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Normal modes of a "universal'' instability of plasma in a magnetic field with a large rotation of the 
lines of force of the magnetic field (shear) (0 > ai/Rp) are considered. A criterion is obtained for 
the stabilization of these modes which differs from that found recently in the paper by Berk and 
Pearlstein. [3 J 

DRIFT instabilities present a great danger from the 
point of view of confinement of plasma in magnetic 
traps. For a long time it was thought that rotation of 
lines of force of the magnetic field (shear), which is de
fined by the ratio of the characteristic length for varia
tion in the plasma density to the rotation length 
(0 = Rp/Ls), easily stabilizes the so-called "universal'' 
mode of the drift instability of a plasma. In (1, zJ it was 
shown that the corresponding problem of the stability of 
a plasma with respect to drift waves reduces to the 
problem of eigenvalues of an equation of the type of a 
Schri:idinger equation with a complex potential. Investi
gation of this equation was usually restricted to the 
case e s ai /Rp (ai is the Larmor radius for the ions). 
In the opposite case the real part of the potential, gen
erally speaking, does not have the shape of a well. From 
this the conclusion was drawn that for e > ai /Rp the 
normal modes of a drift instability are not present. 

Recently Berk and Pearlstein [3 J have noted that this 
conclusion is not justified and they have attempted to 
find the normal modes of the drift instability for a com
paratively large value of e > ai /Rp. For a normal so
lution in [3 J a solution was adopted in the form of waves 
propagating from the potential hill in both directions. It 
was assumed that these oscillations would be damped 
out at infinity due to interaction with the ions. 

In order to obtain the stabilization criterion a com
parison was made in [3 l of the flux of energy away from 
the region in which the oscillations are generated with 
the energy flow into the perturbations due to the interac
tion with resonance electrons. As a result a criterion 
was obtained for the stabilization of normal modes by 
the rotation of the lines of force of the magnetic field: 

8 > (m/ M)'i>(k,a,)'1•. (1) 

The aim of the present communication is to show 
that although the initial assumptions of Berk and Pearl
stein are sensible, the subsequent solution and the cri
terion ( 1) are not valid. The basic error in [3 J consists 
of the fact that the energy balance was evaluated at a 
single point where the interaction with the resonance 
electrons is at a maximum. Moreover, in determining 
the energy balance the Landau damping by the ions was 
not taken into account. In the present paper a finite so
lution has been constructed which is obtained upon tak
ing into account the interaction of the perturbations with 
the resonance ions. A knowledge of the complete pro
file <I>(x) of the solution enabled us to calculate the en-

ergy balance over the whole region within which the 
perturbations are localized. We have obtained a cri
terion of stabilization which is less rigid than (1) and 
which in order of magnitude can be written in the fol
lowing form (cf., with the criterion (6)): 

8 > (m I M) 'i•k,a,. (1a) 

We note that an analogous criterion was obtained by 
Jukes[4 J (cf., also the review by Davidson and Kam
mach rsl). The difference between Jukes' analysis and 
ours consists of the fact that he considered a solution 
the finiteness of which is guaranteed by the interaction 
of the oscillations with electrons, while the interaction 
with the ions was completely neglected. However the 
authors of [4 , sJ, apparently, did not note that the region 
of localization (and correspondingly k 11 ) turns out to be 
so small that the condition for the applicability of the 
equations utilized in [4 J ( w/k 11 << VTe) is violated. 
Therefore the result of [4 J cannot be considered as 
proven. 

1. The well-known second order equation for the 
perturbation of the electric field <l>(x) exp (ikyY- i wt) 
has the form, [3 J under the usual assumption (k~ << ky): 

, d'(J) (x) 
ii, ~-[QR(x)+iQI(x)]!D(x)=O. (2) 

Here we have 

1 + 11 w [ ( k,vT, ) '] QR(x)=-1+--_-, ---. 1- --x , 
Ioe w- U>i wLs 

T, 
1']=~, 

T. 

