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A quantum theory is presented for the modulation of an electron beam passing through a plate along 
which an electromagnetic wave propagates. It is shown that at optical frequencies the decisive role 
is played by quantum effects. The main result of the theory is that the degree of modulation has an 
entirely different spatial dependence than in the classical theory. The regions of strong modulation re
peat periodically in space over large distances behind the plate, where, according to the classical me
chanics, there is no longer any modulation. Radiation produced when a modulated electron beam inter
acts with the metallic screen is considered, and it is shown that it has a strongly anisotropic charac
ter. 

1. INTRODUCTION 

MoDULATION of a beam of electrons at frequencies in 
in the radio band has been investigated from all points 
of view, both theoretically and experimentally, and is 
widely used in radio engineering. As to the optical band, 
modulation was obtained here only quite recently in the 
experiments of Schwarz and Hora. [ 1 l A beam of fast 
electrons passed through a thin film placed in the field 
of the light wave from a laser. The resultant modula
tion led to the appearance of glow with the same fre
quency as the laser radiation when the beam was inci
dent on a non-luminescent screen. 

The classical theory used to describe modulation in 
the radio band is not suitable at optical frequencies, 
for the decisive role is played in this region by quan
tum effects. In the present paper we give a quantum 
theory of modulation of an electron beam and calculate 
the characteristics of the radiation excited by this beam. 
Some of the results of this theory and an explanation of 
the experiment of [lJ were published by us earlier.L 2 l 

The intersection of an electron beam with a laser 
beam in the absence of an additional body cannot in it
self lead to beam modulation, since the absorption of 
one or several photons from the laser radiation by the 
electron is forbidden by the conservation laws. The 
presence of a film makes this process possible, since 
the electron can receive the required momentum from 
the film. 

In the field of a laser wave, the material of the film 
becomes polarized and surface charges are produced. 
Interacting with these charges, the electron acquires 
(or loses) energy and momentum. In a sense, the sur
face of the film can be likened to a pair of grids to 
which a potential difference that alternates at the opti
cal frequency w is applied. 

Let us compare the classical and quantum descrip
tions of the optical modulation of an electron beam pass
ing through a film. In the classical description, the 
electron passing through the film is accelerated or de
celerated, depending on the phase of the field at the in
stant it crosses the surface of the film. The electrons 
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emitted from the films at different instants of time have 
different velocities. The fast electrons overtake the 
previously emitted slow electrons. This leads to spatial 
bunching, so that the current density is modulated at the 
frequency w and its harmonics. 

According to quantum mechanics, an electron passing 
through a film does not have definite energy or momen
tum. Its wave function represents a superposition of 
states resulting from the stimulated emission or absorp
tion of n quanta tiw (n = 0, ± 1, ± 2, .•. ). The modulation 
of the density and of the electron current is due to inter
ference of these states. The main result of the quantum
mechanical analysis is a spatial dependence of the de
gree of modulation essentially different from that in the 
classical theory (formula (19)). The discrete character 
of the absorption or emission of the photons causes re
gions where the modulation is large to repeat periodi
cally in space at large distances behind the film, where, 
according to classical mechanics, there is no longer any 
modulation (see Fig. 2). Only at small distances do the 
results of the quantum and classical analyses coincide. 

The characteristic distance l over which quantum ef
fects are significant depends on the frequency like w-2 

(formula (16)). In the radio band, the distance l is quite 
large, and the spatial bunching of the electrons is usu
ally missing becau8e the initial beam is not monochro
matic and the quantum effects do not come into play. In 
the case of modulation at optical frequencies, l is small. 

FIG. I. Splitting of an electron beam 
passing through a plate along which an elec
tromagnetic wave propagates, as a result of 
absorption and emission of photons with 
momentum hk. 
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FIG. 2. Dependence of the amplitude of the modulation M of the 
current at the frequency w on the distance z: a-N= 0.1, dashed
classical theory, b-N = 10, classical theory, e-N= 10, quantum theory 
(formula (19)). 

