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The spectral energy density of ion-acoustic oscillations in a nonisothermal plasma situated in the field 
of an electromagnetic wave is determined. The high-frequency conductivity of a weakly-turbulent 
plasma with developed ion-sound noise is calculated for an electromagnetic-wave frequency close to 
the plasma frequency. It is shown that the electromagnetic-wave absorption coefficient connected with 
this conductivity is large compared with the usual absorption determined by electron-ion collisions. 

ExPERIMENTS on the interaction of a plasma with 
electromagnetic waves in the high-frequency (w 0 ~ 2 
x 1010 sec-1)[1-SJ and the optical [4J (w 0 ~ 2 x 1015 sec-1) 

ranges point to the existence of phenomena occurring 
outside the framework of the linear theory of absorption, 
reflection, and propagation of electromagnetic waves in 
a plasma. On the other hand, as early as in 1965, one of 
the authors predicted the phenomenon of rapid heating 
of a plasma by a high-frequency field, as a result of de­
velopment of a parametric plasma instability. C5J The 
theory that determines the conditions for the occurrence 
of such an instability has by now been developed in suf­
ficient detail. cs,7J At the same time, the theory of this 
turbulent state, which results from the parametric in­
stability, is still far from complete. The need for such 
a theory is dictated by the need for constructing a de­
tailed picture of the entire interaction between a strong 
electromagnetic field and a plasma. Definite progress 
towards the development of such a theory was made in 
cs, 9 J, where a study was made of the influence of grow­
ing plasma oscillations on the distribution of the plasma 
particles, and it was concluded that the dissipation of 
the electromagnetic-field energy increases in anomalous 
fashion. These conclusions were confirmed by the re­
sults of a computer experiment, [10l in which the use of a 
model that is quite idealized but nevertheless reflects the 
important features of the real problem has made it pos­
sible to obtain numerical values for the plasma conduc­
tivity determined by the nonequilibrium field pulsations. 
The authors of ClDJ advanced some ideas concerning the 
possible physical causes of the stationary pulsation level, 
in analogy with the fact that, in accord with tal, plasma 
heating can suppress parametric instability. So far, how­
ever, no attempts have been made to study the role of the 
nonlinear interaction of growing perturbations in a para­
metrically unstable plasma. The results of such a study 
constitute the content of the present article. 

1. STATIONARY SPECTRAL DENSITY OF ION-SOUND 
ENERGY 

The theory of parametric resonance of a plasma situ­
ated in an external alternating electric fieldC5,sJ 

Eo COS Wot {1.1) 

with constant and homogeneous amplitude E0 and with 

frequency w0, predicts a large number of effects on the 
basis of which one can attempt to explain the experi­
mentally observed phenomena. In this paper we calcu­
late the damping decrement (lleff + llei)/2, which depends 
on the amplitude E0 , of a plane monochromatic wave of 
frequency w0 close to the electron Langmuir frequency 
WLe in a plasma: 

{1.2) 

and having a negligibly small wave number compared 
with the wave numbers of the perturbations that build 
up in the plasma. Following t7J, we confine ourselves 
here to the case of low electron oscillation velocities 
VEin the field of the electromagnetic wave, compared 
with the thermal velocity VTe (e is the electron charge 
and m its mass): 

and neglect completely the displacements of the ions 
in the field {1.1). Under these conditions, when the 
electric field E0 exceeds a certain "threshold" value 
Ethr in a nonisothermal plasma with hot electrons 
(temperature Te) and relatively cold ions (temperature 
Ti) 

T.~T, {1.3) 

the instability gives rise to ion-acoustic oscillations 
with frequency 

{1.4) 

much lower than the ion Langmuir frequency wLi, and 
with a wave number k smaller than the reciprocal elec­
tron Debye radius rDe• 

(krD,)z ~ 1. 

