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An analysis is presented of the formation of transition radiation in the transoptical region of frequen­
cies when an extremely relativistic particle passes through a stack of plates. It is shown that the radi­
ation is described by different formulas, depending on the concrete physical conditions. The frequencies 
at which radiation maxima take place are determined, and the influence of the stack on the formation of 
radiation in the plate is investigated. Results are also presented of some numerical calculations of the 
spectral distribution of the number of the transition-radiation quanta, and the question of the possible 
influence of multiple scattering on these distributions is briefly discussed. 

THE formation of transition l 1 l and Cerenkov radiation 
in a stack of plates was considered by a number of 
authors. In £2, 3 J this problem was solved without ap­
proximations; in l 2 l the solution was obtained for a me­
dium with an infinite number of plates, while in l 3 l the 
number of plates was arbitrary .11 In these papers, the 
general formulas were not given in sufficiently simple 
and lucid form, since it was assumed that the transition 
radiation should be concentrated in the optical frequency 
region, where the formulas are quite complicated. Mter 
it was established that for extremely relativistic parti­
cles the bulk of the transition radiation emitted forward 
is concentrated in the transoptical region, l 5• 6 l where 
the dielectric constant is €(w) = 1-o/w 2 (a= 4me:Ym), 
investigations were made of transition radiation in a 
layered medium in this frequency region. Ter-Mikael­
yan and Gazazyan/ 7 • 81 using an approximation where 
€( w) is close to unity, obtained a formula for the tran­
sition in a layered medium (called in these papers 
"resonant" radiation), and carried out a quantitative 
analysis of this formula. Amatuni and Korkhmazyan l 9 l 

considered a medium with a density that varies periodi­
cally in space, in the approximation wherein the density 
of the medium changes little, and obtained in the partie­
ular case of transoptical frequencies the first two terms 
of the expansion of the radiation field; these terms were 
derived by another method in l 8 1 • It was shown in l 10 l 

that by making the approximation €(w)"' 1 in the formu­
las of c 3 l, it is possible to arrive at the result obtained 
in (7, 8l. 

Using the same formulas of l 31 , but considerably al­
tered and reduced to a more convenient form in c 11 l, 

and also those obtained by another method in l 12 l , we 
carry out in the present paper a detailed analysis of 
these expressions in the frequency region where €(w) 
= 1 - a I w 2 • An important role is played here by the 
circumstance that in l 11' 121 they were able to express 
the sought fields in terms of combinations of Chebyshev 
polynomials. This has made it possible to use in the 
analysis of the present problem those representations 
of these polynomials( 12 l which are most convenient for 

1lThis problem was solved in [4] for layered medic consisting of 
ferrodielectric and crystalline plates. 
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our purposes. As a result we arrive at the conclusion 
that the formula obtained in l 8' 10 1 has narrower limits 
of applicability than those heretofore assumed in the 
cited papers and repeated in a recently published 
book, c 13 l and we show which formulas should be used 
and when. In addition, we find the frequencies at which 
the radiation emitted by one plate located in a stack 
turns out to be larger than the radiation emitted like­
wise by one plate, but isolated, and we demonstrate that 
the physical reason for such an enhancement of the 
transition radiation is the coincidence of the maxima of 
the carr esponding angular distributions. 

The present investigation was also stimulated by the 
fact that recently experimental research has been car­
ried out on transition radiation in the x-ray re-
gions. c 14- 16l On the other hand, the formula for the 
transition radiation in a layered medium can be simpli­
fied under certain conditions and reduced to the formu­
las for the transition radiation from one plate or even 
from one boundary.l 171 Failure to take this circum­
stance into account in L14' 151 has caused the authors of 
these references to complicate greatly the calculation 
of the theoretical curves, and in addition, they deprive 
themselves of the possibility of simply verifying the 
calculated curves, some of which, as will be shown in 
the present article, call for revision. In the last section 
of the article we consider briefly the influence of multi­
ple scattering on the formation of the transition or res­
onant radiation in a layered medium. 

