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Charge exchange of a negative ion with a proton is considered at proton energies E ~ 10 keV. In the 
case of a negative hydrogen ion, the initial and final states of the electrons are described with the 
aid of symmetrized electronic functions. For all other negative ions, a two-parameter single-elec­
tron wave function is used to describe the bound state. The cross sections for the capture of an 
electron by a proton in states characterized by a principal quantum number n are calculated. The 
four-dimensional symmetry of the wave functions of the hydrogen atom is used in summing over the 
orbital and magnetic quantum numbers. 

1. INTRODUCTION 

WE calculate in the present paper the cross section 
for the charge exchan~e of a negative ion colliding with 
a proton of energy E ~ 10 keV. We consider here the 
capture of an electron by a proton in a state character­
ized by a principal quantum number n: 

A-+ p-..A + H(n). (1) 

The main role in the formation of the bound state of 
a negative ion is played by the exchange interaction of 
the electrons. Therefore, generally speaking, it is 
necessary to use many-electron functions to describe 
the negative ion that takes part in the collision. In the 
general case of collision of a negative ion, such a 
problem is quite complicated. This raises the question 
of the possibility of simplifying the problem by using 
the single-electron approximation. The possibility of 
using the single-electron approximation can be 
assessed by considering the charge exchange of a nega­
tive hydrogen ion with a proton using the symmetrized 
two-electron wave functions 1>. Such a problem was 
formulated within the framework of the Born approxi­
mation, by Drukarev and Rokotyan [ll. In Sec. 2 of this 
article we consider the collision 

H-+H+-+H(n') +H(n) (2) 

within the framework of the impact-parameter method. 
It turns out that capture of a weakly-bound electron 
plays the principal role at collision velocities v S 1, 
in the region where the cross section reaches the maxi­
mum value. This means that at such velocities the one­
electron approximation is justified. Section 3 of the 
article considers the case of collision of any negative 
ion with a proton (1) in the one-electron approximation; 
the weakly-coupled electrons is described by a two­
parameter wave function. 

Process (1) was considered in the case of low 
collision energies in[ 2l. The Landau-Zener formula 

I) The correlation of the electrons is not taken into account in the 
wave function for the negative hydrogen ion, and therefore the variables 
can be separated. 
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was used for the transition probability at the point of 
quasi-intersection of the terms. 

The cross section of the process (1) at energies 
E ~ 10 keV will be calculated in the Brinkmann­
Kramers (BK) approximation[ 3 J using the impact­
parameter method. In the indicated energy interval, 
the incoming proton and the atomic core of the negative 
ion can be regarded as classical particles, and their 
de Broglie wavelength is much smaller than the charac­
teristic dimension or the effective radius of the atomic 
forces. Excluding the case of frontal collision, which 
makes a small contribution to the cross section, the 
trajectories of the colliding particles will be assumed 
linear. 

The BK approximation was used earlier to calculate 
the charge-exchange cross sections in collisions be­
tween positive ions and atoms. This resulted in good 
agreement at high energies and .in a qualitatively cor­
rect behavior of the cross section in the region of its 
maximum. Introduction of the term resulting from the 
non-orthogonality of the initial and final states has 
made it possible to improve the agreement with ex­
periment[4'5l. In the present paper we use the initial 
variant of the BK approximation, since it gives the 
correct behavior of the cross section at high energies 
and describes qualitatively correctly the course of the 
cross section at medium energies. In addition, it 
makes it possible to carry out all the calculations in 
analytic form. 

2. CHARGE EXCHANGE BETWEEN A NEGATIVE 
HYDROGEN ION AND A PROTON 

The charge-exchange cross section calculated in 
the BK approximation by the impact-parameter method 
is 

-
Jnn•(v) = 2n s pPnn•(p, v)dp, (3) 

• 
Pnn'(p, v) is the probability, which depends on the im­
pact parameter, that one electron of H- is captured in 
a state with a principal quantum number n, and the 
other goes over into the state n' of the H atom: 
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(4) 
l, m 

The sum extends over all the values of the quantum 
numbers land m corresponding to given n. The am­
plitude of the charge-exchange probability bn,Z,m ;n' is 
calculated in the BK approximation by the formula 

bn,l,m;n' = S dtexp(- iL'it)V;,(t), 

where Vif(t) is the matrix element of the transition, 
equal to 

(5) 

V,1(t)exp(- iM) =- f dr,' dr,'y.f'(r,, r,, t) (-1- +-1-) )(;(r,, r,, t). (6) 
r1s rza 

Here Xi is the symmetrized wave function of the 
initial state, Xf the symmetrized wave function of the 
final state, riA, rm, and n are the coordinates of the 
i-th electron reckoned respectively from the nucleus 
of the negative ion, from the incident proton, and from 
their geometric center. 