Thus, in the experiments of Schwarz and Hora, [ 1 l the 
value of l, according to our estimates, was "'0.9 em, 
and the distance from the film to the screen was 25 em. 
Thus, the effect observed in these experiments had a 
quantum nature. 

In Sec. 2 of the present paper we find the wave func
tion of an electron passing through a plate along which 
a modulating wave propagates. In Sec. 3 we determine 
the density of the electron current and calculate the 
depth of modulation. In Sec. 4 we consider the radia
tion produced when a modulated electron beam interacts 
with a metallic screen. 

2. FORMULATION OF PROBLEM AND SOLUTION 
OF THE SCHRODINGER EQUATION 

An electron beam can be modulated by different 
methods. To obtain the modulation it is necessary that 
the electrons pass through a region with a periodic field 
with frequency w changes strongly over a length shorter 
than or of the order of the distance traversed by the 
electron during the period of the oscillations. Such a 
sharp change in the field is possible only near the sur
face of a dielectric or a conductor. The concrete char
acteristics of a modulated beam depend on the geometry 
of the experiment, namely the orientation of the initial 
beam of electrons relative to the dielectric or conduct
ing body and the structure of the electromagnetic field. 
The real structure of the field is determined by the 
form and quality of the surface, and also by the condi
tions under which the radiation enters and leaves. 

For concreteness, we consider the passage of an 
electron beam directed along the z axis normally to an 
infinite plane-parallel dielectric plate. Let the modu
lating electromagnetic wave propagate along the x axis 
(see Fig. 1) and let it be described by a vector potential 
(a gauge with zero scalar potential): 

AM(r, t) = A(z) sin (wt- kx). (1) 

The explicit form of the function A(z) and the value of 
the wave number k = w /eM depend on the mode excited 
in the plate, and CM is the phase velocity of the wave. 

On the surface of the plate, the normal component of the 
vector A experiences a jump 

A.,(-d/2) =eA,,(-d/2), eA,,(d/2) =A,,(d/2), (2) 

where E is the dielectric constant of the plate, and the 
indices 1, 2, and 3 pertain respectively to the regions 
z s -d/2, -d/2 s d/2 and z 2: d/2. 

We denote by e, m, p0 , and E0 , respectively, the 
charge, the mass, the initial momentum, and the energy 
of the electron, and we introduce the amplitude of the 
electromagnetic field of the wave I! (z) = - w A(z )/c. 

We shall assume the following conditions to be satis
fied: 

1) The electron is not relativistic, E0/mc2 << 1, 
Po= mv. 

2) The amplitude of the variation of the electron ve
locity in the electromagnetic wave is small compared 
with the initial velocity, le8 /mvw I<< 1. 

3) The quantum energy is small compared with the 
electron energy, nw/E0 << 1. 

4) The electron wavelength n /p0 is small compared 
with the characteristic distance (on the order of the 
atomic distance) at which the actual field jump described 
by formula (2) takes place at the surface of the plate. 

The modulation phenomenon is complicated by side 
effects-diffraction of the electrons and their slowing 
down in the plate. We shall not consider these effects 
here, but only the non-diffracted beam, assuming the 
plate to be sufficiently thin to be able to neglect the 
electron energy losses. 

We find the wave function of an electron passing 
through a field (1) from the Schrodinger equation 

a"' li' , ieli 
iliTt =- Zm V ljJ + -;;;:;;sin(wt- kx)A(z) V¢. (3) 

The terms proportional to A2 and div A have been 
discarded by virtue of conditions 2 and 4, respectively. 
When z -- 00 , the wave function 1/J, which describes the 
initial beam, is of the form 

( iE0t ip0z ) 
IJl=exp ---+--

It It '· 
~-+- 00, (4) 

We seek a solution of (3) in the form 

(5) 

where 

E.= E, + nliw, p. = (nlik, 0, "fp,' + 2nmhw- n'li'k'); (6) 
E.=p.'/2m. 