1. Obviously, when a charge passes through a stack 
consisting of N plates, the radiation fields are pro­
duced both in the space ahead of the stack and behind it. 
Expressions for these fields were obtained in l 3' 12 1. 

We assume in these formulas certain approximations, 
connected with the fact that {:3 = vIc - 1, where v is the 
particle velocity, as well as with the fact that we are 
considering a frequency region where the dielectric con­
stant of the medium is close to unity and is given by the 
formula €(w) = 1- a I w2 • The backward radiation can 
be neglected, and for the radiation emitted forward it is 
convenient to use formula (41) of c 121 , provided the 
stack does not consist of very thin plates. We also in­
troduce the quantity r = (IE- 1)/( ..fE + 1), it being clear 
clear that lrl =a/4w2 << 1. 
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For the tangential component of the Fourier trans­
form of the electric field of the transition radiation 
emitted forward we obtain 

eix ro'c-' ( 1- e) 
EN,,(k; N) =- exp {iq>o' (a+ b) (N- 1) + iq>,'a} 

2:n:' AA, 

X (1- exp{- i (~- l.)a}) 1- exp {- i(q>- x)N} (1) 
lJ 1 - exp {- i ( q> - x)} ' 

where a is the thickness of the plates, b is the dis­
tance between them, and 

q> =~(a+ b), x= !.a+ l.,b, 
lJ 

ro' 
k' = x' +-;z• 

ro' 
'A'=-e-x'. 

c' 

The foregoing simplifications limit the region of appli­
cability of formula (1) by means of the following in­
equalities: 

sin' I'}+ (1- B') ~ 1, 

(rN)'~1, 

(2) 

(3) 

where J is the radiation angle. Condition (2) imposes 
a limitation on the emission angles, whereas (3) re­
lates the quantity (IE- 1) with the number of plates in 
the stack. This condition arises formally when the exact 
formula for the field EN; t(k; N) is expanded in powers 
of the small quantity r 2 (these operations were carried 
out in detail in [ 181 ). 

We note immediately that in the case of extremely 
relativistic particles, the condition (2) is in fact not a 
limitation. The reason is that in this case the main 
contribution to the radiation is made by small angles. 
Therefore we are actually left only with condition (3). 
It is also clear from (1) that the field is maximal when 

<r· - x = 2:n:n, (4) 

where n are integers. 
2. Let us now calculate the Poynting-vector flux 

through the plane z = const in the space behind the 
stack of particles, during the time of flight of the par­
ticle. Just as in L 7 ' a, 10• 121 , assuming the material of 
the plates to be non-absorbing, we obtain in accordance 
with [ 111 

co n/2 

SN'=~JJ (1-e)'sin'tldtldro 
:n:c,, (1-B'cos'ti)'[1-B'(e-sin'tl)]' 

. , ( a ( ro ) ) [ sin NX]' 
X sm Z --;- - I. sin X ' 

(5) 

This formula was derived in [a, 101 , but without the con­
dition (3). When n = 1, formula (5) gives the radiation 
by one plate.t 191 

The expression in the square brackets of (5) is usu­
ally replaced by a sum of 1l functions, using the well­
known formula 

lim---= li--n 1 sin' Nx I: ( x ) 
N-oo N sin2 X 1t .11 

(6) 

and 1l functions are then used to integrate with respect 
to the angle J in formula (5). Such a calculation proce­
dure calls, however, for the exercise of a certain cau­
tion. 

First, according to (3), the value of N for a given 
frequency is bounded from above in principle, and there­
fore the transition to 1l functions with the aid of (6) is 
not rigorous. Much more important, however, is the 
fact that N is a finite quantity under the experimental 
conditions (N"" 102-10 3 ). These two circumstances 
cause the width of the function sin2 Nx/sin2 x to be fi­
nite in the vicinity of those discrete values of the angle 
J where x = rrn and the function has a maximum. Re­
placement of functions having finite widths at the max­
ima by a sum of 1l functions is valid if the remainder 
of the integrand in (5) is a smooth function of the angle 
J. Second, it is necessary that this remaining part of 
the integrand, which henceforth will be denoted by f, 
remain essentially unchanged as a function of the angle 
J within a finite width about the maxima of the function 
sin2 Nx/sin2 x. We note that the authors of all the pre­
ceding papers on the theory of transition radiation in a 
layered medium (or resonant radiation) overlooked this 
circumstance. 

