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Propagation of sound with frequency larger than the reciprocal relaxation time of magnons in ferro
dielectrics near the Curie point is investigated by successive approximations for self-consistent 
field. raJ It is shown that in this case the damping of the sound is determined by the interaction of 
the phonons with the spin waves. The frequency and temperature dependences of the magnetic ab
sorption of sound obtained in this manner are compared with the corresponding dependences for the 
absorption of sound by thermal phonons, and also with the case of low temperatures. 

IF it is assumed that the influence of the inhomogenei
ties, impurities, and domain walls on the propagation of 
sound in a ferrodielectric is negligible, then the process 
responsible for the absorption of energy of sound waves 
is their interaction with thermal phonons and the spin 
system. It is of interest to separate effects connected 
with the magnetic interaction and to compare them sub
sequently with effects corresponding to thermal phonons. 

The question of propagation of sound in ferromagnets 
was discussed in a number of papers. £1- 51 In [1' 21 they 
considered different processes of interaction of sound 
with a spin system. It was shown that for sufficiently 
high temperatures, the principal role is played by pro
cesses of production and absorption of phonons by spin 
waves (magnons), corresponding to the joining of a 
sound quantum to a thermal magnon under the condition 
that simultaneous satisfaction of the energy and momen
tum conservation laws is possible. The decay of a pho
non into two spin waves and the annihilation of two spin 
waves with formation of a phonon is the result of rela
tivistic effects, and therefore the probabilities of these 
processes are low and become significant only for T 
« 6~/ec (60 and ec are the Debye and Curie temper
atures, respectively). It is likewise unnecessary to take 
into account two-phonon processes of next order of 
smallness. 

In all the cited papers, however, the temperatures 
considered were much lower than ec. In this connec
tion, definite interest attaches to the case T ~ ec. It 
is natural to expect that near the critical point the prop
agation of the sound will have a number of characteris
tic features peculiar to the region of phase transitions. 

pression for the damping of high-frequency sound near 
ec. The obtained frequency and temperature depen
dences of the magnetic absorption of the sound are com
pared with the corresponding dependences of the absorp
tion of sound by thermal phonons, rs,gJ and also with the 
case of low temperatures. rsJ 

We consider an ideal Heisenberg ferromagnet with 
an arbitrary exchange interaction between the spins, 
with a Hamiltonian in the form 

~ = -11-H _Es,.- •;, ,E V(r- r')S,s,.. {1) 

Here Sr is the spin operator of the atom, which is as
sumed to be fixed in the crystal-lattice site, r is the 
coordinate of the site, V(r- r') is the effective potential 
of the interaction between the spins, H is the external 
magnetic field and is directed along the z axis, and 11. 
is the Bohr magneton. The summation is over all the 
lattice sites. 

The connection between the spins and lattice vibra
tions in the Hamiltonian {1) is given by the terms that 
arise when the interaction potential is expanded in terms 
of the displacements of the sites: 

V(r-r') = V'(r-r')+[V,V(r-r')]'u,+ [V,,V(r-r')]'u,., {2) 

where the zero index corresponds to quantities taken at 
the equilibrium values of r and r', and ur is the dis
placement of the corresponding lattice site. We shall 
henceforth omit the zero index where there is no danger 
of misunderstanding. 

To construct the successive approximations, it is 
convenient to separate in the Hamiltonian the interaction 
with average spin (S). Substituting (2) in {1) and recog
nizing that 

V(r- r') = V(r'- r), 

._Eu,V,V(r-r')= ._Eu,V, .,Ev(r-r')==O, 
r¢r' 

..E u,S,V,V(r- r') = ,E u,S,V, .,E V(r- r') == 0. 
r¢r' 

To describe ferrodielectrics in this temperature re
gion, we shall use the diagram technique for systems 
with spin-spin interaction, developed by Vaks, Larkin, 
and Pikin. raJ This technique constitutes a series of suc
cessive approximations of the self-consistent field 
method, and is suitable for ferromagnets with a large 
interaction radius. In [?J this method was used to show 
that in a Heisenberg ferromagnet there exist long-wave 
spin waves at all T < ec, and a criterion which the wave 
vectors of these waves must satisfy was obtained. 

we obtain 

Magnetic damping of sound at temperatures close to 
the transition temperature is determined by the inter
action of the phonons with the spin waves and by the 
spin fluctuations. In the present paper we obtain an ex-

1214 

where 

~.= NV,(S)' 
2 

{1') 

._ES,(V,(S) + J.tH), . 
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,Umt=- '/, .E V(r -r') (S,- (S))(S,,- (S)) 