Actually, by virtue of the condition 2, a decisive role 
will be played in the sum (5) by terms with lnl 
<< E0 /ti.w. 

Substituting the series (5) in (3), we obtain a system 
of differential equations for the functions fn(r) 

in li' ie 
-;_ (p. V /.) + Zm V'/. = Zmc A (Pn+t- iliV) f•+• exp[ i(Pn+t- p.) ,zfli] 

ie 
- 2mc A(p._,-iliV)f._,exp[i(p._,-;-P•'),z/li] (7) 

with the boundary condition 

/.(r) =II., as z-+-oo. (8) 

As seen from (7) and (8), the functions fn depend only 
on the coordinate z. According to condition 4, the func-
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tions fn change noticeably over distances much larger 
than the electron wavelength; therefore the terms con
taining tiVfn can be neglected in (7) compared with 
Pnfn. In addition, the quantities Pn ± 1 and Pn can be 
replaced by Po everywhere with the exception of the 
arguments of the exponentials. This results in an error 
on the order of lnltiw/E0 <<Lin the determination of 
the amplitudes fn. We retain in the arguments of the 
exponentials the first term of the expansion of the dif
ference ( Pn ± 1 - Pn)z in powers of nti w/E0 • The next 
terms of the expansion will be discarded, assuming that 
the region where the field A(z) differs from zero is 
bounded by the inequality Jzl « l/lnl = (41T/lnl)(v/w) 
X (E0/tiw) (for values of n that play an important role 
in different cases, see below). Following the indicated 
simplifications, the system of equations (7) reduces to 

(9) 

As can be verified by direct substitution, the system 
(9) subject to the boundary condition (B) has the follow
ing solution: 

/n(z) = ln(p(z))exp[-irnp(z) +inn], (10) 

where Jn is a Bessel function of n-th order, and the 
real functions p(z) and cp(z) represent the modulus and 
the phase of the complex expression 

p(z)exp[icp(z)]=li:_t dz,A,(z,)exp\i: z,). (11) 

We are interested in the wave function lf! of an elec
tron passing through a plate in a region where there is 
no modulating field A(z). In this region, the functions 
p(z) and cp(z), and consequently also the amplitudes 
fn(z), become constant. We put p(oo) =N, cp(oo) = <1>, so 
that 

N exp(i<D) = ~c I dz, A,(z,)exp ( i ~ z,). (12) 

Finally, the wave function of the electron takes in the 
indicated region the form 

) {I [ iEnt ipnr ] 
IJl(r,t = n~ln(N)exp --li-+-li--in<D+inn . (13) 

The quantity J~(N) is the probability of absorption or 
stimulated emission of n photons, in accordance with 

00 

the fact that 6 J~(N) = 1. The physical meaning of 
n=-"" 

the parameter N is determined by the equation 
~ 

.~}'ln'(N) = N', (14) 

from which we see that N is the rms number of modu
lating-radiation photons absorbed by the electron. The 
rms number of emitted phonons is also N, since J~(N) 
= J:n(N). It is seen from the last equation that the av
erage energy acquired by the electron during the modu
lation process is equal to zero, so that no field energy 
is consumed. 

Expression (13) is a general solution of our problem 
for the class of fields that can be represented in the 
form (1). The values of N and <I> determined by formu
la (12) depend on the concrete form of the field. We 

present by way of an example these values for the case 
of a TM wave propagating along a thin (kd << 1) dielec
tric plate. In this case k ~ w/c, eM~ c, and 

c {exp [q (z _+ d/2)], z <- dt2, 
Az(Z)= --i£z e 1 , -dJ2<z<d/2, 

w exp[-q(z-d/2)], z>df2, 

where q = (e:- 1)(2e:f 1(kd)k << k, 0z is the normal 
component of the electric field on the outer side of the 
plate surface. We then get from (12) 

e -1 2e/F,v wd 
N exp(i<D) =----.-sin-'-. 

e liw' 2v 

We see therefore that by virtue of condition 2 the in
equality N << E0 /tiw holds. We note that when wd/2v 
<< 1 the quantity N does not depend on the electron 
velocity and constitutes the ratio of the additional po
tential difference e 0zd(e:- 1)/e:, resulting from the po
larization of the plate to the quantum energy tiw. 