We note also that the condition (3) is replaced in [13 1 

by the requirement r << 1. This condition is brought 
about by the fact that in the quasiclassical approxima­
tion, which is used in L 13 1 , it is necessary to be able to 
neglect effects connected with reflected waves. The 
condition r << 1 is precisely the smallness of there­
flection, but at one boundary, i.e., in [ 131 they lost sight 
of the fact that reflection takes place at each plate and 
it is necessary to stipulate that the entire reflected 
field be small compared with the transmitted field, 
which is equivalent to condition (3). 

Before we proceed to further calculations, it is ad­
vantageous to change over in (5) to the small-angle ap­
proximation, i.e., to make the substitution sin J- J, 
and to introduce a new variable y = J 2 • Then formula 
(5) is rewritten in the form 

where 

I 4e'a' dro m y sin' y [sin NX ]' 
SN =-- -- dy 

:n:c J, ro'~ (£+y)'(~+y)' sinX ' 

' 4:n:v 
Ul(,,,>= (a,p)(1-·W)' 

p = a + b, £ = 1 - ~2, 

" (a,p)a 
Ul(,,p)=~· 

a 
TJ=1-B'+ 2 , 

(0 

(7) 

(8) 

( ro.'' ro pro ) 
X=:n: -+-+-y, 

w Wp1 4nv 
( ro.'' ro aro ) 

y = :n: --+-+--y . 
w wa' 4nv 

Let f = (4e2/rrc)fd2, with 

a' Y f f, =sin' Y. 
'= ro' (£ + y)'(TJ+ y)' • (9) 

An analysis of f1 shows that the maximum of this func­
tion is reached at y "" (1 - {32), and the width of this 
maximum is also of the order of 1- {32. 

On the other hand, it is easily seen that the function 
f2 has maxima at the following values of y: 

fj,=-~(1-B') s- -'-+--- , ro' [ (ro" ro 1 )] 
u1 w wa' 2 

(10) 

where the integers s assume values starting with the 
integer larger than (w~/w + w/w~- %). Therefore, if 
we introduce a frequency region such that 

w ~wa', (11) 
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FIG. 1 

then the zeroes due to f2 are superimposed on the val­
ues of the function f1 (see Fig. 1 with the upper abscissa 
axis, where the dashed lines represent the functions f1 
and f2, and the solid line is proportional to f). These 
zeroes are located at distances 

b.y=oo.'(1-~') (J) (12) 

from one another. On the other hand, in the region of 
frequencies satisfying a condition inverse to (11), 
namely 

(13) 

the function f2 will pass approximately once through 
zero where the function f1 assumes its essential values 
(see Fig. 2a and b with the upper abscissa axis). It is 
clear that in this case the interval where the function f 
experiences significant changes is 

!!.y ~ (1- ~·). (14) 

Since it is clear from formula (7) that S~ = jf dy dw 
is the intensity of the forward-emitted radiation per 
plate, it is meaningful to consider the question of the 
behavior of this quantity as a function of the frequency. 
It is seen from Figs. 2a and 2b that in the frequency re­
gion (13) this quantity has clearly pronounced maxima 
as functions of the position of Ys relative to (1- /32). On 
the other hand, it is seen from Fig. 1 that in this case 
the change of the frequency, i.e., the shift of the maxi­
ma of the f2 curve, does not result in considerable 
changes in the value of jf dy. Therefore, the depend­
ence of this quantity on the frequency will be smooth or 
else will have small maxima. 

1/o 

FIG. 2 

The positions of the maxima, as seen from Fig. 2a, 
should be determined from the condition Ys = 1- /32. In 
view of the fact that there are practically no maxima 
when w > w ~ , we take that solution of the last equation 
which occurs in the frequency region w << wa_, namely 

oo. = w." I (s +'I,). 