- .E (S)u,V,V(r- r') (S,,•- (S))-

- _Eu,V,V(r- r') (S, -(S)) (S,,- (S)); 

here N is the number of sites, and V0 = :B V0(r). 
r 

In the zeroth approximation, which is obtained when 
icint is neglected, the spins and the phonons do not in
teract. For the spin system, this case corresponds to 
the zeroth approximation of the self-consistent field, 
and the average spin (S) = (SZ) is given, as usual, by 
the expression 

(8') = y ~:.JlH = b(y). (3) 

where {3 = 1/T, y = {3(V0(SZ) + J.LH), and b(y) is a func
tion connected with the Brillouin function Bs(y): 

b(y) = 5P5~:~:ul =SBs(y) = (s+})cth[(s+}) v] -}cth ~. 
To find the next approximations, we shall use the 

temperature diagram technique developed by Vaks, 
Larkin, and Pikin. [6l The corrections to the thermo
dynamic functions and the Green's function of the pho
nons D(r, T; r', T') =- (TU(r, T)u(r', T')), where u(r, T) 
is the displacement operator, will be represented by a 
set of different connected diagrams, each of which can 
be represented in the form of single-cell blocks con
nected by the interaction lines V(r- r') and Vr V(r- r') 
and by the phonon lines. Each interaction line joins the 
vertices of different blocks, either sz with sz, or s+ with 
s-, where s± = (SX ± iSY)j-12. 

We shall represent the blocks r nm• which contains n 
spin operators and m phonon operators (we note, inci
dentally, that the number of operators s+ in the block 
should always coincide with the number of operators 
s- ), by a point with n outgoing interaction lines and m 
phonon lines. To each of these lines there corresponds 
a definite frequency and momentum. The conservation 
laws are satisfied in each block. Figure 1 shows several 
typical blocks. The calculation of single-cell blocks is 
carried out in the same manner as in [&l. The Fourier 
component of a single-cell block r no with outgoing inter
action lines (e.g., diagrams a and b of Fig. 1) is given 
by the expression 

I~ ···• "n (ro1 , ••• , ron)= T" ~ IT d't'; exp (irotr;) 
0 ;=1 

x .[<t fi s"; (-r;) )- IT r~; .. r;,;; ... r;,;~"" J . (4) 
j=l m1+· · ·+mk~ 

Here sa(T) = exp (~0T) sa exp (-tW0r), ~0 =- yTSZ, T 
is the T-ordering symbol, iwm = 27TimT are the imagi
nary frequencies of the temperature diagram technique, 
uoJ the mean value ( ... ) denotes Sp p 0 ( • •• ) with Po 

= exp (- {3dlC0 )[Sp exp (- {3al0W1 • The second term in the 
right-hand side of (4) represents the sum of products 
of all the possible blocks of smaller order. In the final 
analysis, the r no are expressed in accordance with the 
rules indicated in [61 in terms of Green's functions de
fined as follows: 

G (ro.) = 11 (y- t~ro.). 

a 

d 
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FIG. l. Single-cell block. 

In addition to the single-cell blocks of the type de
scribed above, there are also blocks r nm (see, e.g., 
diagrams b, c, and e of Fig. 1) with m outgoing phonon 
lines. It can be shown that the expressions for the Fou
rier components of such blocks are obtained from ex
pressions for the blocks r no of the same order in n, by 
making a suitable interchange of frequencies. If in the 
block rnm there are Operators Saj(Tj) and U(Tj) With 
coinciding temporal arguments, then to obtain its Fou
rier component it is necessary to replace Wj in (4) by 
Wj + Oj, where Oj is the frequency of the corresponding 
phonon line. Thus, for example, the diagram a of Fig. 1, 
with a 1 and a 2 having values "+" and "-", respectively, 
correspond to the expression 

r;o (ro,, ro,) = b(y)G(ro,)O(ro,- (t)z), 

while diagram b with the same a 1 and a 2 corresponds 
to the expression 

r;; (ro,, ,ro,, Q,) = b(y)G(u,, + !J,)O(ro, + Q,- ro,). 

In calculating the contributions corresponding to dif
ferent diagrams, one sums over the internal frequencies 
and momenta. The result of the summation over the mo
mentum is an expression proportional to r~3 = (a/R0 ) 3, 

where R0 is the average interaction radius and a is the 
cell dimension, so that the correction of order l in the 
expansion in r~3 will be represented by the aggregate of 
all possible connected diagrams containing l closed 
loops. 

The Dyson equation for the phonon Green's function 
(we shall consider only longitudinal phonons) has in the 
momentum representation the form 

D-'(k, i!Jm) =D<'l-'~k, iQm)- Il(k, i!Jm), (5) 

where Il(k, iOm) is the irreducible self-energy part and 

J)('l(k, iQm) =-1IM[Qm'+!J,Z(k)] 

is the Green's function of the free phonons (M is the 
mass of the cell). The absorption of the sound will be 
determined by the imaginary part of Il(k, 0). 