Choosing the coordinate system such that the geo­
metric center is at rest at the origin, we have 

)(;=!D;(r,A,rzA)exp{+(vr,+vr2)-i(E+ ~')t}, (7) 

where 

1/ a'~' 
!D;(rtA 'r,A) = N v-.- {cxp [- ( ar,A + ~r2A) 1 + exp [- ( ar2A + ~r.A) 1}' 

n ~) 

where <l>i is the Chandrasekhar function for W with 
variational parameters a = 1039 and {3 = 0.283; v is 
the vector of the proton velocity relative to the nega­
tive ion; E is the total energy of H-; N is a normali­
zation factor, equal to 2-112 [1 + 64a 3{3 3/(a + f3) 6 r112, 

and 

Xt = 2-'h [ 'Pn',l',m'(r,A) 'Pn,l,m (r,.) 

Xexr{-;-(vr, -vr,)- i( e.+ e.·+ v~) t }+(1-+-+2)]. (9) 

Here <Pn z m is the hydrogen function and E:n the en­
ergy of th~ hydrogen state. 

Substituting the expression for the wave functions 
(7) and (9) in (6), we obtain for the matrix element of 
the transition an expression consisting of four terms: 

VH(t)= -l'2N{/(a, 1, n')V(~, 0, n)+I(a, 0, n')V(~. 1, n) (10) 
+ /(~. 1, n') V(a, 0, n) + /(~. 0, n') V(a, 1, n) }, 

where 

1/-;,s 1 
l(a,k,n) = V -J d'rexp(-arA)-. cp.,,,m(rA), 

n r. 
(11) 

and 

(12) 

L'i = E- e.- en•· (13) 

The first and terms in (10) lie outside the framework 
of the BK approximation, since they result from the 
non-orthogonality of the functions of the initial and 
final states. Neglecting these terms, we obtain for the 
probability amplitude 

+~ 

b.,,,m;•' =- y2N {I(a, 0, n') _I dt exp(- iM) V(~, 1, n) 

+~ 

+I(~,O,n') ldtexp(-iM)V(a,1,n)J. (14) 

Thus, the probability of capture of one of the W 
electrons in a state with n and the transition of the 
remaining electron into a state with n' is expressed 
in the form of a sum of two terms : 

Pnn' = .E lbn,/,m;n•l' o= 2INI'{ IJ(a,O,n') I' 
l,m 

+~ 2 

X ,E I J dt exp(- iAt) V(B, 1, n) I 
l,m -"" 

+ II(B,O, n') I' .E I rdtexp(- iM) V(a, 1, n) I'}, (15) 

t,m -oo 

the first of which describes the capture of a weakly­
bound electron ({3 = 0.283), and the second the capture 
of an internal electron. Substituting in (11) the wave 
function of the homogeneous state, we obtain 

, sy;"'( a- 1) (a- 1/n') •· 
l(a,O,n)= n"h(a-n' ')' a+1/n' · 

We have, for example, for n' = 1 

II(a, 0, 1) I'::::~ 1, II(~, 0, 1) I'::::~ 0.33. 

For n'"' 1, all II(a, 0, 1)1 2 can be regarded as equal 
to zero. From this it follows that in charge exchange 
in which after collision there is a slow excited hydro­
gen atom, the principal role is played by capture of an 
internal electron. 

In order to estimate which process plays the princi­
pal role in a charge exchange after which the hydrogen 
remains in the ground state ( n' = 1), let us calculate 
the charge-exchange cross section. We substitute (15) 
in (3) and obtain 

a ••• (v)= 4niNI'{II(a, o, n') I'Q.'+II(~. o, n') I'Q.'}, 

IIIII +• 2 

Q."= Jpdp.EI J dtexp(-iM)V(a,1,n)\. (16) 
0 l,m -oo 

The matrix element of the transition V(a, 1, n') can 
be represented in the form 

V(a 1 n') = (~)'1• (2n)'1• J d'p (1 + n'p')u.,,~ .. (p)exp(ipR- iRv/2) 
' ' 2 2n' (lp-vl'+a')' (17) 

by using the Fourier transformation 

a J exp(- ipr) exp(-ar)=- d'p 
n' (p' +a')' ' (18) 

t 1 J rq> ....... (r) = 2n'(2n)'i• (1 + n'p')un,l,m (p)exp(- ipr)d'p (19) 

and taking into account the geometry of the system 

rA = r + 1/zR, rs = r- 1/2R. 