Since Ws << wa, it is necessary that the integers s 
satisfy the inequality 

(s + '/,) I (1- ~') ~ 
)>a'a I (4nv)'. 

(15) 

(16) 

On the other hand, in view of the fact that the function f1 
has a sharp boundary at the frequency Wb = {(ij ..j 1- f32 
(see L5 ' 61 ), the radiation is sufficiently intense at the 
maxima if 

(s + '/,) I 1'1 - ~· > 
> al'a /4nv. (16') 

For all the values of s except s = 1, the condition (16) 
is more stringent than (16'). 

3. Let us now analyze the function sin2 NX/sin2 X. 
The maxima of these functions will occur at those val­
ues y = Yn• for which X = 1rn. From (8) we obtain 

4nv ( w.11 oo ). 
Yn = Pffi n--;-- Wp' • 

If we put nmin = { w;;.fw + w/wp}, where the curly brack­
et denotes an integer larger than the number inside the 
bracket, then it follows from the last formula that n 
should assume the following values: n = nmin + k, where 
k = 0, 1, 2, .... On the other hand, we can write 

(17) 

where the function d(w) (O :=;; d(w) :=;; 1) complements the 
quantity wa_jw + w/wp) to form an integer: 

d(oo)= ·-"-+- - -"-+- , { (J) II {J)} ( (J) II (J)) 
w ro/ ro ro/ 

and has the form shown in the lower part of Figs. 3 
and 4. Then 

( (J) II (J)) 
n= -· +- +k+d(oo), 

ro ro/ (18) 

from which we see that the discrete values of the square 
of the emission angle ( 16) are best marked by the index k: 

Y• = y. = oo.' (1-13') (k +d). (19) (J) 

Let us find also the distance between these discrete 
values: 

b. = Y•+~ - Y• = oo.' ( 1 - ~'). (20) (J) 

To determine the width ~N of the maxima of the in­
vestigated function, we write y = Yk + ~N• and substi­
tute such an expression in (8) for X and then determine 
~N from the requirement (pwJ41Tv)~N ~ 1/N, whence 

• 1 4nv 1 oo.' , 
UN~--=--(1-~). 

N poo N oo 
(21) 

To be able to change over from sin2 NX/sin2 X to a 
sum of 0 functions, we should stipulate satisfaction of 
the condition 
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(22) 

where t:..y is determined by formulas {12) and (14), de­
pending on the frequency region we have in mind. It is 
easily seen that at frequencies determined by the condi­
tion {11), practically no condition is imposed on N by 
{22). On the other hand, if condition (13) is satisfied, 
then it follows from (22) that 

N>ro.' /ro. {23) 

In both cases, N must also satisfy the condition {3). 
From the requirement that the conditions {3) and (23) 
be compatible in the frequency region {13), we obtain 
the following inequalities: 

( a )''• u'i• ro' - -<ro.'<4-. 
p 2 u 

(24) 

4. We now change over to a sum of 6 functions in 
formula (7). According to {6), we have 

sin'NX E -.--=N ~-6(y-y,), 
sm'X 

11=0 

{25) 

where Yk and t:. are determined by {19) and {20). We 
integrate in (7) with respect to y, using (25): 

where -
Q=~Et(Y·>· 

•=• 
Formula (26) can also be represented in the form 

8 , _ N 4e' "f dro 
N- -;re-rop 7 . 

. ~ (k+d)sin'[(na/p)(k+d+ro.''/ro+ro/ro.')] 
"8 (k+d+ro.''/ro+ro/ro.')'(k+d+ro/ro.')' -

(26) 

(27) 

{28) 

The last formula was first obtained in a somewhat dif­
ferent form in [s, 101 (see also [131 ), but without the 
aforementioned limitations {3), {23), and (24) on the re­
gion of its applicability. 

If the condition inverse to (23) holds in the frequency 
region {13), then we have in this case ilN >> t:..y. This 
means that now the function f can be regarded as a 
sharp function, and sin2 NX/sin2 X as a smooth func­
tion. Taking this into consideration, we can easily esti­
mate the integral (7). The result is that the intensity at 
the stack is in this case small and equal in order of 
magnitude to the intensity of radiation per plate . 