Let us consider the absorption of sound in the case 
when its frequency satisfies the condition ms » 1, 
where ts is the characteristic magnon relaxation time. 
The magnon relaxation time for the case 1/r~-/T « 1, 
when the technique in question is valid, was obtained 
in [7J and is given by the expression t'fl ~ T ln T /r~-IT, 
where T = (ec - T)/ec, and therefore the frequency 
of the sound should satisfy the inequality 

Q I T~Jn -r I r,'i'T. 
Since the period of the sound wave is smaller than the 
relaxation time, we can disregard completely the relax-
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FIG. 2. First-order diagrams for the irreducible self-energy part. 

ation processes and regard the absorption of sound as 
merely the absorption of acoustic quanta by magnon 
excitations. 

Assuming the average interaction radius to be large 
compared with the interatomic distance, let us consider 
the first term in the expansion of the self-energy part 
of 11 in powers of r ~3 • In this case the irreducible self
energy part 11 1 will be equal to the sum of the expres
sions corresponding to diagrams with only one loop. 
Figure 2 shows these diagrams. The solid line corre
sponds to the effective interaction v+- (p, iwn), which 
joins the vertex s+ with the vertex s· and satisfies the 
equation 

V+ -(p, iro.) = V, + ~V,2K+ -(p, iro.), (6) 

where Vp = ~V(r)eiP·r, and Kafl(p, iwn) is the temper-
r 

ature correlation function of the operators sa and stl, 
defined in [61 • A wavy line corresponds to the effective 
interaction yzz(p, iwn), which joins the vertices sz with 
one another and satisfies the equation 

V"(p, iro.) = V, + ~V.'K" (p, bro.). (7) 

The lines marked in Fig. 2 by crosses correspond to 
the interaction Vr V(r - r') and differ from v+- (p, iwn) 
and yzz(p, iwn) by a factor p cos a, where a is the 
angle between the vector p and the phonon wave vector 
k. 

We present analytic expressions for the single-cell 
blocks r no• needed in the calculation of 11 1 : 

f2~'(ro,, ro,) = b'l\b, r;,- (ro,ro,) = bG(ro,)ll,-2, 

r,:-'(ro,, ro2,ro,) =- bG(ro,)G(ro,)/l,_,_, + b'G(ro,)/l,_,/l,, 

ri,-"(ro,,ro,, ro,, ro,) = bG(ro,)G(ro,) [G(ro, + ro,) + G(ro, + ro,) ]ll,_,+'+< 
+ b"G(ro,)b,_,ll,ll,- b'G(ro,)G(ro,) [ll,_w/l, + /l,_H,b,]. 

Here oi-k = o(wi - wk) is the Kronecker symbol, and 
b' and b 11 are respectively the first and second deriva
tives of b(y) with respect to y. 

To study the singularities of 11, we need to investi
gate the difference 11(k, 0} - 11(k, 0}, where 11(k, 0) 
= 11(k, iOm)lm=o· The blocks r~z, r~g:z and the second 
term in r;;z contain o(wj) as factors, where Wj is the 
frequency corresponding to yzz(p, iwj)· It is obvious 
that inasmuch as this frequency coincides with the pho
non frequency Om in the diagrams 2, 4, 12, 15, and 16 
of Fig. 2, such diagrams need not be taken into account. 
Similar reasoning holds for the blocks r nm defined 
above. As a result, to obtain 111(k, 0}- 11 1(k, 0), it is 

necessary to take into account only the diagrams 1, 3, 
5, 7, 9, 11, and 13. Corresponding to them are the fol
lowing expressions: 

diagram 1 

~'(S)~2V.2b' .E G'(ro.)G'(ro. + Qm) y+-(p + k,ro. + Qm) y+-(p, ro.), 

P, llln 

diagram 3 
~'(S)'k'V.2 b2 , +-

N _EG(w.)V,V (p,ro.)[G(w.+Qm)+G(ro.-Qm)], 
P, wn 

diagram 5 
2~b2 

-~ .E pcosa(pcos a+ k)G(ro.)G(ro.+ Qm) 
P, (l)n 

X y+-(p, ro.) y+-(p + k, ro. + Qm), 

diagram 7 (8) 
~'b' N .E G(ro.)G(ro. + Qm) v+-(p, ro,) v+-(p + k, ro. + Qm) 

X [P2 cos' aV,G(ro. + Qm) + (p cos a+ k) 2V>+•G(ro.)]. 

diagram 9 

~~' .E p'cos2aV,G(ro.)V+-(p,ro.) [G(ro.+ Qm)+ G(ro.- Qm)], 

P, "'n 

X [p cos aG(ro. + Qm)-(pcos a+ k)G(ro.)], 

diagram 13 
2~2(S)kV.b2 ~ 2 + [ + r. ) N l..J pcosaG (ro.)V,V -(p,ro.) G(ro. o•m 

P, Cil 71 

-G(ro.- Qm)]. 

