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The contribution made to the thermodynamic functions of a gas by resonance scattering of atoms, 
some of which are excited by an external agent (for example, a source of resonance light}, is inves­
tigated. It is shown that under normal conditions such a system is essentially nonideal, so that the 
second virial coefficient is three orders of magnitude larger than that for an equivalent elastic­
sphere system. 

1. Let us consider a gas consisting of atoms in their 
ground state and atoms of the same kind in an excited 
state connected with the ground state by an allowed di­
pole transition. A stationary population in the excited 
state can be maintained in the system by a resonance 
light source, for example. If the concentration of ex­
cited atoms is not too small, the main contribution to 
the interaction energy of the system is due to the strong 
dipole-dipole interaction of excited and unexcited atoms. 
The resonance dipole-dipole interaction gives a nonvan­
ishing contribution to the interaction energy in first­
order perturbation theory, whereas in an ordinary van­
der-Waals gas this contribution appears in second-order 
perturbation theory. Owing to this the cross section for 
resonance scattering of the atoms is rather large both 
in the elastic-scattering channel: 

A.' +A,-+A.' +A,, (1} 

and in the channel for resonance transfer of excitation 
by collision: 

A.' +A,-+A, +A.', (2) 

where the prime corresponds to the excited state of the 
atom. For example, at normal temperature the cross 
section for resonance scattering of hydrogen atoms 
(2p - 1s) is a= 3.1 x 10-13 cm2 • [1J 

Since the approximation of the system to a thermo­
dynamically ideal gas depends on the ratio of the scat­
tering amplitude to the mean distance between particles, 
we can expect a considerable contribution from the res­
onance scattering to the thermodynamic functions of this 
system. We note that the system is not in thermodynamic 
equilibrium, since the population of the excited state is 
fixed by the external source and is not determined by 
the Gibbs distribution. Therefore in the general case 
it is not legitimate to calculate the trace of a density 
matrix of the form exp {- H/T}. However, if there is 
time for equilibrium of the relative motion of the atoms 
to be established in the system, a thermodynamic de­
scription of this system is possible. We shall here deal 
with this case and take into account the contribution of 
the scattering of the atoms to the thermodynamic func­
tions of the system, since the "collision time" T 

~ a112 jv ~ 10-12 sec, where vis the mean relative 
velocity of two atoms, is always much smaller than 
the lifetime of the excited state of an atom. If the for­
mation of bound molecular or quasimolecular states is 
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possible in the collision of excited and unexcited atoms, 
inclusion of these states in the partition function with 
the Boltzmann weight is scarcely justified, when the 
lifetime of the excited state of the atom is rather small. 
Therefore we confine ourselves to the consideration of 
systems in which formation of bound states certainly 
does not occur, and include only the contribution of the 
interaction to the thermodynamic functions in the con­
tinuous spectrum. Furthermore we shall assume that 
T << Eexc• so that the contribution of thermally excited 
states to the thermodynamic functions can be neglected. 
An example of such a system is a volume filled with 
mercury vapor located in the radiation field of a mer­
cury lamp. 

We note that estimates of the contribution of bound 
states to the thermodynamic functions of a system have 
been given previously, [2 ' 3 l but the interaction of the 
atoms in the continuous spectrum was neglected. If 
there are no bound states, it is this interaction that 
causes the deviation of the system from ideal properties. 

2. To find the contribution of two-particle interac­
tions to the thermodynamic functions it is necessary to 
calculate the second virial coefficient. We shall assume 
that the contribution of excited atoms is not too small. 
Then the main contribution to the nonideality of the sys­
tem comes from the interaction of excited and unexcited 
atoms. Therefore in calculating the second virial coef­
ficient we take only this interaction into account. 

Since the scattering cross section is much larger 
than the geometrical cross section, the effective range 
of the interaction is rather large, and we can write for 
the interaction operator 

(d.d,)R'- 3(d.ii) (d,R) 
R' 

[; (3} 

where d1, 2 are the dipole moments of the atoms and R 
is the distance between them. 