Formula {28) can be simplified if certain conditions 
are satisfied. Namely, if we are interested in those 
cases when the summation over k in {28) can be re­
placed by integration, then we should stipulate for this 
purpose that the quantity under the summation sign in 
{28) change little when k changes by unity. To this end 
it is necessary to have 

p/a>1, (J)>(J).', {29) 

and as a result, as shown in [ 17 1, we obtain after inte­
grating with respect to k from 0 to oo: 

{30) 

where s~ is equal to the radiation intensity per plate.[191 
We now proceed to obtain the same result in a dif­

ferent way, which not only has the advantage that it en­
ables us to avoid direct integration, but also has the 
virtue that it enables us to examine the entire problem 
as a whole. 

5. To this end we turn again to the geometrical in­
terpretation of the operation of integration with respect 
to the variable y (see Figs. 1 and 2). In the case of one 
plate, the spectral distribution of the intensity of the 
transition radiation is given by the formula 

dSt'/dro = f f(y)dy, (31) 

i.e., it is necessary to calculate the area under the 
curve f R~ f1f2. In the case considered at present, the 
average radiation intensity from one plate, but now lo­
cated in a stack of plates, is 

(31') 

i.e., it is now necessary to calculate the sum Q defined 
by formula (27). 

Using these illustrative concepts, we shall show in 
this section that the maxima in the spectral distribution 
N-1dSN /dw will occur at approximately the same fre­
quencies as in dSVdw, and we shall also consider the 
values of these maxima. 

To this end, we recall that at frequencies Ws at 
which the maxima of dSi / dw take place, the values of 
the angle variables corresponding to the maxima of the 
functions f1{y) and f2{y), coincide, namely 1- {32 = Ys· 
In the case N-1dSN /dw, the angular dependence is con­
tained not only in the already noted functions, but also 
in the arguments of the o functions. Therefore the 
maxima now occur at frequencies such that at least one 
of the Yk coincides with 1- {32 = Ys· 

If one can speak of resonance in radiation at all, then 
it can be stated that it occurs precisely at these frequen­
cies in transition radiation in a layered medium. The 
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condition ( 4) of the present paper, which was called in 
c 7 ' 13 l the "resonance" condition, determines the angles 
Jk = ..fYk at which radiation of arbitrary frequency w 
can be emitted by a fast charged particle in a layered 
medium.21 Whether, however, the radiation intensity at 
this frequency will be maximal or minimal is now de­
termined decisively by the values assumed at the angles 
Jk by the quantity f, which describes the angular dis­
tribution of the intensity of the transition radiation pro­
duced in one plate. 

The sum Q can be greatly influenced by two circum­
stances. The first is the interval ~ in the sum, and the 
second is the position of Yk• and particularly of Yo· 
Generally speaking, one can visualize a case in which 
one of the values of Yk is equal to 1- {3 2 = Ys• corre­
sponding to the maximum of the function f1(y)fz(y), and 
the interval ~ is in this case much larger than ~y. It 
is clear that in this case Q >> dSUdw. 

However, from formulas (12), (14), and (20) we can 
find that 

11 w/ f , 
- =- ~ 1 or w « wp , 
(',.y w 

11 w' 
- = -· « 1 for w/ « w < wo'. 
11y w 

11 a f , -=-< 1 or w, <w. 
11y p 

From these formulas it is easily seen that when w 

(32a) 

(32b) 

(32c) 

>> wf:,, th.:_ maxima of N-1 dSN/dw occur at the fre­
quencies Ws· Indeed, in this case, according to (32b) 
and (32c), the values of Yk are quite close to one an­
other (see Fig. 1, the strokes on the lower y axis, and 
Figs. 2a and 2b, the strokes on the middle y axes) and 
Q = dS~/dw. Here we have taken into account the fact 
that 

w' 
Yo= --;-(1- ~')d(w,) « 1- V 

w 

From the condition for the replacement of the sum Q 
by an integral, namely 

(33) 

we can obtain with the aid of (32b) and (32c) conditions 
that coincide with (29). For p ~ a and w >> Wp~ we 
have Q << dS{/dw in view of the fact that Yk * Ys· 

