
SOVIET PHYSICS JETP VOLUME 32, NUMBER 6 JUNE, 1971 

COHERENT CRYSTALLIZATION OF QUANTUM LIQUID 

D. A. KffiZHNITS and Yu. A. NEPOMNYASHCHII 

P. N. Lebedev Physics Institute, USSR Academy of Sciences 

Submitted July 8, 1970 

Zh. Eksp. Teor. Fiz. 59, 2203-2214 (December, 1970) 

The inhomogeneous state of Fermi and Bose systems of special nature, resulting from long-range 
attraction between particles, is investigated with simple models as examples. This state corre­
sponds to a crystal lattice whose parameter is determined not by the particle concentration but by 
the law governing their interaction. In this case the particles are not localized at the lattice sites 
and are capable of moving throughout the volume of the crystal. The type of permissible lattices 
and the character of the "liquid-crystal" phase transition are determined. It is shown that the 
shear modulus differs from zero, making it possible to regard the discussed type of crystals as a 
special modification of a solid. 

1. INTRODUCTION 

IT is well known that at increased pressure the quan­
tum liquids He 3 and He4 go over into the crystalline 
state. It is very probable that at definite, albeit diffi­
cultly-attainable conditions an analogous transition can 
also be experienced by other quantum liquids, such as 
that of electrons, nucleons, etc. One can raise the ques­
tion whether the crystalline state encountered in all the 
cases is similar to the state of the ordinary crystal or 
whether under certain conditions we encounter a crystal 
of a qualitatively different type. The same question per­
tains also to the character of the "liquid-crystal" phase 
transition itself. An attempt to answer these questions 
is the subject of this and succeeding articles. 

It turns out that the answer depends significantly on 
the type of the interaction between the particles (quasi­
particles) of the system. One can point to two different 
mechanisms capable of leading to spontaneous violation 
of translational symmetry. If sufficiently strong repul­
sion forces act at small distances between the particles, 
then the tendency of the particles in each pair to stay as 
far away from each other as possible gives rise to an 
ordered structure corresponding to a minimum overlap 
of the wave functions of the particles, and consequently 
to an energy minimum. As a result, owing to such cor­
relations, the particles turn out to be localized at the 
sites of a regular three-dimensional lattice. We em­
phasize that in order for the structure in question to 
be formed, it is the repulsion forces that play an im­
portant role. It suffices to state that at high pressures 
even the hard-sphere system crystallizes. The role of 
the attraction forces needed for the crystal to exist at 
zero pressure, is mainly to keep the system from fly­
ing apart. 11 The described mechanism serves as the 
basis for the occurrence of the state of the "ordinary" 
crystal (OC); this covers both the majority of solid­
state structures and, for example, the "Wigner crys­
tal"-an electron crystal in a system with a positive 
compensating background. lll 

The occurence of a periodic structure of an entirely 

llThe attraction forces can be replaced by enclosing the system in a 
box and applying an external pressure, as will be assumed later. 

different nature is possible, in principle, if the interac­
tion between the particle has sufficiently large Fourier 
components v(k) < 0 (attraction) in some region of the 
momentum transfer k ~ k 0 ; in addition, this interaction 
should be long-range and, as a consequence, should be 
well described by the self-consistent-field approxima­
tion. In this approximation, the interaction energy can 
be written in the form 

E,., = 'f, J d'kv(k) In• I', 

where nk is the Fourier component of the particle­
number density. It is clear from this equation that the 
minimum energy corresponds to a state with such spa­
tial periodicity that the components nk with k ~ k0 differ 
from zero.21 Such a state, in contrast to the OC, is not 
due to correlations but constitutes a stable inhomogene­
ous state of a system in a self-consistent field, and the 
periodic density distribution and the periodic field main­
tain each other. It can be stated that in this state a sep­
arate particle of the system is already a crystal. We 
shall call this a coherent crystal (CC), bearing in mind 
that the corresponding state is covered by the general 
definition of coherent states (see l 2 J and Sec. 3 below). 