3. CALCULATION OF THE ELECTRON CURRENT 

In the preceding section we calculated the probabili
ties of stimulated emission or absorption of n photons. 
In this section we consider the interference between 
states resulting from absorption or emission of differ
ent numbers of photons. This interference leads to 
modulation of the density and of the current of the elec
trons at a frequency w and its harmonics. 

Upon absorbing (emitting) a photon, an electron ac
quires a momentum component equal to tik (or minus 
tik) along the x axis (see formula (6)). This causes the 
partial currents corresponding to different n in (13) to 
have different components along the x axis. These 
components, however, are quite small compared with 
the current components along the z axis, since 
In ltik/p0 ~ Ntik/p0 << 1. Therefore the current density 
per electron and per unit volume can be written in the 
form j(r, t) ~ ev ll/J(r, t) 12 • Effects connected with non
parallelism of the partial currents will be considered 
below. 

We start with an important particular case, when the 
parameter N << 1. Only such a situation has been re
alized so far experimentally. [ 11 We note that the classi
cal description of modulation with N < 1 is certainly 
not valid. In this C::).se the modulation at the frequency 
w is determined only by single-photon transitions. We 
retain in formula (13) only terms with n = 0 and± 1, 
and confine ourselves to the first term of the expansion 
of the Bessel function Jn(N) in terms of N. We then ob
tain 

. ·[ ,ltZ, (X Z Ill)] J(r,t)=Jo 1+2Nsm-smw t----+- • 
l c.,. v (J) 

(15) 

where j 0 is the current density in the initial beam. Ex
pression (15) can also be obtained by solving the Schro
dinger equation (3) in first order of perturbation theory. 

An important feature of formula (15) is the periodic 
dependence of the depth of modulation on the distance z, 
with a period l. Accurate to small terms of order 
(v / c )2 and (tiw/E0 ) 2, we have 

l=4n__z:__Eo. 
w liw (16) 
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This essentially quantum periodicity, first noted in [2 l, 

has not yet been observed experimentally. 1> It has the 
following origin: interference of states with n = 0, n = 1, 
and n = 0, n = -1 leads to the formation of two travel
ing modulation waves with frequency w. These waves 
have identical phase-velocity components along the x 
axis, equal to eM· However, the phase-velocity compo
nents of these waves along the z axis, equal to 
tiw/(pl- P0 )z and tiw/(p0 - p_ 1)z, differ by a small 
quantity vtiw/2E0 (see formula (6)). The beats between 
these modulation waves in the region of their overlap 
are the cause of the periodic dependence of the depth of 
modulation on the distance z. 

Let us now consider the general case of arbitrary N. 
The principal role is then played in the sum (13) by the 
terms with In I ~ N. The electron density is determined 
by the expression 

11Jl(r, t) I'= £ln(N)lm (N)exp[- i(n- m) (wt- kx + <D- n) 
nm (17} 

+ i(Pn- p;,),z/fi]. 