We now turn to the frequencies w << Wp· In this 
case, according to (32a), the values of Yk will be 
spaced far apart (see the lower abscissa axis of Figs. 
2a and 2b), and since ~ >> ~y, the decisive role will 
be played by the value y0 • If it turns out that Yo 
~ (1- {3 2), then Q >> dSUdw, and if Yo>> (1- {32), then 
Q << dS'1/dw. In fact, however, Yo= (wp/w)(1- j32)/d(w), 
and therefore the values of the angle variables at which 
the maxima of the intensity occur will coincide at the 
frequencies ·ws if 

w' 
_P d(w,) ~ 1. 
w~ 

(34) 

However, it is easily seen that when Ws << Wp we 
have 

2lThis condition was first obtained by Feinberg and Khizhnyak [2 ] 

and was called with full justification the dispersion equation for a 
layered dielectric. 

{ 1 {!). } ( 1 ffi.) 1 ( 35) d(w,)= s+-z+7 - s+2+7 =2. 

Therefore the resonance condition (34) at ·ws << w.p 
will not be satisfied. On the other hand, if the values of 
Ws are in the region of wf:,, and are both smaller or 
larger than this value, then the condition (34) can be 
satisfied for such ·c;;s in order of magnitude. In this 
case, however, ~ is already of the order of ~y (see 
(32a)), and therefore Q is simply larger than dS\./dw. 
The inequality w 3 ~ Wp can be satisfied provided p >>a. 

We now return again to the frequencies w << Wp· Al­
though the condition (34) is not satisfied when w = 
= Ws, if we take a frequency lower than Ws by an 
amount ~w, and such that 

s+1> w/' + 1 
w,-11w > s 2' (36) 

then d(Ws - ~w) can decr~ase to such an extent, as a 
result of the fact that w(!x/ws- ~"')approaches an inte­
ger value, that we obtain as a result y0 ~ (1- {32). We 
note that the left-hand side of the inequality (36) is due 
to the fact that at the frequency w'0,j(s + 1) there oc­
curs the case shown in Fig. 2b, that is, a minimum in 
the intensity; this case must be avoided. Therefore, if 
conditions (36) are satisfied, then the maxima of f1(y) 
and sin" NX /sin2 X will coincide at the frequency Ws 
- ~'>J, but the maxima of f1(y) and f2(y) will be shifted. 
Thus, when w << Wp we _Eave maxima at frequencies 
somewhat smaller than Ws, and their values are 
Q < dS~/d~. 

Thus, whereas when the plate is placed in the stack, 
the maxima in the spectral distribution of its emission 
intensity become smoothed out in the frequency region 
w<< wp owing to the decrease of the maxima, the maxi­
ma of the angular distributions of the radiation produced 
in a plate are either equal to or at resonance with the 
maxima produced in a stack of plates at frequencies in 
the region of_wp, as a result of which the maxima at the 
frequencies Ws increase when p >> a. As to w >> Wp, 
when p >> a there is independent addition of the inten­
sities from all the plates. All these singularities in the 
behavior can be visualized by comparing the curves of 
either Fig. 5 of the present paper or of the correspond­
ing figures in [ 17' 19 3. 

6. The so-called "threshold" values of the energy, 
starting with which the n-th harmonic radiation, i.e., 
radiation at a discrete angle Jn =~,appears, are in­
troduced in c 7 ' 133 . Energies having such a physical 
meaning are obtained firectly from Fig. 3, if one equates 
the value of the function (wQ./w + w/wp) at the mini­
mum, that is Vapa(1- {3 2)/2rrc, to the integers n. In the 
present paper we used in place of n the integer values 
k, which are reckoned from the value nmin (the stepped 
line in Figs. 3 and 4). For greater clarity, Figs. 3 and 
4 show for the arbitrary frequency w both the values of 
k and the corresponding values of n. 

