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In an anisotropic homogeneous cosmological model, the growth of the matter-density perturbations is 
a kinetic effect of the motion of matter in an external field, in accord with the concepts of Lifshitz and 
Khalatnikov[ 1 l concerning the vacuum stage. Using this result, we find the law governing the growth 
of small perturbations and the general solution for finite perturbations of matter without pressure, 
p = 0. We show that in anisotropic models the perturbations increase 3-5 times faster than in the 
isotropic model (see formula (5)). Long-wave perturbations in a medium with P = t:/3 increase 
2-3 times faster (see formula (9)). The law governing the variation of the amplitude ofacoustic and 
gravitational waves is also explained. 

E. LIFSHITZ and I. Khalatnikov[ 1J have shown in very 
general form that the influence of matter on the space­
time metric near the singularity vanishes in a certain 
sense for anisotropic solutions of Einstein's equations 
near the singularity. It is shown in their paper that 
during the collapse the matter moves with relativistic 
velocity relative to the synchronous reference frame. 

In the present article we consider the cosmological 
problem of the growth of density perturbations in ex­
panding matter that is at rest, in the mean, relative to 
the synchronous reference frame, and also the change 
of the amplitude of the gravitational and acoustic 
waves. The purpose of this article is to show that the 
growth of the perturbations of the matter density in an 
anisotropic expanding universe is a kinetic effect due 
to the motion of matter in a gravitational field de­
scribed by the solution of the gravitation equations for 
empty space, and to find the laws governing the growth 
of the perturbations of matter density. A clear under­
standing of the process also makes it possible in some 
particular cases of the problem to advance in the 
analysis of a density inhomogeneity that is finite and 
not small. 

The analysis of inhomogeneous perturbations (i.e., 
perturbations that depend on the coordinates) in an 
anisotropic homogeneous universe is of great interest. 
Such an analysis can be regarded as the first approxi­
mation to the solution of the problem of a universe that 
is not isotropic or homogeneous. The nonlinearity of 
the equations of general relativity theory, the com­
plexity of the physical processes, and the mathematical 
difficulties make direct solution of the general problem 

1 

impossible at present. It becomes necessary to acquire 
information concerning the character of the solution by 
considering particular cases, among which a major role 
is played by exact solutions. As a rule these solutions 
are degenerate; for example, they have invariance of 
the spherical-symmetry (i.e., rotation-group) type or 
of the spatial homogeneity (i.e., translation-group) type. 

Weakly perturbed exact solutions form a set of 
much larger cardinality (coinciding with the cardinality 
of the general solution), since the perturbations lift the 
degeneracy and· do not have invariance of the exact 
solutions. At the same time, so long as the perturba­
tions are small, they satisfy linear equations, and their 
Fourier expansions lead to ordinary differential equa­
tions for the Fourier amplitudes. Therefore problems 
involving small perturbations combine mathematical 
simplicity and lucidity of the solutions with great 
generality of the initial conditions. 

We shall consider here small perturbations of the 
density of matter against the background of an expand­
ing flat anisotropic model of the universe. Departing 
from[ 1J, we shall consider nonrelativistic motion of 
matter. A number of analytic solutions were previously 
obtained by one of the authors[2l. The physical inter­
pretation of the results, showing that the growth of the 
perturbations is a kinematic effect, may be useful in 
the analysis of more complicated cases, particularly 
the problem of evolution of perturbations during the 
stage of a finite (not small) inhomogeneity of the den­
sity and finite perturbations. The analysis will be 
carried out for the simplest case of anisotropic solu­
tion, although a number of the results are valid also in 
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general homogeneous Bianchi spaces. 
There is a well-known solution with a flat co-moving 

space and P = 0, belonging to Heckmann and Schuck­
ingf3l, with a metric 

ds' = dt- a'(t)d~'- b'(t)dTJ'- c'(t)ds'. (1) 

During the early stage (t- 0), the expansion follows 

a power law: a ~ tp\ b ~ tp2, c ~ tp3, P1 + P2 + P3 = p~ 
+ p~ + p~ = 1. This law was obtained earlier by Kas­
nerf4J in the analysis of the problem of an empty 
anisotropic world. As t - 0, the terms in the gravita­
tion equations containing the density and the pressure 
of matter, are negligible, see[1•3l, We can thus speak 
of a "vacuum stage" of the anisotropic world-during 
this stage the gravitation of matter does not play any 
role. 