At not too large values of z, expression (17) can be 
written in a more compact form, by expanding the dif
ference (Pn- Pmh in powers of the small parameter 
tiw/E0 up to the quadratic term inclusive (v:Yc 2 << 1): 

(n-m)fiw fiw fiw 
(pn-Pm),::::: -(n'-m')--. (18} 

V V 4Eo 

The current density can then be represented in the 
form of the following series of harmonics with frequen
cies s w :2> 

. . { ~ ( . nsz ) [ ( wz n ) ] J(r,t)=Jo 1+2 '-''' 2Nsm-1- cos s wt-kx----;;-+<D- 2 
8=1 

(19) 

where the parameters N and <I> are determined by for
mula (12), and the length l by formula (16). In the deri
vation of (19), after making the substitution m = n + s, 
the summation over n was carried out with the aid of 
the formula [ 3 l 

;~oo l,(N)l,+.(N)exp(ir<D) =I. ( 2Nsin ~ )exp[iv(n- rp)/2]. 

Expression (19) contains formula (15) as a particular 
case corresponding to N << 1. 

An estimate of the terms discarded from the argu
ment of the exponential ( 17) when using the approximate 
expression (18), with allowance for the fact that In I, 
I m I ~ N, gives the condition for the applicability of 
formula (19). Namely, the expression for the amplitude 
of the s -th harmonic in ( 19) is valid when sz << ( l/N2) 

X (E0 /tiw ). 
The constant-modulation-phase surfaces are parallel 

to the y axis and propagate at an angle x =tan -l v /eM 
to the x axis. 

When sz << l, the sine function in the argument of 
the Bessel function can be replaced by 1rsz/l. Then the 
expression for the amplitude of the s-th harmonic of the 

!)Note added in proof (24 November 1970). This quantum period
icity was recently observed experimentally (private communication 
from H. Schwarz). 

Z) The constant phase - (s + I) rr /2 was omitted from the analogous 
formula of [2]. We are grateful to L. S. Cutler and B. M. Oliver for 
pointing out this circumstance. 

current ceases to depend on the Planck constant ti, and 
goes over to its classical limit Js (sz/l0 ). Here 

(20) 

is the characteristic length over which the depth of 
lll)dulation changes significantly in accordance with the 
classical theory.[ 4 J When z >> l 0 , the depth of modula
tion becomes small. The remarkable difference between 
the quantum formula (19) and the classical one lies in 
the fact that the regions of large modulation at the fre
quency s w repeat periodically in space with the period 
l/s. The most surprising thing is that when N >> 1 a 
high degree of modulation arises periodically at dis
tances (z ~ l, 2l, 3l . . . for z = 1) at which there is 
practically no modulation in accordance with classical 
mechanics ( l >> l 0 , see Fig. 2). 

The origin of the periodicity has already been dis
cussed earlier for the case N << 1. When N >> 1 there 
are many modulation waves at the frequency sw, due to 
the interference between the states with indices n and 
n ± s in the sum (13). For these waves, the components 
of the phase velocities stiw/(pn +S - Pn)z along the z 
axis differ in the approximation (18) for different n by 
an amount that is a multiple of (v /2)(tiw/E0 ). The beats 
between all these modulation waves give rise to the spa
tial periodicity with period l/s. When sz > (l/N2) 

x (E0/tiw ), the terms discarded in the expansion ( 18) 
come into play, and the periodicity is violated. 

So far we have described the initial beam of elec
trons by means of a plane monochromatic wave. Let us 
now consider effects connected with nonmonochromatic
ity of the beam and its boundedness in the xy plane. 
The scatter of the values of the momenta of the elec
trons in the initial beam ( APz and Ap 1 ) leads to a 
smearing of the modulation at large distances. It is 
seen from (19) that in order to observe modulation with 
frequency sw at a distance z it is necessary to have 

!lp, I Po < V I swz. (21) 

It can be shown that the condition imposed on the scat
ter of the momentum components in the xy plane is 
somewhat weaker: 

llP.L I Po < C I swz. (22) 

Obviously, the scatter Ap 1 and the beam diameter are 
connected by the uncertainty relation Ap 1 D ;:, ti. 