From the point of view of the angular dependence of 
the emitted radiation, the results indicate that when 
b >> a and w >> Wp we have a continuous distribution 
with a maximum at (1- {3 2 ) 1' 2 , just as in the case of one 
plate. When these conditions are violated, the intensity 
at a fixed frequency w can either increase or decrease, 
and in the angular distribution there will occur a con­
centration of the radiation in definite directions Yk with 
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FIG. 5 

widths ~N which depend on the number of plates. The 
intensity of radiation at the frequency w, emitted at an 
angle whose square is equal to Yk, is determined by the 
k-th term of formula (28), and, as can be seen from this 
formul.a, the dependence of the intensity in these dis­
crete directions on the particle energy can become very 
sharp. We note that the possibility of intensifying the 
dependence of the transition-radiation intensity on the 
particle energy by means of angular discrimination was 
first pointed out in l 20 l (see also l 21 l). 

As to the connection between the transition radiation 
in a layered medium with transition radiation emitted 
by a plate or by one interface between media, it is 
stated in l 7 l that independent summation of the transi­
tion radiations from different plates corresponds to 
"resonance," i.e., in our terminology, to a discrete 
radiation angle, of high order. Yet it is seen from the 
foregoing that independent summation of the transition 
radiations occurs when all the discrete radiation angles 
merge into a continuous angular distribution, and by in­
tegrating over this distribution (and not by taking one 
discrete angle, as is stated in l 7 l), we obtain, if the con­
ditions (29) are satisfied, the ordinary transition radia­
tion for a plate multiplied by the number of plates. 

A correct understanding of the relation between the 
ordinary transition radiation and the case when individ­
ual discrete angles appear in the radiation is not only of 
general interest, but is important from the practical 
point of view. Indeed, a numerical calculation of ordi­
nary transition radiation in a plate or on one boundary 
is relatively simple, and if it is compared with the cal­
culation by means of formula (28), where it is necessary 
to sum numerical series, these simple calculations are 
a measure of the correctness of the results obtained by 
such a summation. The curves given in l 17 ' 19 J satisfy 
these requirements. 

On the other hand, curves are given in l 14• 15 J for the 
number of transition-radiation quanta in a layered me­
dium, calculated only on the basis of formula (28). From 
the statements made above it is clear that such an ap­
proach is not the best from the point of view of either 
simplicity or reliability. 

Assuming, together with the authors of l 14• 15 J, that 
the medium can be described in the considered region 
of frequencies by means of a dielectric constant in the 
form E = 1- a/w 2 , let us turn to the curves of Fig. 1 of 
l 14 l (see also l 13 l, Fig. 59). In this figure, the ordinates 
represent the numbers of quanta emitted by a charged 
particle per centimeter of layered medium. Since there 
is only one plate per centimeter in the layered medium 
(b = 1 em, a= 2 x 10-2 em), the curves of l 14 l give the 
number of quanta emitted by a single plate. On the 
other hand, from the statements made in section 5 it is 
easily seen that the curve for muons with energy 3.5 
x 10 11 eV, which generated transition radiation in the 
layered medium, should be close to the curve for a 
plate, since Wp = 2.55 keV, and b >>a. In Fig. 5, 
which shows the numbers of quanta per plate, the three 
lowest closely-lying curves (solid, dashed, and dotted) 
correspond to muons with this energy. The solid curve 
corresponds to a double boundary, the dashed one to a 
plate, and the dotted one is calculated from formula (28) 
with N = 1. The values of the numbers of quanta, in ac­
cordance with the corresponding curve of Fig. 1 of l 14 J, 

are larger by approximately one order of magnitude up 
to energies 15-20 keV than those that follow from our 
curves, which were obtained by three methods. Figure 5 
also shows four solid curves for a double boundary and 
for muons with energies 7x 10 11, 2.1 x 10 12, 3.5 x 10 12, 

and 7 x 10 13 eV. For the energies 7 x 10 11 and 7 x 10 13 eV, 
the figure shows, in addition, dashed curves for a plate 
and dotted curves calculated from formula (28). In this 
case, too, there is considerable disagreement, by ap­
proximately one order of magnitude, with the calcula­
tion of l 14 l . 