We note that the contribution of higher multipole 
terms to the interaction operator goes to zero, since 
by hypothesis the excited state of the atom is connected 
with the ground state by an allowed dipole transition. 

For simplicity we hereafter assume that the dipole 
moments of the colliding atoms are directed along the 
vector R (rotating atom approximation). The accuracy 
of this approximation has been discussed, for example, 
in [4 l. The expression for the interaction operator then 
takes the form 
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{j = - 2d,, d,, 
R' ' 

(4) 

where d1z and dzz are the projections of the dipole mo­
ments along the axis connecting their nuclei. 

In this case the wave function of the system of two 
atoms (excited and unexcited} can be put in the form 

{5) 

where i/Ji{R) describes the motion of the nuclei in chan­
nels 1 and 2, and cp.Ai and ctJAi are the respective elec­
tronic wave functions for the ground and excited states 
of an atom.u It is readily seen that when we use (5) the 
original Schrodinger wave equation reduces to the fol­
lowing system of equations for the functions l/11 and i/12 
(cf., e.g., [ll): 

where 

and T is the kinetic-energy operator for the relative 
motion of the atoms. 

{6) 

{7) 

In the case of exact resonance (E 1 = E2 = E) the sys­
tem {6) reduces to two independent equations for the 
functions if<±> = i/1 1 ± i/12: 

[T- (e- U<±>)]'Jl<±> = 0, {8) 

where u<±>{R) = 'F Ia I/R2 • The functions cp(±) describe 
states symmetric and antisymmetric under interchange 
of the atoms. Consequently, the problem of scattering 
in channels 1 and 2 effectively reduces to the problem 
of the elastic scattering of "quasibosons" and "quasi­
fermions" in the respective fields u<+>(R) and u<->(R). 

The calculation of the trace of the operator 
exp {-p2 jm T} by means of the eigenfunctions cp <±> 
leads to the following generalization of the well known 
Beth- Uhlenbeck formula tal for the second virial coef­
ficient: 

2'f2 w P./i' I i){j(+)(k) 
B = ----;-1.' f dkexp{-~k'}[ .E (21+ 1)~ 

0 I (9) 

+ .E" (21 + 1) iJ{j::(k) ]. 
I 

where L' and L," denote summations over even and odd 
l, respectively, o j± >(k) are the scattering phase shifts 
in the potentials u<±l, .\. = {27Tti2 j3/m)1/ 2 , and f3 = 1/T. 
Accordingly, to get the contribution of the interaction 
of the atoms in the continuous spectrum it is necessary 
to calculate the phase shifts o}±l(k}. 

3. Because of the large range of the interaction we 
can calculate oj±>{k) in the quasiclassical approximation: 

1lThe expression (5) does not take into account transitions with 
change of the angular-momentum projections of the colliding atoms. 
The treatment given in [ 5 ] shows that inclusion of such transitions 
leads only to an unimportant change of the numerical coefficient in the 
final expression for the cross section. Therefore for simplicity we shall 
here use the wave function in the form (5). 

6j±> = ~ V k'- ;: - 2m,Y.±> dr- ~ V k2 - ::·dr. (10} 
r~±) T1 

Here r~±> and r 1 are the turning points of the classical 
motion in the fields u<±> and of the free motion, respec­
tively. Using the traditional expansion of the integrand 
in {10) in powers of 

a "" 2m~<±> / ( k' - ~' ) 

and also taking r~±> = r 1 in first approximation, we get 
for the first-approximation phase shifts ot)(l) the for­
mula 

{j<±Xt>_ +l f dz - l (11) 
1 -- V ,z'(1-1/z')'f,-± y, 

where 

V = m/a/k/ li'l'"" lo'fl', 

z = kr/l is the dimensionless coordinate, and z1 = kr 1 /l 
= 1 is the dimensionless turning point in the free motion. 