On passing through the plate, the wave packet charac
terizing the real bounded beam splits into a series of 
wave packets propagating in slightly different direc
tions at angles ntik/p0 to the z axis (see formula (6)). 
The modulation due to the interference of the wave pack
ets with different n takes place only in the region of 
their overlap. The wave packets n and n + s overlap 
at z < Dp0/stik and, according to condition (22), the 
modulation in this entire region will not be smeared out 
if Ap 1 ~ ti/D. The formula for the current density ( 19) 
is valid at distanc~s z bounded by the conditions (21) 
and (22), in a region where all the wave packets with 
lnl ~ N overlap. When Ap1,:: Ntik, such an overlap al
ways takes place, and when Ap1 << Ntik it takes place 
only at distances z < Dp0 /2Ntik. (In the case N < 1, N 
should be replaced by unity in the foregoing estimates.) 



QUANTUM THEORY OF MODULATION OF AN ELECTRON BEAM 55 

In the general case, there exist regions where only 
certain wave packets overlap. In these regions, modu
lation exists if the conditions (21) and (22) are satisfied, 
but it is not described by formula (19). By way of an ex
ample, Fig. 1, which pertains to the case N << 1, lip 1 
< tik, shows the picture of the overlap of the wave pack
ets n = 0 and ± 1. In the doubly-hatched region all 
three packets overlap, so that beats are produced be
tween two traveling modulation waves at the frequency 
w, and formula (15) is valid. In the singly-hatched re
gions there is only pairwise overlap of the packets 
n = 0, n = 1 with the packets n = 0, n = -1; here the 
degree of modulation does not depend on the distance. 
In the case N Z 1 the picture becomes more compli
cated, but it can be readily established in similar fash
ion. 

In concluding this section, let us emphasize the very 
general character of the representation of the wave 
function of an electron interacting with an electromag
netic wave in the presence of an additional body, in the 
form of a superposition of states resulting from absorp
tion or emission of n photons. Of course, the ampli
tudes of these states depend on the concrete form of the 
field and on the geometry of the experiment. But the 
character of the modulation of the electron current, and 
particularly the spatial dependence of the depth of modu
lation, is determined by purely kinematic relations. 
This circumstance greatly facilitates the analysis of dif
ferent cases that might be of interest in connection with 
experiments on modulation. Thus, the results can read
ily be generalized to the case of relativistic beams. The 
use of the relativistic connection between the energy 
and momentum gives the following expression for the 
characteristic length l that enters in (15) and (19): 

v p0v [ v' ( c' ) ]-' l=2n-- 1-- 1--
(J} /iro C2 CM2 

(23) 

The velocity v in (15), (19}, and (23) is now determined 
by the relation v = p0c(p~ + m2c2)-112 • In the nonrelati
vistic limit, expression (23) goes over into (16). 

4. RADIATION OF A MODULATED ELECTRON 
BEAM 

When a modulated electron beam interacts with some 
body, a conductor or a dielectric, radiation is produced 
at the modulation frequency w and its harmonics. This 
m::>nochromatic radiation appears against the background 
of a broad continuous spectrum of the radiation existing 
in the absence of modulation (transition radiation, 
bremsstrahlung, and luminescence). Which of the radia
tion mechanisms is the most effective depends on the 
dielectric constant. The intensity of coherent radiation 
is proportional to the square of the current, whereas in
coherent radiation is linear in the current. We are in
terested here only in coherent transition radiation due 
to modulation. In this section we calculate the intensity 
and the angular distribution of this radiation, andre
gard expression (19) as a classical current. 

For concreteness, we consider a situation when the 
screen is an ideal conductor. The modulated electron 
beam directed along the z axis strikes a flat metallic 
screen placed perpendicular to the xz plane. (We re
call that the x axis coincides with the direction of prop-

FIG. 3. Radiation with wave vector 
q8 is produced when the electron beam 
A, modulated in the plate B, strikes the 
metallic screen C. A' is the mirror image 
of the beam. 

agation of the modulating wave.) We denote by the letter 
a the angle between the normal to the surface of the 
screen and the z axis (see Fig. 3). 