It also follows from Fig. 5 that the curves behave 
relative to one another in the manner that follows from 
the general analysis given above, and it is seen in par­
ticular that for the two lower energies the values of the 
maxima of the curves of (28) ar.e higher than those of 
the curves for a plate, in view of the fact that in these 
cases we have respectively Wp - 2.55 keV and Wp 
= 10.2 keV, whereas for the maximum energy 7 x 10 13 

we have Wp = 1.02 x 105 keV, and therefore in this case 
the maxima of (28) are smaller than the maxima for the 
plate. 

However, the presented results of a calculation by 
formula (28) for muons with energies 7 x 10 13 eV, while 
correct in themselves, are not applicable to the experi­
mental conditions of l 14 J for a layered medium consist­
ing of 300 plates. Indeed, the region of applicability of 
(28) is bounded by the conditions (3), (23), and (24). It is 
easily seen that for this energy the condition (23) is not 
satisfied. In fact, since Wp = 1.02 x 105 keV, and from 
l 14 J it follows that w = 20-80 keV, we obtain N>> 0.5 
x 104 -10 3 • For an average energy 3.5 x 1012 eV we have 
wp = 255 keV, and condition (23) is satisfied. 

As to l 15 l (see also l 13 l), the physical conditions for 
observing transition radiation were such that it suffices 
to use the simplest formula for a double boundary in the 
calculation. Indeed, it is easy to verify that in this case 
we have both satisfaction of the conditions (29) and the 
fact that the plate thickness is much larger than the 
zone where the radiation is produced in the matter, the 
latter being equal to cw - 1/(1- {3 2 + aw -2 ). In spite of 
this, we have calculated, for greater reliability, the 
curves corresponding to Figs. 4 and 5 of l 15 J, using all 
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three formulas (double boundary, plate, and (28)), and, 
as expected, these gave results that agreed with good 
accuracy. In the comparison with Fig. 4 of c 15 J, we ob­
tained agreement with curve 5, whereas the remaining 
curves lie higher than our data, the maximum excess 
reaching 60%. The curves of Fig. 5 coincided with those 
obtained by us . 

7. In conclusion, let us stop to discuss the question 
of allowance for the influence of multiple scattering on 
the formation of transition radiation in a layered me­
dium. The appropriate theory was developed in c 22 1 

(see also c 131 ). It follows from this theory c23 1 that un­
der those physical conditions which were realized in 
l 15 l, the influence of multiple scattering is appreciable, 
and this leads to an increase in the theoretically calcu­
lated number of quanta produced in the layered medium, 
and as a result the appreciable discrepancy between 
theory and experiment is eliminated c 15 l (see Figs. 71 
and 72 in c 13 J ). However, as was shown in the preceding 
section, the physical conditions of the experiment c 15 J 

are such that we are dealing here with independent for­
mation of radiation at each of the plate boundaries. 
Therefore, for the case of the experiments of c 151 , one 
can apply the theory of formation of transition radiation 
on an interface between a vacuum and a medium, where 
multiple scattering is taken into account. This question 
has been the subject of a number of investigations. Ac­
cording to the latest of them, namely c24 1 , when 
E << Ecrib where 

multiple scattering has no effect whatever (here L is 
the radiation unit of length, JJ. is the mass of the radiat­
ing particle, and Es = 21 MeV). Assuming, in accord­
ance with c 15 J, L = 40 g/cm2 , a plate density 1.17 g/cm 3 

and ..fa = 19 eV, we can readily find that, if we are deal­
ing with electrons, then Ecrit = 1.1 x 104 MeV. Since 
the maximum energy of the electrons in the experi­
ments of c 15 J did not exceed 600 MeV, there could be no 
influence of multiple scattering on the formation of 
transition radiation in these experiments. 

In conclusion, the author is grateful to A. Ts. Ama­
tuni, B. M. Bolotovskii, V. E. Pafomov, and I. M. Frank 
for valuable remarks made during the discussion of this 
work. 
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