In the approximation where the flight is linear, 
R = p + vt, pv = 0, we obtain 

+~ 

J exp(- iL'it) V(a, 1, n')dt 

_ (2a)'l• J d' ll(vp- 'f,v'- ~) (1 + n'p') u./, (p) exp(ipp) 
-~ p 

2n' (lp-vl'+a')' 

(20) 
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Ratio of the quantities II (a, 0, 1W~/jl{i3, 0, 1WQg 
at different n and v 

.. 
• 2 

0,3 4,4·10-• 5,6·10-1 5,2 18,5 24,6 
0,5 3,5·10-Z 8,1·HJ-1 2,8 3,5 7,2 
0,8 3,6·10-2 4,1·10-1 8,1·10-1 1,1 1,2 
1,0 9,4·1D-2 4,0·10-1 3,8·10-1 1,7·1Q-1 1,9-,JQ-1 
2,0 3,1·1Q-2 1,7·10-1 6,3··1Q-2 6,6·10-2 6,6·10-2 

The summation of the squares of the moduli of the last 
expression can be carried out by using the four­
dimensional symmetry of the wave functions of hydro­
gen (see[ 8 l). We ultimately obtain for the cross section 
(see the Appendix) 

where 

( d v )' ( d v )' 1 Q.~ = Q."(a-+~). e.'= --; + '2 +a' ~2.1., e.'= -;;- + 2 + -;;;-· 

Comparing the quantities I I( a, 0, 1) j 2 Qg and 

j 1({:3, 0, l)j 2 Qg, we can see that at high collision 
velocities v? 1 capture of the internal electron pre­
dominates, in agreement with the results ofPl (see the 
table). At lower collision velocities, capture of the 
external weakly-bound electron in a state with princi­
pal quantum number n 2: 2 predominates. This fact 
enables us to conclude that in the case of charge ex­
change of negative ions with protons one can use the 
single-electron approximation for an external weakly­
bound electron at velocities v ;5 1. 

3. CHARGE EXCHANGE OF NEGATIVE ION WITH 
PROTON 

We calculate the cross section an{v) of the process 
(1) in the single-electron approximation, assuming that 
the active electron is an external weakly-bound elec­
tron. In the BK approximation using the impact­
parameter method, an(v) is equal to 

~ 

a.(v) = 2n J pP.(p, v)clp, {22) 
0 

where Pn(P, v) is the probability, which depends on 
the impact parameter, of the charge exchange of the 
external electron of the negative ion with capture into 
the state of the hydrogen atom with principal quantum 
number n: 

P.{p,v)=Jb.j'= .E jb.,,,mj'. (23) 
l,m 

The sum extends over all values of the quantum num­
bers l and m corresponding to the given n. The am­
plitude of the charge-exchange probability in the BK 
approximation, bn,z,m, is calculated from the formula 

+~ 

bn,t,m = J clt J d'r<pn,l,m {r") V (rB) 'l'v{rA) exp{ivr + idt); {24) 

here cp n z m is the electronic wave function of the 
hydroge~;' cp}. is the wave function of the external elec­
tron of the negative ion; V(r) = -1/r is the potential 

of the interaction between the proton and the external 
electron of the negative ion; v is the relative velocity 
of the colliding negative ion and the proton; A = En 
- Ey is the difference between the binding energies of 
the electron in the final and initial states. 

We choose as the wave function of the external elec­
tron of the negative ion 

1 
<p,=C(~.y)-;:-[exp(-yr)-exp(-~r)], y<~. (25) 

where C( {:3, y) is a normalization factor. Such a func­
tion has the correct asymptotic behavior at large r, if 
y is ch.osen from the condition y = v'- 2E y, and be­
haves sufficiently well at small r, if {3 is chosen from 
a comparison with the more exact variational functions. 
In order of magnitude, {:3-1 is equal to the operating 
radius of the atomic forces (see[6 l). 

To calculate the cross section (22), we proceed in 
the same manner as in Sec. 2. Changing over to 
Fourier transforms for the wave function (25) and 
using {19), we obtain for the amplitude of the transition 
the expression 

b __ (Y+~))'y~(y-f,~) 
n,t,m- n2 

J {1 + n'q') Un,t,m {q) ll(vq- v'/2- d)exp(- ipq) 
X d'q (jq-vj'+y')(jq-vJ'+~') {26) 

We substitute further {26) in (23) and (23) in {22). In 
calculating the cross section an(v) in {22), we employ 
the method used to calculate Qff (see the Appendix), 
and obtain ultimately 