Since o t> <1> = - o ~-)(1>, the contribution to the second 
virial coefficient (9) from the phases ot> <1> is deter­
mined by the derivative aotu>;az. Since ot><2 > 
» aot> u> ;az, it is necessary to calculate higher ap­
proximations for the phase shifts o ~±>. Simple estimates 
show that the higher-order approximations ot><2 >, ot><s>, 
etc. make contributions of the same order of magnitude. 
Accordingly it is necessary to sum the whole infinite 
series of the expansion of ot> in powers of a. Further­
more, in the calculations of higher approximations it is 
necessary to take into account the difference between 
the turning points z~±> and z 1• For this the expansion in 
the parameter a is not convenient. 

We proceed in the following way. We put {10} in the 
form 

(±) sw [V 1 zv v--1 l (±) 6, = l 1--±-. - 1---,- dz +ill), 
c zz z~ zz " 

{12) 

where 

(+) "~- v 1 2y . ~ v--1 .:1.6,- =l 1-~+-dz-t\ 1--dz, {13) 
z<l - z3 , J zZ 

z~±) Z1 

z~±> :;:,j 1 ± y, z 1 = 1, and C is a limit not yet determined. 
Expanding the first square root in {12) in powers of 
{1/z2 ± 2yjz 3) and the second in powers of 1/z2, we get 
the following expression for at>- !lot>: 

6,(±)_/l{j,<±)=-ls~ (2n-1)!! ~ n! 
.i..J (2n)!!(2n-1) .i..J p!(n-p)! 

p=l (14) 

If we choose C > 1, this series converges uniformly in 
the entire range of integration and can be integrated 
term by term. Therefore it is convenient to choose 
C = z~-> > 1. Integrating {14) term by term and also 
using the identity 

d 

Zo =A ( 
(-)3p-! 1 ) A [ 1 ] 

z(-)2n+p-t - z< )2n+p-1 ' 
0 0 
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we get for each term of the series in the sum over p: 

lll±X•+<> = ± 2y A [z (=f 2y)• ~ (2n -1.) !I nl 
p+1 pi .l..J (2n)!!(2n-1)! (n-p)! 

n=p 

X 1 1 (1 __ 1_)] 
2n + p - 1z\ >••+• 1 2n + p 

We obviously make no great error if we neglect the term 
1/(2n + p) in comparison with unity in the last parenthe­
ses. Then the expression in square brackets is equal to 
at><Pl; that is, we have the recurrence relation 

ll,<±X•+<l (z~->) ~ ~=f~yl A [ll,<±X•> (zJ-> )], (15) 

which allows us to express the correction in any order 
in terms of at> (l): 

ll <±X•>~ (=f2y)'-'A~•-•[£<±X•>( H)] 
l ,_, nl _ VJ .Zo • (16) 

To get the ar<11 (z~->) themselves, there is no need to 
sum the series (14) over n for p = 1. It is readily seen 
that this series is the ordinary expansion in powers of 
a, with a further expansion in powers of 1/z 2 made in 
each term, and with C = z~-> taken instead of the lower 
limit. Therefore it is easy to get the required expres­
sion for at><11 (z~->) from (11), by replacing unity as the 
lower limit by the quantity z~->: 

ll<±><•> _ 1 c a; _ ( • I 1 ) <17) 
z - ± V <~> z'(1 -1/z')'l• - ± ly 1- V 1- z~-)0 • 

•• 
By means of (15), (16), and (17) we get up to terms 
~1jl0 «1: 

ll!±J(p) = + (=f1 )p-1 yP l (2p- ~)!! 1 ' 
- p! (2p- :l) z~-lP (f.z~->• -1)"P-• 

p= 2, 3, ... , 

and use of the explicit expression for z~-> then gives 

(18) 

ll, <±X•l~ ± (=f 1)•-'(2y)'l> (2P- 3) II l + O(y'l•); 
(2p) 1((2p- 3) 

p=2,3, ...• 
(19) 