Let us present a Newtonian description of the situa­
tion. Locally, the observer feels tidal forces, in com­
parison with which the gravitational interaction of the 
neighboring volumes is negligible. The volume element 
of the co-moving system of coordinates compresses 
along one axis and expands along the other two axes, 
since in the general non-degenerate case we have 
-Y3 < P1 < 0 < P2 < % < p3 < 1. For convenience, we 
put p1 = -a, 0 :s a :s Y3. Let us consider first parti­
cles at rest in co-moving coordinates, i.e., with con­
stant ~, TJ, !; • We take pairs of particles located on 
some particular axis, for example ~ 1, 0, 0 and ~2, 0, 0 
or 0, TJ 1, 0 and 0, TJ 2, 0. 

Their relative acceleration is 
d2Xt, 2 2 2 ii --,- = p,(p,-i)t- x,,, =a( a+ i)t- X1,2 =~x,,,, & a 

d'y,, 2 _, li 
----;}j2 =- p,( 1- P2)t y,, 2 =by,, 2, (2) 

d2z,,, ) _2 c 
----;ji2 = -p,(i- p, t z,, 2 = --;;-z,, 2· 

Here x = a~, y = bTJ, z = cl;. In a Newtonian interpre­
tation, such a relative acceleration indicates action of 
a gravitational potential cp, satisfying the conditions 
(during the Kasner stage) 

o2cp = _ a o2cp li i12cp = __ 
ox' a oy'=----,;· i}z' 

{3) 

Since t:..cp = 0, corresponding to Newton's equation for 
vacuum, a local observer can assume that the gravita­
tional forces are not connected with the matter that is 
present, and in this sense he will call them tidal. Of 
course, from the point of view of relativistic theory, 
the gravitational field in this model is a free gravita­
tional field of the type of a gravitational wave of in­
finite length; this field does not have matter as its 
source. 

The tidal forces push apart the particles, which are 
at rest in this reference frame, along the x axis (they 
slow down the compression) and pull together the co­
moving particles along the y and z axes (they slow 
down the expansion). Particles moving with arbitrary 
velocity experience the same gravitational forces, so 
long as their velocity is nonrelativistic. 

Let us turn now to perturbations of the Hackmann­
Schucking model. We are considering a Kasner 
vacuum stage, since the succeeding stage goes over 
rapidly into the trivial Friedmann model, and the be­
havior of the perturbations in the latter is knownf5 1 As 

already mentioned, during the vacuum stage the gravi­
tational interaction of the matter does not play any 
role in the behavior of the perturbations, just as it 
plays no role in the unperturbed motion. An approxi­
mate estimate of the role of gravitational interaction 
of matter is obtained by taking the instantaneous value 
of the increment in accordance with the Jeans formula 

dlnll -- J -­
-- = y4rcGp, ll ~ exp dt)'4nGp. · 
dt 

In the case of dust we substitute p = Pm, and in the 
case of radiation p = Pr, in accordance with the 
formulas Pm = At-r, Pr = Bt-413; the constants A and 
B are expressed in terms of the isotropization time t1 
(the time when the Friedmann solution becomes valid) 

At,-' = (6rcGt,2 ) -•, Bt,-';, = 3(32nGt,') _, 

and we find that during the time from the singularity 
( t = 0) to tr, the sought ln 6 increases by a finite 
amount 

'• ,;2 
~ = J l'4rcGp dt = 2 f 3 for p = Pm, 

0 

~ = ~ l/ 3 for p = p, 
2 f 2 . 

In an isotropic world, such an integral diverges at 
the lower limit. The total growth of the perturbations, 
connected with the kinematic growth of the perturba­
tions in the anisotropic world, is also infinite if the 
initial instant is t = 0. Comparing with these results 
the final contribution of the gravitational interaction 
( 2 ..f2l3 or % f372 ), we can conclude that it is negligi­
ble. In the absence of gravitational interaction, one 
cannot speak of gravitational instability of a homo­
geneous world. But this does not, of course, mean that 
all the perturbations only attenuate. In the vacuum 
period there are growing perturbations, and the law 
governing this growth is even stronger than that for 
the growth of the perturbations (due to the Jeans 
gravitational instability) in the Friedmann isotropic 
model. 