Such an instability can be interpreted as the decay of the 
external wave {1.1) into a low-frequency (w « w0 ) long­
wave ion-acoustic oscillation {1.4) and a Langmuir os­
cillation with a spectrum 

The equation connecting the frequencies of the oscilla­
tions that take part in the decay imposes a limitation 
(see (1.2)) on the frequency deviation 

1198 
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and determines (~w0 = kvs) the wavelength 21T/k0 of the 
plasma oscillations: 

The spectral energy density Ws(k) of the excited ion­
acoustic waves determines ca,BJ the energy density per 
unit time, averaged over the period (21T/w0), released 
in the plasma by the field (1.1) (6a is the sought contri­
bution made to the high-frequency conductivity resulting 
from the interaction with the developed plasma oscilla­
tions): 

1 , 1 J dk (kv.,)' W,(k) 
21luE, = 2 (2n)' (krn,)' y(k) · 

The damping decrement of the ion sound 

y(k) =y,(k){1-F(k) cos'e}, 

(1.6) 

(1. 7) 

is determined by the damping of the ion-sound oscilla­
tions by the electrons 

-1/ :t WLi 
y,(k) = V --kv, 

8 (OLe 
(1.8) 

and by their buildup by electrons oscillating in the field 
(1.1)[7] 

F(k) = _1_ (~)' Cilol\ro,y(k)kvT, 
y2it Cilorn, [ (1\Cilo) 2 - k'v,'] 2 + 4k'v,'V'(k) 

(1.9) 

The high-frequency damping decrement y(k) is deter­
mined by the Landau damping and by the collisions of 
the electrons with the ions (the effective collision fre­
quency is "ei « kvTe)c7J 

,{;: Cilo { 1 ( Cilo )'} 1 V(k)= v---,exp --2 -k- +-2 v,,. 
8 (krD,) VTo 

(1.10) 

A characteristic feature of the decrement (1. 7) is its 
dependence on the direction of ion-sound propagation 
relative to the field (1.1) (8 =kE0 ). The sound is am­
plified if its damping decrement (1. 7) is negative 

1- F(k) cos•e < 0. 

We determine the spectral energy density Ws(k) of 
long-wave ion sound (1.4) within the framework of the 
theory of nonlinear wave interaction in a plasma. The 
nonlinear mechanism limiting the level of the ion­
acoustic noise is the induced scattering of ion sound 
by the ions. The corresponding equation describing the 
spectral energy density Ws(k) has in the case of Cou­
lomb scattering the form (K is the Boltzmann constant, 
Ne is the number of electrons per unit volume, and the 
subscript i labels ionic quantities) 

xT. = W,(k) [1-F(k)cos'6]+ 2-{ v._ 

v" (1.11)* 

, W,(k') k- k' kk' • [kk']' 1 rD.' (k- k')' ]} 
xJdk N,xT,--w(kk') lk-k'l'exp[ -2 TD<2 (k-k')' . 

The left side corresponds here to spontaneous emission 
of ion-acoustic oscillations by electrons, and the first 
term in the right-hand side gives the contribution of 
the linear processes of damping and buildup of the 
sound. An important property of the nonlinear term of 
(1.11) is the antisymmetry of its kernel relative to the 
replacement of the wave vectors k +"' k' of the interact­
ing sound waves. In the nonisothermal plasma (1.3), 

*(kk) = k·k; [kk'] = k X k'. 

this kernel can be greatly simplified by approximating 
the exponential with a 6 function:u1J 

k-k' { 1 rD,• (k-k')' ~rD.' 8 
Jk-k'J' exp - 2 rD,• (k-k')'} eq'2n;:;;;a;;;-ll(k' -k). (1.12) 

Equation (1.11) can then be represented in the form 

xT. = W,(k) {t-F(k)cos'e + 2j2nrD<'.~ 
rDe rou (1.13) 

X s dk'W.(k') (kk') 8/l(k'-k) ( kk')' [kk']'} 
N.xT, 8k' kk' (kk')' . 

Confining ourselves to the solution of (1.13) at the 
threshold for the buildup of the ion sound by the elec­
tromagnetic wave (1.1), and neglecting the small spon­
taneous term in the left-hand side of (1.13) we have 

' ., iUl(x' x) "•<•'> 
('i''+x'-1)+ Jax' ox-: J 1jl'd1jl'{'l''+'i'")y{x',ljl')=O. 