We assume that the electrons are completely ab
sorbed on the surface of the screen. Then, assuming 
the metal to be ideally conducting, we can calculate the 
radiation field by taking as the source the real modu
lated electron current and the current of the mirror im
age in the metal. 

A similar approach was used in a paper by Rubin.£5l 
It is convenient to introduce a coordinate system 

x' y' z' connected with the screen, so that the origin co
incides with the center of the "electron spot" on the 
screen, the z' axis is in back of the screen normal to 
its surface, and the y' and y axes coincide. The vec
tor potential Ag(r'), which determines the radiation 
field of the s -th harmonic, is 

') exp(tq,r') J. ( ) ( . )d' A,(r = cr' l• r, exp - 1q,r1 r., (24) 

where the wave vector qs (qs = sw/c) is directed from 
the origin of the system x'y'z' to the observation point 
r'. The current density entering in formula (24} is of 
the form 

j,(r') =(-sin a, 0, cos a)j,(x', y', z') for z' < 0, 

j,(r')=(sina, 0, cosa)j,(x', y', -z') for z' > 0, 

where, in accordance with formula (19}, 

(25) 

j,(x'y'z') = j,l, ( 2N sin nst•) exp[isxr'- is!D- isn/2 + iswz,Jv]; 

x,, = ~ (-sin a+ tgxcos a), Xy• = 0, x,. =~(cos a+ tgxsina); 
v v 

tgx= v/cM. (26) 

The wave vector K is directed normal to the surface 
of constant modulation phase of the electron beam. In 
the coordinate system xyz, the components of this vec
tor are equal to wlcM, 0, and w/v, respectively. The 
angle x determines the inclination of these surfaces to 
the xy plane. z0 is the distance between the origins of 
the systems xyz and x'y'z'. In formula (26), the vari
able z in the argument of the Bessel function has been 
replaced by z0 , since the main contribution to the inte
gral (24) is made by the small region of the "electron 
spot" near z' = 0, with thickness on the order of c/sw. 
In a real situation, the linear dimensions of this region 
are small compared with the length l, so that the Bes
sel function remains practically unchanged here. 
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Two qualitatively different cases can occur, depend
ing on whether the wavelength of the modulating radia
tion 2JT/k is larger than or smaller than the diameter 
of the electron beam D. If skD >> 1, then the phase of 
the modulation varies periodically within the limits of 
the spot in the direction of x', and travels over the 
screen. This leads to a sharp directivity of the excited 
radiation, with a divergence on the order of (skDf 1 • 

When skD << 1, the phase of the modulation of the elec
tron current remains constant over the cross section of 
the beam. It is therefore obvious that the light will be 
emitted in a wide angle interval. The first case, skD 
>> 1, is most interesting and will therefore be consid
ered below. 

Substituting the expression for the current density 
(25), (26), into (24), we obtain the vector potential 
As(r') and we calculate the radiation intensity of the 
s-th harmonic per unit solid angle n 

dW, 8n 1.' ( sin(x- a) v' . )' 
---,::;-=- 8-- +,-sma ll(q .. ,-sx,,)ll(q •• ,), {27) 
d" c cos a cos x c 

where 

( nsz,) I,(z,) = j,SJ, 2Nsin-1- , {28) 

S is the cross section area of the electron beam. 
The radiation direction is determined by the two o 

functions in (27). The radiation propagates in the x'z' 
plane at a certain angle to the x' axis, which we shall 
denote by (} , and is linearly polarized in the same plane 
(Ay')= 0). The value of the angle (} is determined by the 
equations cos (} = qsx' /q s and qsx' = sKx', from which 
we get with the aid of {26) 

cosS = c sin(x- a). 
eM sin X 

{29) 