The growth of the perturbations in the anisotropic 
model has an entirely different, non-Jeans nature. 
This growth is connected with compression along one 
of the axes (x). In the analysis, two perfectly equiva­
lent formulations are possible: in a co-moving unper­
turbed reference frame ( ~, TJ, ?;), and in Euler coordi­
nates (x, y, z). In the co-moving nonstationary system 
of coordinates one can speak of kinematic growth of 
the velocity along the ~ axis; in the Euler coordinates 
x, y, z the motion takes place under the influence of 
tidal gravitational forces. As already mentioned, E. 
Lifshitz and Khalatnikovf1J noted that during the 
collapse (during the approach to the singularity) the 
velocity increases and reaches asymptotically a rela­
tivistic value ( v/ c - 1) along the axis of the fastest 
contraction. 

Let us return to cosmology and to nonrelativistic 
velocities. In the first formulation, in the co-moving 
system, the peeuliar velocityu for dust, is v = ad~/dt 
~ tn. In the second formulation, we seek a general 
solution of the equation d2x/de = a(n + 1)t-2x. This 
solution is 

1>correspondingto ~=v1 + v2 tl+2<>,d~/dt =(I+ 2a)v2 t2 a, v= 
(I + 2a)v2 ta. 
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x = v,t-~ + v,t<+•, u = dx I dt = -av,t-•-• + ( 1 +a) v,t~, (4) 

and the first term describes the unperturbed motion, 
while the second plays the role of the perturbation, 
Accordingly, in the first method of analysis we can 
state that the perturbations increase for kinematic 
reasons. 

Assume that at the initial instant t 0 we specify a 
density perturbation and a peculiar velocity ( 5 = 50 ( r ), 
u = u0(r)). In this case, the independent modes are: 
1) perturbation of density without perturbation of the 
velocity, independent of the time; 2) decreasing veloci­
ties along the second and third axes, uy ~ t-P2 , u ~ t-P3, 
and the ensuing density perturbations also decrease; 
3) growing velocity along the first axis, ux ~ ta, and 
an ensuing increasing density perturbation 

(5) 

We note that the initial amplitude of the growing com­
ponent at a given velocity amplitude decreases with in­
creasing wavelength, kx = i\ - 1 cos ( kx). Finally, neglect­
ing the contribution of the decreasing velocities and 
the phase shifts, we have 

li (t) = li,- u.,t,k,, + u.,k.,t, (tIt,) <+••. 

Bearing in mind that 0 < a s 'l'3, we see that when 
the density decreases by a factor of n the perturba­
tions increase by a factor n1• 2a, i.e., by n1 - n513 

times. In an isotropic model with dust, 5 ~ e1\ 

p ~ C2 , 5 ~ p-113, the growth is slower by a factor n113 , 

i.e., by a factor of 3-5 (the exponent, I d ln 5/d ln pI, 
is smaller by the same factor). 

The second method of analysis (in Euler coordi­
nates with allowance for tidal forces) is convenient for 
an exact solution of the problem with arbitrary initial 
distribution of the density and velocity of matter 

t = t,, u= u,(x) = -dx I dt, + v,(x}, 

_ ( v,t, ) ( t ) -~ v,t, ( t ) <h 
x- w--- - +---

1+a to 1+a t, 

We introduce a Lagrangian coordinate w such that 
x = w at t = t 0 • Then the trajectories are given by the 
expression 

_ ( _ v,t, ) ( t ) -~ v,t, ( t ) •+• 
X- W -- - +---

1 + a t, 1 + a t, ' 

where v 0 is a known function of w. 
This instantaneous distribution of the dust density 

is conveniently determined as a function of t and w: 

'p(t; w) = Po(w) (tlto)-'-•(dxl dw)-', 

(6) 

(7) 

where x is defined by the preceding formula. It follows 
from this expression that the density becomes infinite 
at dx/dw = 0, which occurs when dv 0 /dw < 0, and at 
the instant 

~ [ 1 +a ~~ dv, -~-'] 'l<'+'•l t~t, 1+--- . 
' t, dw 

p becomes infinite as a result of the intersection of 
the trajectories, followed by occurrence of a shock 
wave (see[6l), 

When short waves in an elastic medium are con­
sidered (for example, in a relativistic gas with 

(8) 