•• 0 (1.14) 

The sought function y(x, ljJ) of the dimensionless wave 
number (x ;;;;: 0) 

k-k, 
X s= -k-

0
- bolj)o, 

and of the angle lJi = 8lji0 (6 « 1) determines here the 
dependence of the spectral energy density Ws(k) of the 
ion-sound oscillations on their wave vector k (withal­
lowance for the cylindrical symmetry of the initial equa­
tion (1.1) about the electric intensity vector E0 of the 
wave (1.1)): 

(1.15) 

Equation (1.14) is an elementary consequence of (1.3) 
for the propagation of ion sound almost parallel to the 
field E0 of the wave (1.1) (8 « 1) and in the fields E0 

close to the threshold Ethr: C?J 

(1.16) 

determined by the vanishing of the damping decrement 
(1. 7) at the maximum value of the function (1.9) 

F (ko) F k F k ) Eo' i 
F (k) 1 + x• [F (ko)- 1] ; M!x ( ) ""' ( o = Et,, > . 

The case of antiparallel propagation of the sound rel­
ative to E0 reduces to (1.14) because of the symmetry of 
the spectral energy density (see (1.11)) 

W,(k, '6) = W,(k, n- 6). 

According to (1.14), the nonequilibrium spectral den­
sity is defined in the wave-number interval 

(1.17) 

and in the angle interval 

0:,;;;; 1jl:,;;;; 1jlt(x). (1.18) 

The end points of the interval (1.17) and the wave-num­
ber function l/J 1(x) must also be found. The meaning of 
the function l/J 1(x) is that it delineates on the (x, l/J) plane 
the region in which the level of the ion-sound noise is 
much higher .than the spontaneous noise 

y(x, "¢1 (x)) = 0. (1.19) 

The existence -of such a line 1/J = l/J 1(x) follows naturally 
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from general physical considerations concerning the 
attenuation of the sound with increasing angle (J between 
the field E0 and the propagation direction k of the oscil­
lations, and is confirmed by the solution of (1.14) given 
below; the validity of this solution can be easily verified 
directly: 1> 

'( )- 7 C,+x-'f,x' 
'~'• x- 3 C,-x ' 

The integration constants C1 and C2 which arise here 
are determined by the boundary values of the spectral 
energy density at the end points of the wave-number in­
terval (1.17). We assume that at the end points of this 
interval the noise level decreases to the spontaneous 
value (i.e., to zero, in accordance with the approxima­
tion assumed on going from (1.13) to (1.14)) 

y(x,, 1jl) =0, 1jl1 (x,) =0. (1.20) 

The end points x1 and x2 determining these constants 

C, = x., C, = 1/sx,'- x,, 

are determined, in turn, from the positiveness condition 
l/J~(x) > 0 

x, = -2, x, = 1. 

As a result we obtain a final formula for the nonequilib­
rium spectral energy density (1.15) of ion-sound oscil­
lations built up by the electromagnetic wave (1.1) when 
its electric field intensity E0 slightly exceeds the thresh­
old value (1.16) (E0 ~~ Ethr): 

W, (k) =~ (2n('' roLi rh. y (ko) ( Eo' - 1)-''• (rot; + 6 roo- ro, )-'/• 
4 roLe, 7b; kovT• Ek, rol, ro., 

X N,xT, x+2 , 2 _ y'7 
ko• 1jl1• (x) 'I' !'1'1 (x)- 'I' I, '1'1 (x) = - 3- (1 ·- x). 

(1.21) 

2. HIGH-FREQUENCY CONDUCTIVITY OF TURBU­
LENT PLASMA 

In accordance with (1.21), the spectral energy density 
of the sound reaches a maximum (with respect to the 
angle l/J) on the straight line lf! = l/J 1(x)/..f3 of the (x, l/J) 
plane: 

Maxy(x,'iJ)=y(x, 'i'~)=15l'3 2+x • 
• 1'3 7 (1- x)' 

The maximum with respect to the wave numbers is 
reached on the line (y~ = 0) 

1/ 7 + 2x 
w='iJ·(x) v 11+4x' 

For the total energy density W (over the entire spec­
trum) of the ion-sound oscillations we have 

S dk 9 r' NT W== --W,(k)=---~ roLi ,x ' 
(2:n;)' 2(2:n;)'1' rv.' --;;;: b021jl02 ' 

(2.1) 

In particular, it can be verified with the aid of (2 .1) that 
the condition used in the derivation of the initial equation 
(1.11), namely that the total energy density W is small 
compared with the energy density of the thermal motion 
of the plasma particles, is satisfied: 

1lThe conditions (1.20) ensure the vanishing of the result of inte­
gration by parts (with respect to dx') in the second term of (1.14 ). 