Thus, the direction of the radiation depends on the ratio 
of the phase velocity of the propagation of the modulating 
electromagnetic wave CM to the velocity of light in vac
uum c, and on the angles a and x characterizing re
spectively the orientation of the screen and the propaga
tion direction of the phase of the modulation wave. Ra
diation is not produced at any screen orientation, but 
only if a lies in a certain limited interval of angles. In 
the case when the difference between the values of CM 
and c can be neglected, this interval is given by the in
equality 0 :5 0! ::; 2 X· When the screen is rotated, cor
responding to a variation of a from 0 to 2x, the angle 
(} runs through values from zero to JT. When a = x, the 
plane of the screen coincides with the constant-phase 
plane of the modulation. If a is smaller (larger) than 
x, then the modulation wave travels over the screen in 
the positive (negative) direction of the x' axis. Accord
ingly, when a< x we have (} < JT/2, and when a > x 
we have (} > JT/2. 

In the nonrelativistic limit, x = v /eM << 1, so that 
the permissible interval of angles a is very small. The 
radiation intensity varies in this case, in accordance 
with (27) and {29), like cos 2 (}. We note, however, that 
the angular dependences given by formulas {27) and (29) 
also hold for relativistic beams, since these depend
ences are the consequence of relativistically invariant 
kinematic relations. 

Strictly speaking, the 6 functions in (27) are obtained 
in the limit skD- oo. At large but finite values of this 
parameter, the 6 functions are replaced by sharp func
tions with width "'D- 1 • Thus, the radiation occurs in a 
narrow angle interval A(J "' {skD)- 1 about the value of 
(} determined by formula {29). We note that the radiation 
direction is the same for all harmonics, but the angle 
divergence decreases with increasing number of the 
harmonic s. 

The expression {28) for Is is valid wherever for
rrul.a (19) is valid, but formula (27) has a more general 
character. It describes radiation emerging from one 
region of intersection of the modulated beam with the 
screen. On the other hand, if the splitting of the elec
tron beam which was discussed in Sec. 3 gives rise to 
several such regions, then each of them will serve as a 
source of radiation with an angular distribution given 
by the same formula (27). All that changes is the value 
of Is, which is proportional to the depth of modulation 
in the given region. 

In the experiment of Schwarz and Hora, the parame
ter (kD)- 1 was of the order of 0.1. They did not, how
ever, observe the sharp directivity of radiation ob
served here. This can be attributed to the fact that the 
surface of the employed screen was not flat accurate to 
within the wavelength of light. Formulas (27) and (28) 
make it possible to estimate the intensity of the coher
ent transition radiation in this experiment, w1 "'10-14-
10-13 W, corresponding to emission of 104-105 quanta 
per second. This quantity can readily be observed. How
ever, if it is compared with the intensity of incoherent 
radiation, an essential difficulty arises in the interpre
tation of the Schwarz and Hora experiment. [ 1 l 31 The 
ratio of the intensity w1 to the incoherent transition 
radiation in the frequency interval Aw [6 1 is of the or
der of (Io/eAw ){I di 0 ) 2 • In the case of visual observa
tion, Aw"' w, and this ratio at a current I 0 = 1 J.J.A[ 11 

is much smaller than unity, thus contradicting the data 
of Schwarz and Hora, according to which no glow of the 
screen was observed in the absence of the laser radia
tion. The line width of the excited beam of coherent ra
dition A Wk is determined by the nonmonochromaticity 
of the modulating laser light. In the small frequency in
terval A w k• the intensity of the coherent radiation in 
[ 11 exceeded by many orders of magnitude the intensity 
of the incoherent radiation. 

In conclusion we note that a large circle of problems 
connected with modulation of electron beams at optical 
frequencies has not yet been studied experimentally. It 
would be quite interesting to observe the features of this 
phenomenon which were considered theoretically in the 
present article, namely the periodic dependence of the 
depth of modulation on the distance, the splitting of the 
electron beam, the directivity of the resultant radiation, 
and others. 

Further experimental research on this phenomenon 
is essential. 

3> B. Ya. Zel' dovich was the first to call attention to this circumstance. 
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