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Normal modes of a ““universal’’ instability of plasma in a magnetic field with a large rotation of the
lines of force of the magnetic field (shear) (© > aj /Rp) are considered. A criterion is obtained for
the stabilization of these modes which differs from that found recently in the paper by Berk and

Pearlstein, [3!?

DRIFT instabilities present a great danger from the
point of view of confinement of plasma in magnetic
traps. For a long time it was thought that rotation of
lines of force of the magnetic field (shear), which is de-
fined by the ratio of the characteristic length for varia-
tion in the plasma density to the rotation length

© = Rp/Ls), easily stabilizes the so-called ‘‘universal’’
mode of the drift instability of a plasma. In [!»2]jt was
shown that the corresponding problem of the stability of
a plasma with respect to drift waves reduces to the
problem of eigenvalues of an equation of the type of a
Schrodinger equation with a complex potential. Investi-
gation of this equation was usually restricted to the

case O = aj /Rp (aj is the Larmor radius for the ions).
In the opposite case the real part of the potential, gen-
erally speaking, does not have the shape of a well. From
this the conclusion was drawn that for © > aj /Rp the
normal modes of a drift instability are not present.

Recently Berk and Pearlstein!®! have noted that this
conclusion is not justified and they have attempted to
find the normal modes of the drift instability for a com-
paratively large value of © > aj /Rp. For a normal so-
lution in %1 a solution was adopted in the form of waves
propagating from the potential hill in both directions. It
was assumed that these oscillations would be damped
out at infinity due to interaction with the ions.

In order to obtain the stabilization criterion a com-
parison was made in [31 of the flux of energy away from
the region in which the oscillations are generated with
the energy flow into the perturbations due to the interac-
tion with resonance electrons. As a result a criterion
was obtained for the stabilization of normal modes by
the rotation of the lines of force of the magnetic field:

8> (m/M)"% (k). (1)

The aim of the present communication is to show
that although the initial assumptions of Berk and Pearl-
stein are sensible, the subsequent solution and the cri-
terion (1) are not valid. The basic error in [3? consists
of the fact that the energy balance was evaluated at a
single point where the interaction with the resonance
electrons is at a maximum. Moreover, in determining
the energy balance the Landau damping by the ions was
not taken into account. In the present paper a finite so-
lution has been constructed which is obtained upon tak-
ing into account the interaction of the perturbations with
the resonance ions. A knowledge of the complete pro-
file &(x) of the solution enabled us to calculate the en-

ergy balance over the whole region within which the
perturbations are localized. We have obtained a cri-
terion of stabilization which is less rigid than (1) and
which in order of magnitude can be written in the fol -
lowing form (cf., with the criterion (6)):

8 > (m/M)'ik,a. (1a)

We note that an analogous criterion was obtained by
Jukes®] (cf., also the review by Davidson and Kam-
mach!®?), The difference between Jukes’ analysis and
ours consists of the fact that he considered a solution
the finiteness of which is guaranteed by the interaction
of the oscillations with electrons, while the interaction
with the ions was completely neglected. However the
authors of [ %1, apparently, did not note that the region
of localization (and correspondingly k) turns out to be
so small that the condition for the applicability of the
equations utilized in *? (w/k| << vre) is violated.
Therefore the result of %! cannot be considered as
proven.

1. The well-known second order equation for the
perturbation of the electric field &(x) exp (ikyy — iwt)
has the form, t®1 under the usual assumption (k% << k§,):
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aj and vpj are the Larmor radius and the thermal ve-
locity of the particles, I,(b) is the modified Bessel
function.

In contrast to 31, in addition to the interaction of the
perturbation with the resonance electrons we have also -
taken into account the Landau damping due to the ions.
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The solution of (2) is well known if one neglects the

imaginary part of the potential (Qp(x) = 0):
D (z) = H.((io)tz)e~ "' n=0,1,..., (3)

Hy(¢) are the Hermite polynomials,
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We see that the obtained solution decays in time due to
the outflow of energy and is infinite in space. In order
to calculate the work done by the particles in the field
of the wave it is more convenient to utilize the finite so-
lution which is obtained by taking into account the Lan-
dau damping due to the ions.

We seek a finite solution of Eq. (2) in the form

@ (z) = Du(z)D: (), 4)

where ®j(x) is a slowly varying function compared to
®R(x). Substituting (4) into (2), we obtain the following
equation for &yp(x):

401 (2)

2 + _io,‘” (z) @s(z) = 0.
dx at

Here we have neglected the term containing the second
derivative of the slowly varying function and have re-
stricted ourselves to a consideration of the most unsta-
ble mode n = 0.

After integrating this equation we obtain (setting
w = w, in QI(x)):

o= (~520(2))

where

_ 2 . _ T . _ o,
0O.;s —V:oua; N Ji(8) = j exp (— t*/2)dt, o= Tom
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2. In order to determine the stabilization criterion
we make use of the energy balance equation for the per-
turbations. The latter is obtained by multiplying Eq. (2)
by ®*(x) and by subsequent integration from 0 to «, In-
tegrating further the term involving the second deriva-
tive by parts we represent the energy balance in the
form

(020l "f[ ¢ @+e@] |0
" . (5)
— jlmm [__30;(5-’5) ]mm° |®@|*dz = 0.

The first term in this equation represents the outflow of
energy from the region in which the oscillations are
generated, while the second determines the magnitude
of the energy exchange between the resonance particles
and the perturbation. The contribution of the electrons
to the energy balance diverges logarithmically for
small x. However, for x < xp = woLs/kyvA (vA is the
Alfven velocity), the oscillations become nonpotential
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ones, since for x < xap, w/k; >va. It is well known
that in this case the drift waves are damped. Therefore
it appears to be sensible to cut off the integral in (5) at
X = XA. As a result the stabilization criterion may be
written in the form

mny\'ha; 1—1Ie® Tn § dt 1
eA(e"’)Z(’n?) &AL n—Ter VE'T{ e (" ) )
n
(6)

where

A(Buy) = _‘-exp (—-.e_::;.]‘(t)) & p= 8xn,T, !

H?

On the other hand, it follows from [®J that for finite
B the universal instability is stabilized even for © = 0.

In [8J 3 function B = B(kyaj) is obtained which sepa-
rates the regions of stability and instability in the
®B, kyai) plane. We assume that the corresponding re-
gion of stability in any case remains stable also for
© # 0. Then, eliminating kyaj from B = B(kyaj) of !
and substituting into (6) we obtain the desired stability
condition © =8(B). In explicit form this condition would
have a very awkward form. The diagram shows the de-
pendence © =0O(8) obtained by numerical integration for
a deuterium plasma (M/m)Y2 = 60 and 7 = 1.

The author expresses his gratitude to A. A. Galeev
and R. Z. Sagdeev for posing the problem and for their
continued interest in this work.
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