WI N,xT,~ 1. (2~2) 

This, however, imposes a limitation on the degree of 
nonisothermy of the plasma: 

r~ ~2(2n)'1' roL• (ro~, + 6 ro0-ro")( E0' _ 1 )-l(~vT•)' ,(2 .3) 
r Di 9 roLi roL• ro, E:m y' (k0) 

The high level of nonequilibrium noise of ion-sound 
oscillations, compared with the spontaneous noise 

( E • )-1 W,(k)>xT, - 0--1 
E• ' 

thr 
(2.4) 

also follows from the solution (1.21), thereby confirming 
the assumption made above that the left-hand side of 
(1.13) can be neglected on going to (1.14). It must be 
emphasized at the same time that it is precisely because 
of the inequality (2.4) that the electric field intensity E0 

of the electromagnetic wave (1.1) cannot be too close to 
the threshold value Ethr (in this estimate we put 
y(x, l/J) = 0(1)): 

( E • ) r• (k v )2 2 _o __ 1 >32n•___Ei_~(1+6roL, roo-rop)!!l'_ (2 5) 
E1ru, r:l:,, y'(ko) rot; ro, N,' · • 

To obtain an explicit expression for the contribution 
aa to the high-frequency conductivity due to the inter­
action with the plasma oscillations that develop as a re­
sult of the instability, we substitute the spectral energy 
density (1.21) in the right-hand side of (1.6), and sim­
plify the latter in the near-threshold region of ion-sound 
buildup 

e'N, 
6a==--Veff, 

mwa2 
(2.6) 

It turns out here that the effective collision frequency 
~'eff is determined by the total energy density W (over the 
the spectrum) of the ion-sound oscillations (2.1): 

1 roL.' W 
Verr=------ (2.7) 

2 y(k,) N,xT,. 

Thus, the effective frequency ~'eff• which determines 
the contribution of the interaction with the oscillations 
to the high-frequency plasma conductivity (2.6), and 
consequently also to the damping decrement of the elec­
tromagnetic wave (1.1), takes the form 

81 - ( E0' ) rb roL. 
Veff = 4 (2 )'I• y(k0) -E, -1 +-' 

n thr 7Di (I)Le 

( ro2 )-1 ( [ ro• 'I 2 "/. ro~i + 6 roo:- ro, f + 6 ro0 - ro, J '_ roL, )- • 
Le P 00Le (I)P (i)Le 

(2.8) 

We recall that here y(k0 ) is the high-frequency damping 
decrement (1.10) at the decay value (1.5) of the ion­
sound wave number, and the threshold intensity Ethr 
of the electric field of the wave (1.1) is given by (1.16). 

It should also be noted that with decreasing deviation 
t:.. of the frequency w0 of the wave (1.1) from the plasma 
frequency wp = ..j wie + wLi , 

the last factor in the right-hand side of (2.8) increases, 
together with the effective collision frequency ~'eff· Ac­
tually, however, the deviation t:.. is limited even within 
the framework of the theory that is linear with respect 
to the plasma perturbation [71 
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~.< . .1.<.1.,, (2.9) 

With the end points .6.1 and .6.2 of the interval (2.9) deter­
mined by the condition 

(2.10) 

which must be satisfied by the wave number (1.5) of the 
ion-sound oscillations produced as a result of the decay 
of the wave (1.1). Namely, the lower limit is determined 
by the equation 

and results from (2.10) if one can neglect in the high­
frequency damping decrement (1.10) the contribution of 
the Cerenkov damping by the electrons (y(k0 ) Ri Vei /2). 
The upper limit .6.2 of the deviations (2.9) 

is determined from (2.10) in the opposite limit, when the 
high-frequency damping decrement (1.10) is determined 
only by the second term (y(k0) » llei /2). Thus, the ef­
fective collision frequency (2 .8) is defined in the devia­
tion interval (2.9) and is given by 

81 ri,, ( E02 )( WLe )" 1 
Veff· = 8 (2n)'1• vei r~i Eh. - 1 wLi (1 + L\)(V1 + Ll- 1)' 

and its order of magnitude is 

In the interval (2.13), the effective collision fre­
quency (2.12) increases monotonically with increasing 
frequency deviation, reaching a maximum value at the 
upper limit D. = .6.2 : 