- 64y~(y+~)'n s· d p (27) 
a.(y, ~)- n'v' . 0 p (p' + e.')'(p' + e~')' 

or 
a =32y~(Y+~)'n[~(~'-y')'- (~'-y')' 
.(y, B) , '(fl' ')' 3 , , n v - y e. e. (28) 

( ~·- y' ) ~·- y'. ( ~·- y' ) ] +3 --- + . -4ln ---
enz e/+~2-'\'2 En2 ' 

where 

( d v)' (d v)' 1 e~'= -+- +W-2d, e.'= -+- +-z· 
v 2 v 2 n (29) 

The figure shows the dependence of the charge­
exchange cross section of H- with capture of an elec-

-1 

-z 
-3 

-5 

-6 '~ 
;, 
I, 
5 

1 46 V, at. un. 
~-~z~--m=-a~~~J~oo~~mo 

E,keV 

Cross section an of the process H- + p -+ H (I) + H(n). O~experimen­
s 

tal data of [7 ], I ~summary cross section a=~ an, 2~n = I, 3~n = 2, 4~ 
n=l 

n = 3, S~n = 4, 6~n = 5. 
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tron in the state H(n), n = 1, .•• 5, and the total cross 
5 

section a = L:; an as functions of the energy of the in­
n=l 

coming proton. 
The parameters y and {3 of the function (25) are 

equal respectively to 0.24 and 0.77. The available ex­
perimental data (see r7l) pertain to the energy range 
E < 10 keY, where the BK approximation no longer 
holds. These data are marked by circles in the figure. 
We see that in this energy range the main contribution 
to the cross section is made by processes with capture 
in the state with n;:: 2, and when E > 100 keY the 
principal role is played by capture in the state with 
n = 1. 

APPENDIX 

Let us calculate the single-particle cross section 
Qg defined in (16). Substituting (20), we obtain 

a'23 "s s 6(vp-'/,v'-!'1)6(vq-'/,v'-/'J.) 
<!n"=-;;:-, pdp d'pd'q (lp-vl'+a')'(lq-vl'+a')' 

X (1 + n'p') (1 + n'q')exp[ip(p- q)) ~ u: ... m(P)Un,l,m (q). (30) 
.... 

The sum under the integral sign is equal to (seer 8l) 

8 sinnro 
n'n'(p'+n-')'(q'+n-')' sinro ' 

where cos w is the cosine of the angle between the 
points having the coordinates ( cvp, Jp, <Pp) and 
( cvq, Jq, rpq) on the four-dimensional sphere. The 
connection between the four-dimensional sphere and 
three-dimensional space is established with the aid of 
the formula 

cos a,= (1- n1p1) I (1 + n'p'). 

Directing the polar axis in the integral (11) along v 
and integrating with respect to the angles Jp and Jq, 
we obtain after the substitution 

the following expression for Q~; 

where 

sin nro exp [ ip (p cos q>, - q cos cp.)] 
x~~~~~~--~~~~~~~ 

sinro (p' + e~')'(q' + e~')'(p' +en') (q' +En') 

cosro = 1-~.P'+q'-2pqcos(cp,+cp.). 
n' (p'+sn'}(q'+en') 

(31) 

(32) 

In order to integrate with respect to the angles 'Pp and 
<Pq, we expand sin nw/sin w in powers of cos <Pp and 
cos <Pq. using formula (32). We then have 

·~· ·~· sin nro . dcpp d<p0 -. - exp [ tp (p cosocp,.- q cos <p0}] 
smro 

0 0 

( n-1) 

E -. n-1-21 i (n-1-i) (n-2i -1) (j) 
4n• tl ~ .e. (- 1) i+i 2n-1-2i+i i j k 

(p' + q')j-k (- pq)k 
n''(P' + e,. ')i (q2 + e,. ')i 

{ 
( k-1) l (33) 

X E i zG)'k-zt(pp)Jk-21(Pq)+6t,2m(l)J.(pp)lo(Pq)f. 

-· 2 
We substitute (33) in (31) and integrate over the impact 
parameter p. Since only products of Bessel functions 
of equal order depend on p in the integrand expression, 
we can use the orthogonality condition 

j p/m(pp}/m(Pq}dp =(J(~-q} ' 
0 pq 

After integration with respect to q, all the sums can 
be taken, and for Qg we obtain the expression 

2'a' pdp 
Qn~=-S , 

v'n' (p'+fs~')'(p'+sn')' 
(34) 

In conclusion, the author is grateful to his scientific 
director, Doctor of Physical and Mathematical 
Sciences Yu. N. Demkov, and also to Doctor of Physi­
cal and Mathematical Sciences G. F. Drukarev for a 
useful discussion. 
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