To this same accuracy calculation of Ll.at> from (13) 
gives 

• (+) 7 'll ulli =--=v' 3)'2 ~ 

When we carry out the sum over p in the expression 

p=2 

we get the final result 

16-51'2 ' 1 
ll,<-> =- v "l- vz, M+> =- -=-v't,z + yl. (20) 

~ 6y2 

We shall now use these expressions to calculate the 
second virial coefficient. In doing the sum over l in the 
integrand of (9) we must allow for the fact that the sum 
containing aj+> is taken over even l and that with at> 
over odd l: 

- ' all<+l ·" ,_, 
~ (21+1)-' + ~ (21+1) ollr 
.l..J ok .l..J ak 

Jo · l0 

In this expression the summation can be replaced with 
an integration between the limits l0 /2 and oo: 

~~ ~" s· (jlj(+l(2p) s· ao<->(2p + 1) 
.l..J + .l..J ~ 4p-~dp + 4p {)k clp 

'•" 1,12 (21) 
l,' l,' 

~ -L8k+2k. 

Substituting (21) in (9) and doing the integration over k, 
we get the following expression for the second virial 
coefficient: 

-
r(x) = J e-•t·-· clt. 

0 

In Eq. (22) the first term B1(T} is the main one and does 
not depend on the mass of the atoms. Since B1(T) is pro­
portional to l~ and the transport (diffusion) scattering 
cross section is proportional to l~, [ll as we should ex­
pect, the change of pressure in the system when the ex­
ternal source is turned on shows the dependence Ll.P 
~ (CTtr /r~)312, where r 0 = (47rn' /3r113 is the mean dis­
tance between excited atoms, n' being the density of 
these atoms. 

The second term B2(T) in (22) arises because of the 
presence of the terms ± yl in the expression for at>; 
these terms appeared in the calculation of at> (l>. In 
the sum over l in (9) each of these terms leads to a 
logarithmically diverging expression, which corre­
sponds to the well known divergence of the second virial 
coefficient in a system of particles with an interaction 
inversely proportional to the cube of the distance be­
tween particles. There is no such divergence in the 
present problem, since because there are two scatter­
ing channels the ay> occur in (9) in the combination 

Owing to this B2(T)/B1(T) ~ 1/Z0 « 1. 
4. To estimate the size of the second virial coeffi­

cient it is convenient to express the value of I a I in 
terms of the probability of the dipole transition: 

lal ~ '/.Ah.c'/oo', 

where w is the frequency of the transition and A is the 
probability of the dipole transition (the Einstein coeffi­
cient). For allowed dipole transitions A ~ 107 -108 sec-\ 
and liw is a quantity of the order of several electron 
volts. Taking for our estimate liw ~ 3 eV and A= 108 

sec-\ we have I a I = 5 x 10-35 g cm5jsec2 • 

Recalling that the fractional contribution to the pres­
sure of the system corresponding to B(T) is 

~PIP= !ln'B(T) I (n + n'), 

we find that in the case n ~ n' ~ 1.2 x 1019 em -3 at nor­
mal temperature Ll.P/P is 15 percent. Accordingly, at 
pressure 1 atm the gas is already essentially nonideal. 

We can compare B1(T) with the corresponding quan­
tity for an equivalent system of elastic spheres of di­
ameter a0 • In order of magnitude B1(T)/~ ~ e2/Ta0 

~ 103 (where e is the charge of the electron) at normal 
temperature. It is interesting that in this case the virial 
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coefficients are in the ratio of the Coulomb scattering 
amplitude f = e2 /T and the scattering amplitude for elas­
tic spheres ( ~ a0 ). 

We note that the heat capacity of our gas at constant 
volume is the same as that of an ideal gas if we use only 
the first term in (22). The quantity cp, however, depends 
not only on the temperature but also on the volume and 
cannot be constant. In fact, 

Cp- c, = -T (:: (/ ( :~) T 

=R-2R B,(T)N' 
v . 

where R is the gas constant. 
In conclusion we note that this nonideality of the sys­

tem can introduce corrections in the calculated charac­
teristics of gas lasers, in particular in the value of the 
collision width of atomic levels. 
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