1 w Li ( w£, ' '1• ri,. ( Eo" \ 
Maxverr = ,r- ,1,wLi- In - 2-) - 2- --2 - -1). (2.14) 

A r 2 (2n) wL, wLi rDi Ethr I 

Such a growth of the absorption is accompanied by a 
growth of the threshold field (1.16) with increasing D. 

which assumes at the upper limit .6.2 of (2.13) the value 

E' _ 8(2n)''• (wL')'( roL.')'I• !hr------ In- N,'KT,. 
l'2 (iJL6' Cihl 

(2.15) 

The effective collision frequency (2.14) is much higher 
here than the electron-ion collision frequencyr12l (NDe 
= % 1TNeroe is the number of electrons in a sphere 
having the electronic Debye radius and ei is the ion 
charge): 

2 e, lnNn, 

x{f+27 vi:Li( =L~ )'(Vi +L\ -it" exp[ _! whf'1 + .1.-1t•J}. v,, = 9(2n)'l•"j;jwL•N,;:"""• 
" L• 2 wL, and in a plasma with sufficiently high electron tempera-

(2.11) ture we have 
Formulas (2.8) and (2.11) for the effective collision 

frequency due to the plasma oscillations were obtained 
under the assumption that the high-frequency dissipation 
is determined by the decrement y(k). This assumption 
is valid only if lleff « y. At sufficiently high plasma­
oscillation intensity, when the interaction with the oscil­
lations is important for high-frequency dissipation, it is 
necessary to replace y by y + lleff /2. Such a replace­
ment in (2.8) leads to the following expression: 

Veff = 2y(ko) ( Eo• - 1){1 + 8 (2n)'l• ri,i 
E~hr 81 rt, 

X ( =~: ) 3 
(1 + !\)(YT+Lf- 1)'} -t, 

(2.12) 

in which the threshold value of the field is given by 
(1.16). We see therefore that in the near-threshold re­
gion considered by us lleff is always smaller than the 
high-frequency decrement y(k0 ). Therefore the inter­
action with the plasma oscillations, in accordance with 
(2.12), can lead to an effective collision frequency lleff 
larger than the usual electron-ion frequency llei> only 
in the frequency-deviation interval 

(2.13) 

in which the contribution of the ordinary collisions to y 
is negligibly small, i.e., 

2 ,;-;; (i)L.' - { 9 WL.' - } 
y(ko) = 27 V --, (l'i + .1. -1)-'exp 1---2 (l'i + .1. -1)-t . 

2 ffiL< 2 WLi 

The lower limit D.c of the frequency-deviation inter­
val (2.13) is given by 

1 3 T, ro• ( wr, )''• N,r'},, ( E02 ) ,_ -Maxverr=-~---- In- -- ---1 :;:;;;>1. 
v<~ " V2(2n)• Ti wi, roL lnNv, E'!h 

r (2.16) 
In a hydrogen plasma (wLe /wLi) Ri 43, this condition 
(2.16) takes the form (the temperature is in eV, Ne is 
the number of electrons per em 3) 

2.5.106(lnNv,t1 ~~ T'/'J¥;''•( ~o" -1)~1. 
' Ethr 

(2.17) 

In a hot plasma defined by (2.17), the absorption of a 
transverse electromagnetic wave with frequency w0 

"" Wp defined by the effective collision frequency (2.14) 
is anomalously large compared with the ordinary ab­
sorption due to llei· 

Summarizing, let us emphasize certain characteris­
tic features of the basic formulas (2.11), (2.12), and 
(2.14) obtained in this section. Namely, the dependence 
of the effective collision frequency lleff on the field E0, 

the absorption of which by the plasma is determined by 
this frequency, has a threshold character, since the 
anomalous absorption indicated above sets in only when 
the field E0 exceeds a certain threshold value Efur· 
Such a threshold value of the field is much lower than 
the field in which the electromagnetic-wave energy den­
sity becomes comparable with the plasma pressure (see 
(1.16), (2.15)). The dependence of lleff on the frequency 
w0 of the absorbed wave is resonant: an increase of the 
relative frequency deviation (w0 - wp)/Wp within certain 
limits increases the absorption sharply (see (2.11) and 
(2.12)) within the interval (2.13). Finally, the dependence 
of the effective collision frequency on the plasma tem­
perature and density, given by (2.11), (2.12), and (2.14), 
differs strongly from the usual one for llei· 
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CONCLUSION 

