181 • 

In the solution of the equation in the discrete spec­
trum, we took into account only the first excited state, 
and the contribution of the following levels was estima­
ted and turned out to be small. The integral over the 
continuous spectrum was replaced by a sum of 11 terms. 
In this case, to solve Eq. (18) it is necessary to invert 
a matrix of order 48. The error in the determination of 
the matrix elements of the amplitude of the interaction 
turns out to be :S: 10%. The calculations shown that, 
accurate to~ 10%, it is possible to neglect the inter­
action between the different states, for example, the 
interaction between the states np5 Ed and np5Es or nd9Ef 
and nd 9Ep, etc. Therefore Eq. (18) was solved for each 
subshell separately, and only the main transition, 
np- Ed or nd- Ef, was taken into account. At the 
indicated accuracy, it suffices to determine the correc­
tions to the photoionization cross section for the transi­
tions np- Es, nd - Ep, and ns - Ep in the first order 
of perturbation theory, by substituting the Coulomb 
matrix element in expression (21) in place of the inter­
action amplitude. 

7. The results of the calculations of the photoioniza­
tion cross sections of the outer shells of the atoms Ne, 
Ar, Kr, and Xe are shown in Figs. 6-9, together with 
the experimental data. In the single-particle approxima­
tion, the results are given with the wave functions 
cp~(LS) The cross sections aN(LS) and a~(LS) greatly 

<ll E • r v 

differ from each dther and from the experimental 
values, particularly in the vicinity of the ionization 
thresholds. At the same time it should be noted that the 
use of the single-particle wave functions cpHS, obtained 
in the Herman- i:killman potential [221 , gives much worse 
results[23•241 , although the sum rule is satisfied for 
them and the cross sections a~S and a~S coincide. 

Thus, the cross section for the photoionization of the 
4d10 subshell of Xe with the functions cpHS has a very 
narrow maximum, equal to 140 x 10-18 cm2, whereas the 
experimentally observed broad maximum is equal to 
30 x 10-18 cm2. The cross section aHS near the ioniza­
tion threshold exceeds the experimental value (with the 
exception of Ne) by a factor of 2. 

z J 5 
w, at. un. 

FIG. 6. Photoionization cross section of the L-shell of Ne. The ex­
perimental results are those of Samson [ 8]. 
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FIG. 7. Cross sections for the photoionization of theM shell (a) and 
L shell (b) of Ar. The experimental results are those of Samson [8 ] for 
the M shell and of Lukirskii and Zimkina [ 19] for the L shell. 
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FIG. 8. Cross section for the photoionization of theN shell (a) and 
M shell (b) of Kr. Experimental data: solid line-Samson [8]; X-Lukirskii 
et al. [20]; 0-Allen (taken from [8 ] ). 
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FIG. 9, Photoionization cross sections of the 0 shell (a) and theN 
shell (b) of Xe. The experimental data are those of Samson [8 ] for the 
0 shell and of Ederer [ 2 ] for the N shell . 

The photoionization cross sections with allowance 
for the multi-electron correlations in the RPAE ap­
proximation are in good agreement with experiment. 
Only at the ionization threshold of the L shell of Ar and 
for the 3d10 subshell of Kr do the deviations from ex­
periment exceed 20%. The cross sections aRPAE and 
a~PAE differ from each other on the averag~ by 5%, 
and therefore we show in all the figures only one 
aRPAE curve. Satisfaction of this condition makes it 
possible to monitor the quality of the calculations. 
Proximity to the experimental curve ensures satisfac­
tion of the sum rule for the aRPAE cross section. 

Thus, the process of photoionization of the outer 
shells of the noble-gas atoms is entirely a many-parti­
cle process in the sense that it involves the participa­
tion of at least all the electrons of a given subshell. 
The use of the high-density approximation for the elec­
trons of the outer shells give a satisfactory quantitative 
description of the photoionization process. 

The results make it possible to impose more strin­
gent requirements on the experimental data. The ap­
pearance of experimental data with accuracy ~ 3-5% 
would make it possible to obtain reliable information on 
the role of the corrections to the RPAE approximation 

Note added in proof (30 November 1970). The authors thank Prof. 
Hansel for reporting new measurement results on the photoionization 
cross section of theM shell of krypton (P. Schreiber, DESY Preprint 
F41-70/5, June 1970). The cross section aRPAE shown in Fig. 8b differs 
from the reported one by not more than 15%. 
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used in this paper, and would by the same token yield 
very valuable information on the structure of multi­
electron atoms. 

The authors are deeply grateful to A. B. Migdal and 
L. A. Sliv for interest in the work, and also to S. I. 
Sheftel' and M. P. Kazachkov for numerous discussions 
and help. 
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