, cT; 1 dn, 
Wj =k11--~-, 

e)!, n, dx 

(!) X W 
-~kll == k,-~-. 
VTi Ls VTe 

ii,'=-a.'! lnl,(b)e-', b=k,'a,', 

aj and VTj are the Larmor radius and the thermal ve
locity of the particles, I 0 (b) is the modified Bessel 
function. 

In contrast to [3 J, in addition to the interaction of the 
perturbation with the resonance electrons we have also . 
taken into account the Landau damping due to the ions. 
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The solution of (2) is well known if one neglects the 
imaginary part of the potential (QJ(x) = 0): 

Hn(~) are the Hermite polynomials, 

1 [ 1 + 11 w ] 'I• k,vT, 
a= a,+ illa =-::- --,----. --a, I,e- w- w, wL. 

(3) 

-w'I,e-' ii, 1+TJ 
w=w,+iim<'>w= ' -i-k,vT, 1 ,(2n+1). 

1 + 11 -I,e ' L, 1 + TJ- ,e 

We see that the obtained solution decays in time due to 
the outflow of energy and is infinite in space. In order 
to calculate the work done by the particles in the field 
of the wave it is more convenient to utilize the finite so
lution which is obtained by taking into account the Lan
dau damping due to the ions. 

We seek a finite solution of Eq. (2) in the form 

(4) 

where <f>J(X) is a slowly varying function compared to 
<I>R(x). Substituting (4) into (2), we obtain the following 
equation for <f>J(x): 

2crx d<Dr(x) + ~ Q}'> (x) <Dr(x) = 0. 
dx tli2 

Here we have neglected the term containing the second 
derivative of the slowly varying function and have re
stricted ourselves to a consideration of the most unsta
ble mode n = 0. 

After integrating this equation we obtain (setting 
w = Wo in QJ(x)): 

<Dr(x)=exp (--1 /,(3.._)), 
2El,li a; 

where 

a ,(2 _, 
'Clef!= f -aoai, 

n 
J,(£)= J exp(-t'/2)dt, 

i/\il 

w,L, 
ai=-

k11Vri 

2. In order to determine the stabilization criterion 
we make use of the energy balance equation for the per
turbations. The latter is obtained by multiplying Eq. (2) 
by <l>*(x) and by subsequent integration from 0 to oo, In
tegrating further the term involving the second deriva
tive by parts we represent the energy balance in the 
form 

a.· ( • d<D d<D' ) I ~ S~[ '') <·l ] 
2i <D d;"-<Dd;" 

0
-, Qr (x)+Qr (x) ,.....,I<DI'dx 

(5) 

-jlmw[ 0Q8 (x)] j<Dj'dx=O. 
0 Ow IIF"Cila 

The first term in this equation represents the outflow of 
energy from the region in which the oscillations are 
generated, while the second determines the magnitude 
of the energy exchange between the resonance particles 
and the perturbation. The contribution of the electrons 
to the energy balance diverges logarithmically for 
small x. However, for x < XA = w0Ls/kyv A (VA is the 
Alfven velocity), the oscillations become nonpotential 
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ones, since for x < XA, w/k 11 >vA. It is well known 
that in this case the drift waves are damped. Therefore 
it appears to be sensible to cut off the integral in (5) at 
x = XA· As a result the stabilization criterion may be 
written in the form 

where 
.. :t 

A(8,11) = J exp (-e/,(t)) dt, 
o •II 

A= Bnn,T, 
... H,• • 

On the other hand, it follows from [ 6 l that for finite 
{3 the universal instability is stabilized even for 6 = 0. 

In [6 J a function {3 = {3(kyai) is obtained which sepa
rates the regions of stability and instability in the 
({3, kyai) plane. We assume that the corresponding re
gion of stability in any case remains stable also for 
6 t- 0. Then, eliminating kyai from {3 = {3(kyai) of [6 J 

and substituting into (6) we obtain the desired stability 
condition 6 = 6({3). In explicit form this condition would 
have a very awkward form. The diagram shows the de
pendence 6 = 6({3) obtained by numerical integration for 
a deuterium plasma (M/m)1 /2 = 60 and 17 = 1. 

The author expresses his gratitude to A. A. Galeev 
and R. Z. Sagdeev for posing the problem and for their 
continued interest in this work. 
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