The main results of this paper are formulas (1.21), 
(2.11), and (2.12) for the stationary spectral energy den­
sity of the plasma ion-sound oscillations and the effec­
tive collision frequency that determines the high-fre­
quency conductivity of the weakly-turbulent plasma. The 
method of solving the integral equation (1.11) for the 
spectral energy density in a wide range does not depend 
on the concrete mechanism whereby the unstable oscil­
lations are excited. The ion-sound noise excited in the 
plasma by an electron current [111 is determined by this 
method in the Appendix. 

The obtained effective collision frequency lleff deter­
mines the damping decrement (lleff + llei)/2 (in reciprocal 
seconds) of tJ!e transverse electromagnetic wave, its 
wave vector k, and the absorption coefficient J.1. (in re­
ciprocal centimeters) (see formulas (6.22) on p. 43 in 
the book [121 ): 

7C = w; r>• :. ro. + [ ( ro, :. ro. )' + cor~:.~.,)']"'}"' , 
Jt= Voff+""{ro,-ro, + [(w,-ro.)'+ ("orr+'v,,)']'''}-''•. 2c ro. ro. 2w, 
In the case of large frequency deviations from the 

interval (2 .13) 
- Wo (Wo -6lp ) 'i• 1 \'off + \' •< ( 6lo - Wp ) -'/o 

«=1(2-~ ' jt= --- ' 
C Wp 2)'2 C 6lp 

the absorption coefficient J.1. increases with increasing 
frequency deviation together with the effective collision 
frequency (2.12), and reaches a maximum value at the 
upper limit A= A2 of the deviations (w0 - Wp = %wp 
x ln-1 wi..e jwLi): 

Here lleff is given by (2.14) and greatly exceeds llei 
under the conditions (2.16). In a hydrogen plasma 
(WLe fwLi = 43) with an electron density Ne Rl 1021 em-s, 
the light of a neodymium laser (w0 = 1.78 x 1015 sec-1) 

is absorbed approximately ten times more strongly than 
as a result of electron-ion collisions Vei• if the electron 
temperature is of the order of 10 keV (KTe Rl 16 keV), 
and the electric field intensity of the light wave E0 ex­
ceeds by 20% the threshold value Ethr Rl 2 x 108 V /em 
(in this estimate, the nonisothermy of the plasma is 
given by Te Rl 12Ti)· In such a plasma (rne Rl 3 x 10-8 

em) the wave number of the developed ion-sound oscil­
lations k.e Rl roe [2 1n <wie ;w.L W1/ 2 exceeds the wave 
number k of the light wave {v'3 w0 rne/c « 1) in ac­
cordance with the initial assumptions (see formula (1.1)). 

We note that the considerable excess above Ethr for 
light pulses of nanosecond duration is already difficult 
to accomplish. To the contrary, in experiments[1• 21 on 
the interaction of a plasma (Ne Rl 1011 cm-3, KT e = 4 eV) 
with an electromagnetic wave in the 10-cm band, the 
threshold field Ethr Rl 32 V /em (in accordance with for­
mula (2.15)) is exceeded by approximately 10-100 times. 

The formula (2.12) obtained above for the effective 
collision frequency is valid, strictly speaking, only in 
the near-threshold region, when E~ - Efhr « Efhr (such 
an approximation was essentially used to solve the inte­
gral equation (1.11) for the spectral energy density 
Ws(k) of the ion-sound oscillations). Extrapolating (for 

estimating purposes) formula (2.14) for the maximum 
effective collision frequency to the case of fields E0 far 
from threshold (E~ » Efur• KTe is in eV and Ne is in 
em-s), 

"off -104 !'..!..._ T'1•N-'1• Eo• 
".; T1 • • Et., ' 

we find that the absorption of a transverse electromag­
netic wave of frequency w0 Rl 1. 78 x 10-10 sec-1 in a hy­
drogen plasma with an electron density Ne Rl 1011 cm-3 

and with electron and ion temperatures KTe Rl 4 eV and 
KTi Rl 0.2 eV is 2-3 times more intense than absorption 
due to ordinary electron-ion collisions llei> if E0 