P = t/3), or when one considers short gravitational 
waves, the change in their amplitude is connected, by 
virtue of adiabatic invariance, with the change of the 
wavelength and of the frequency. The wavelength de­
creases and the frequency increases if the propagation 
is mainly along the x axis. We see that propagation 
along x, just like motion of dust along x in the pre­
ceding example, is not an exceptional case. By virtue 
of purely geometric factors, at an arbitrary initial 
wave vector (with components kax RO k 0y RO koz of the 
same order at the instant t = t 0 ), kx increases and 
ky and kz decrease during the course of time. The 
direction of propagation of any wave approaches the 
x axis. The entire picture is similar to that considered 
by us earlier, the behavior of weakly-interacting parti­
cles in an anisotropic model [71 2l. 

Thus, asymptotically the wave vector is directed 
along x and increases with time in proportion to ta. 
The velocity of the gravitational waves is constant and 
equal to c. The velocity of the elastic waves in a high­
temperature plasma (in a gas with P = t/3) is also 
constant and equal to c/ 13. Consequently, in both cases 
the frequency increases in proportion to kx ~ ta; it 
follows from adiabatic invariance that the energy of the 
gravitational and elastic waves contained in the given 
co-moving volume also increases like ~ta. The co­
moving volume increases like i1 in the unperturbed 
Kasner solution. 

The energy density of the gravitational waves is 
~ ( dh/ dx) 2, where h is the dimensionless perturbation 
of the metric dx2 - ( 1 +h) dx 2• We finally obtain 

h ~ t_(l+a)/ 2; the ratio of the energy density of the 
gravitational waves to the energy density of the plasma 
increases like ~e13.a, and in an isotropic world this 
ratio remains constanel. 

For elastic (acoustic) waves t RO pc 2 52 ; the relative 
amplitude of short waves ( l « ct), to which adiabatic 
invariance is applicable, increases with increasing 
time, 5 ~ ta 12 ; in an isotropic world, this amplitude 
was constant. The same condition (l « ct) also per­
tains to gravitational waves. 

Using the same method, i.e., neglecting the gravita­
tional influence of matter, we can also readily calcu­
late the development of long-wave (i\ >> ct) perturba­
tions in the medium with P = t/3. Solving the hydrody­
namic equations in the specified metric (1) and neglect­
ing the derivatives of the pressure with respect to 1;, 
11, and !; , we obtain for the fastest-growing perturba­
tion mode and the density 

(9) 

in place of 5 ~ t in the Friedmann model. It is inter­
esting to note that the behavior of the absolute pertur­
bations of the density does not depend on the equation 
of state of matter (in the long-wave limit). 

2) This is not surprising, since free particles can be described equally 
well with the aid of a wave function and classically. Sometimes, accord­
ing to the expression of Paradoksov [8 ], "quantum" mechanics helps 
us understand the "classical" mechanics. 

3>we recall that we are postulating a plasma with a leading role of 
radiation, P = e/3, with particle collisions sufficiently frequent, so that 
the isotropy of their distribution and Pascal's law are not viola ted. 
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For both P = 0 and P = E/3 we have 

p.Sip~o = e.SIP~•;' = t'". (10) 

It should also be noted that when we consider the 
motion of matter against the background of an unper­
turbed metric, we cannot describe certain types of 
perturbation, namely, perturbations of the free gravi­
tational field of the model, i.e., the field against the 
background of which the motion of matter was con­
sidered. As we have already noted, this general field 
can be regarded as a gravitational wave of infinite 
length. It is clear that for gravitational perturbations 
with large wavelength (.>.. » ct) the method of adia­
batic invariance (used above to analyze waves with 
.>.. « ct) does not hold. Such perturbations of the entire 
field were considered inPl. They also lead to pertur­
bations of the density and velocity (with the exception 
of singular cases connected with the symmetry of the 
problem). These modes, however, increase more 
slowly during expansion and are not principal ones. 

We do not consider in this article other more 
subtle problems, for example the transformation of 
transverse waves into longitudinal ones, or the behav­
ior of spatially-homogeneous perturbations, when the 
velocity of matter becomes relativistic (the last prob­
lem was considered by Novikov[9J ). However, even the 

examples considered here and their comparison with 
the exact solutions in the theory of small perturba­
tions [21 show that the simple physical picture developed 
above is correct and useful. 
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