Here Om is the frequency of the external phonon line. 
Since 1/r~v'T << 1, it follows, as shown in [61 , that one 
can use for the average spin the value corresponding to 
the molecular-field approximation (3}, (S) = b(y). Car
rying out summation over Wn in (8), making the analytic 
continuation iOm - 0 + io, and adding the contributions 
of all the diagrams, we obtain 

b'v,T J 
IT,(k,Q)= 16n'Sc d'p[kV.+pcosaV, 

( + k) V ] 2 cth ( e,/2T) - cth ( e•+•/2T) ( 9 ) 
- p cos a >+• 8 •+> _ e, _ Q _ ib , 

where Vc is the value of the elementary cell, and Ep 
= b(y)(V0 - Vp) + Jl.H is the energy of the spin wave in 
the zeroth approximation in 1/r~v'T. Obviously, 
1m 11 1(k, 0} exists only for 0 ~ Ep+k - Ep ~ bV J{ok. 
In our case 0 = sk (sis the speed of sound) and bV0 

~ EJcvT, and therefore when T <:. 8 0 jr08C the principal 
role in the attenuation of the sound should be played by 
the long-wave magnons (80 is the corresponding char
acteristic temperature). The potential Vp can be rep
resented in this case in the form 

_ [ 1 ~ " ~ V(r) ] _ [ 1 ~ , 2 '] v.- V, 1-2"l..JP p~ l..Jx"x~v,- - V, 1-zl...J (p) x,. . 

"·' ' '=' (10) 

Here X~i are the principal values of the tensor 
V~1L:rxaxtJV(r), and pi is the projection of the vector p. 
For cubic lattices, for example, we have x~i = R~/3. 



HIGH-FREQUENCY SOUND NEAR THE CURIE POINT OF FERROMAGNETS 1217 

Taking {10) into account, let us calculate Im II 1{k, 0) 
at T ~ 6c. For simplicity we consider the case of a 
zero external field. As a result we have for the damping 

9y3 e T 2 
{ (2m2Q' )' y=-----0 

(-) Q 1- ---k2 -mQ 
16nr,'y Ms' 8c k' 

( 2m'Q' ) 4k2 

+2 ~-k2 In l4m'Q2-k'l 

[(2m'Q'jk'-k')'+m'Q'] 12mQ+k''l·} 
+ mQ In 2mQ - k' • {11) 

where m = 1/bV0 , k = kR0 , andy ~..fT. The expression 
in the curly brackets is of the order of unity for all 
k ~ 1/R0 , and the damping is given in this case by the 
formula 

1 e, T 2 y----(-) Q. 
ro'1T Ms 2 8c . {11') 

It is seen from {11') that the damping of the sound in
creases on approaching the transition point. This is 
due to the fact that near ec the density of the spin 
waves increases. In the immediate vicinity of the 
transition point, our analysis does not hold, for in this 
case it is necessary to take into account the growth of 
the damping of the spin waves and the scattering by the 
fluctuations of the momentum sz. 

A comparison of the sound damping {11') obtained by 
us with the case of low temperatures T « ec, consid
ered in [3J, where 

{12) 

shows that when T ~ 1 the temperature and frequency 
dependences of the damping practically coincide. This 
is natural, for in either case the damping is determined 
by the spin waves. 

Sound absorption as the result of the phonon-phonon 
interaction was considered in [s, 9J. It was shown that in 
the region of temperatures and frequencies of interest 
to us it takes the form 

y~Q-'-a ( T )' 
Ms' 8, {13) 

for high-temperature ferrodielectrics (ec > 6 0) and 

{14) 

for low-temperature ferrodielectrics (ec > 6 0). 

It is seen from formulas {13), (14), and {11') that the 
considered magnetic absorption of sound is small com
pared with the absorption due to phonon-phonon interac
tion in low-temperature dielectrics and becomes ap
preciable in high-temperature ferrodielectrics when 

It should be noted in conclusion that in ferrodielec
trics the interaction radius, which we assumed to be 
large, is usually small (r0 ~ 3-4). One can hope, how
ever, that the present paper gives a correct qualitative 
description. 

The author is grateful to V. L. Pokrovskil', S. A. 
Pikin, and L. D. Romelashvili for useful discussions. 
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