Rl 10-30 Ethr· This estimate agrees with measurements 
of the absorption coefficient. [1' 21 In this sense, it is 
vital to extend the theory developed above to include the 
case of fields E0 much above threshold. On the other 
hand, a direct comparison of the experimental data with 
the characteristic dependences of the effective frequency 
(2.11) and (2.12) and of the absorption coefficient on the 
density Ne, on the plasma particle temperatures T e and 
Tt. on the frequency deviation (w0 - wp)/wp, and on the 
field intensity E0 near the threshold is presently made 
difficult by the lack of detailed experimental data on 
this subject. 

From this point of view it is of interest to use the 
spectral energy density (1.21) obtained above for ion­
sound oscillations to calculate the distribution function 
of the fast ions accelerated by the sound (within the 
framework of the quasilinear theory), since there are 
published experimental data [lsl on the angular and en­
ergy distributions of the fast ions in a plasma produced 
when a solid target is heated with light from a laser 
(for nanosecond pulses). A comparison of the calculated 
and measured fast-ion distributions will make it pos­
sible not only to determine their origin, but also to 
"verify" to some degree the obtained solution (1.21). 
We plan to carry out such a comparison in the future. 
A direct application of formula (2.14) for lleff can be 
the use of lleff in the problem of the hydrodynamics of 
spreading of a hot (KTe > 10 keV) laser plasma for the 
determination of the density profile of a plasma close 
to critical, Ne Rl 1021 em-s. 

APPENDIX 

SPECTRAL ENERGY DENSITY OF ION-SOUND OSCIL­
LATIONS EXCITED BY A CONSTANT ELECTRON 
CURRENT 

The anomalous high-frequency conductivity of the 
weakly-turbulent plasma, which is proportional to lleff, 
was determined in this paper in terms of the spectral 
energy density of ion-acoustic oscillations, which is the 
solution of the corresponding integral equation. It is 
possible to calculate in perfect analogy the anomalous 
resistance of the plasma to a direct current of elec­
trons, [141 which is also proportional to the effective 
collision frequency. The exposition presented below is 
devoted to a solution of the integral equation for the 
spectral energy density of ion sound excited by a stream 
of electrons moving in a nonisothermal (Te » Ti) plas­
ma with constant and homogeneous velocity u exceeding 
the speed of sound v s· Such a problem of determining 
Ws(k) was considered in Ull. The nonlinear mechanism 
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limiting the noise level will be assumed as before (and 
as in [111 ) to be the induced scattering of the ion sound 
by the ions (see [141 ). We have 

{ 
U Vro J , W,(k') 

xT, = W,(k) 1--cos8+2- dk --
. v, · Vr< N,xT, (A.1) 

k-k' kk' ' [kk']' 1 rD,' (k-k')' • 
xkk'( kk') lk-k'l'exp[- 2 rD<' (k-k')']}' essku. 

This equation differs from the one used above (1.11) 
only in the form of the linear term in the right-hand 
side. Using the approximation (1.12), first employed 
in [111, and neglecting the small spontaneous term in 
the left-hand side of (A.1) at the threshold of the build­
up of the ion sound (1JI~ = (u/vs- 1r1 » 1), we obtain an 
equation analogous to (1.14): 

( 1 ) .. oil( ' > •·<•') 
-'IJl'-1 +xJ x''dx' x ,-x J 1Jl'd¢'(w'+w")y(x',1Jl')=O. 
2 •• ox • (A.2) 

Here the sought function y(x, 1JI) of the .dimensionless 
wave number x = krne and of the angle 1JI = 91jl0 (9 « 1) 
determines the dependence of Ws(k) on the wave vector 
k (see (1.15)): 

' (2:n)-3'2 7Dezrou 3 z 
W,(k)=-----,-(N,rD, )1Jlo xT,y(x.,P). 

2 rDi WLo 

The spectral density is determined in this case in the 
wave-number and angle intervals (1.17) and (1.18), and 
satisfies the condition (1.19). 

Integrating in the second term of the left-hand side 
of (A.2) with respect to the wave numbers 

•M•') "'=-o 
{ xx"ll(x'-x) J ¢'d¢'(1P'+IP")y(x',1Jl') L=-.=0, (A.3) . 

we arrive at a pair of integral equations for y(x, 1JI) (C 1 

and C2 are integration constants): 
•«>l 1 •·<•) 

~x-x' J ,pd¢y(x,¢)=C,; lnx+x' J ¢'d¢y(x,¢)=C,. 
• 0 

The solution of these equations can readily be found (it 
can be sought, for example, in the form y(x, 1JI) 
= Y1(x)P1(1JI/1J1 1) + y3(x)P3(1JI/1J1 1), where P 1 and P3 are the 
first and third Legendre polynomials) and determines 
y(x, 1jl) apart from the two unknown constants C1 and C2 : 

15lnx-2C, , , , 14 C,-lnx 
y(x,,P)= 4 x31jl 1'(x) 1Jl[ljl, (x)-1j1], 1Jl• (x)= 3 lnx-2C,'(A.4) 

The boundary conditions in (1.20) determine the con­
stants in (A.4) 

2C, = lnx., C,= lnx, 

in terms of the end points of the wave-number interval 
(1.17). Equation (A.3) is then satisfied identically, and 
the sought spectral energy density of the ion-sound os­
cillations is (see (1.21)) 

W(k) _15(2 )-'/rD.' WL< (N ') T ln(xfx,) 
• -- 11: 2--,-- eTp, X • 3 3 

8 rD< 'WLo X""' (X) 

x 1Jl[1Jl,'(x) -w'] ( uv, _ 1) -• 1J1,(x) =={ 14ln(z,/ x) }''• .. 
3 ln(x/x,) ' 

xsskrD., ¢==8(:. -1) -'/•. (A.5) 

Thus, the non-equilibrium spectral energy density of 
the acoustic noise differs from zero (i.e., from the spon­
taneous noise) in the region of the (x, 1JI) plane bounded 

by the curve 1JI = 1j1 1(x) and by the straight lines x = x1 and 
1JI = 0. In addition to having a different dependence on the 
wave number, the solution (A.5) differs from the spectral 
energy density (1.21) of sound excited by an electromag­
netic wave (1.1) also in that the end points x1 and x2 of 
the wave-number interval (1.17) are not determined by 
the solution (A.5) itself, for to determine x 1 and x2 it is 
necessary to advance additional physical considerations 
(see u 11). 

The spectral density (A.5) of the ion sound excited by 
the electron current differs significantly from that ob­
tained in u 11 mainly in its angular dependence.2 l Aver­
aging the spectral density (A.5) over the angles 

1 •·<•l (2 ) ., 2 

J W,(k)sin8d8~- J~W(k)dt=~.!!:._~N , Tln(x/x,) 
'i'oz o • 4 rD•2 roLe ,rD• X .-z-,-. 

we obtain an expression that differs from that given in 
[lll by a numerical factor and in the logarithmic depen­
dence (ln (xjx1) in place of ln (xz/x) in [lll with x2 RJ 1). 
The difference between the logarithms does not, how­
ever, affect the total noise (over the spectrum) with 
density (A.5) (see (2.1)): 

w- J dk W (k)- f rD." Wu ( Zz)' 
= (2n)' • - 8(2 )'f,-,-N,xT, ln- . (A.6) 

3t TDi (i)L• .Xt. 

Namely, the total noise (A.6) coincides (apart from a 
numerical factor) with the total noise that can be calcu­
lated with the aid of the angle-averaged spectral den­
sity. [111 

Thus, the method employed by us in the main body of 
the article to find the spectral energy density of ion­
sound oscillations excited by the electromagnetic field 
(1.1), in addition to being more consistent, is perfectly 
suitable for determining the density of the acoustic 
noise excited by a constant electron current. 

2l The author of [ 11 ] (see also the review [ 15 ] ) solved an angle­
averaged equation for the spectral density Ws(k) in a "narrow cone of 
directions of k with aperture angle (J 0 ." This aperture angle 80 , the order 
of magnitude of which was determined in [ 11 ], is equivalent to our func­
tion 1/1 1 (x), which serves as the demarcation line between the regions of 
spontaneous and turbulent noise on the (k, 8) plane of the wave vector k. 
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