In describing the physical differences between OC 
and CC, we note first that in CC the particles are not 
localized and can move freely through the system. For 
this reason, the quantitative characteristics of the CC 
depend strongly on whether it is made up of Bose or 
Fermi particles. Further, the CC lattice parameter is 
determined not by the particle concentration, as in the 
case of OC, but principally by the form of the interac­
tion between them. In particular, long-wave structures 
are possible, the period of which spans a large number 

2lconceivably, the periodic distribution is not the only possible stable 
state of a system that has lost translational symmetry. Thus, the quantity 
Eint can be expanded not only in the eigenfunctions of the operators Px, 
Py. and Pz, but in eigenfunctions of another triad of operators that com­
mute with one another and are constructed of generators of the motion 
group of a homogeneous and isotropic system, for example p2 M2 , and 
Mz, where pis the momentum and M the angular momentum. If the 
corresponding component ~'kim of the interaction potential is negative 
and sufficiently large, then the resultant state has the form of a rosette 
(details will be given in a separate article). 
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of particles. Accordingly, weakly-damped oscillations 
with wavelength much shorter than the lattice period 
can propagate through the CC. There are also other dif­
ferences, among which we mention the coexistence in a 
single-component CC of "solid" sound (lattice vibra­
tions) and "liquid" sound (vibrations of the density with 
the lattice remaining unchanged), and also the stability 
of a one-dimensional CC. These questions will be dis­
cussed separately. 

There is, of course, no unbridgeable gulf between the 
OC and CC states. These states constitute only two lim­
iting cases. It is possible, apparently, also to realize 
intermediate structures corresponding, for example, to 
particle motion that can be described as successive 
"jumps" from one point of temporary localization of 
the particle to another such point. This is precisely the 
character possessed by the motion of a particle diffus­
ing in a solid. It is therefore conceivable that an OC 
with sufficiently large vacancy concentration could man­
ifest certain properties of CC. Favoring this assumption 
are recent investigations by Andreev and I. Lifshitz, [3J 

who established the presence of special excitations of 
the "liquid" sound type (see above) in such crystals. 

As to the CC in pure form, it is at present difficult 
to point to such objects. It may turn out that they do not 
exist at all. However, the probability of the existence of 
crystals with predominantly coherent mechanism is not 
quite small. It is possible that one should expect the ap­
pearance of such structures in multinucleon systems, 
for example in the interiors of the recently discovered 
neutron stars (pulsars). 

Insofar as we know, the correct relation between CC 
and OC has not been established in the scanty literature 
on CC. [4-lOJ In some papers (for example, in the pioneer 
work of Vlasov, [4 J where the self -consistent-field method 
was applied in noncritical fashion to classical systems 
with ordinary molecular forces), these states were ac­
tually regarded as identical, whereas in others, to the 
contrary, they were regarded as being radically opposite. 
Thus, Gross [SJ has stated that the CC is not a solid, since 
he was unable to observe transverse sound; a similar 
statement was made in [eJ. Actually, however, the CC, if 
it is actually realized as a locally stable state of the sys­
tem, exhibits a nonzero shear elasticity (see Sec. 5 be­
low). 

In a number of papers, starting with the present ar­
ticle and serving as a continuation of a preceding publi­
cation by the authors, [7J 3 > we shall describe the results 
of a systematic investigation of coherent crystallization 
of a quantum liquid. The present article serves as an 
introduction. It considers only the main features of the 
phenomenon in question, namely the periodic character 
of the resultant structure (Sec. 3), the types of possible 
lattices, the character of the phase transition as a func­
tion of the type of lattice (Fig. 4), and the stability 
against shear (Sec. 5). In this paper we consider only 
the case T = 0. In succeeding articles we shall consider 
other singularities of coherent crystallization, and will 
also discuss questions only touched upon in this article, 
namely the dependence of the character of the phase 
transition on the type of the interaction, the stability of 

3lin the cited article, an attempt was made to attribute the anoma­
lous behavior of the specific heat of He3 to its coherent crystallization. 

a one-dimensional CC, the spectrum of the collective 
excitations, the properties of the system near the criti­
cal point, the role of the correlation effects, etc. 

2. INSTABILITY OF A HOMOGENEOUS STATE OF 
A SYSTEM 

The transition of a system into an inhomogeneous 
state corresponds, as a rule, to the appearance of in­
stability of the homogeneous state against infinitesi­
mally small density perturbations that upset the homo­
geneity. Information concerning such an instability is 
contained in the corresponding linear response function, 
which depends on the 4-momentum transfer. The in­
stability of a given state of a system becomes manifest 
in the occurrence in this function of anomalous singu­
larities in the frequency, leading to perturbations that 
grow in time. Similar singularities (but with respect 
to the total 4-momentum) arise in the response func­
tion to a change of the density of the condensate for the 
normal state of a superconductor at a temperature be­
low critical. [lll 

To describe the CC, we choose a model in which the 
coherent mechanism appears in purest form and which, 
on the other hand, can be calculated without difficulty. 
The interaction potential, or more accurately its Fou­
rier transform, is given by Fig. 1 (see also [7l). The 
following conditions are assumed satisfied: 

v(O)>O, J d'kv(k)>O, 

and make collapse of the system impossible. The sys­
tem is assumed to be "compressed," and the charac­
teristic momentum transfer k 0 is small compared with 
the reciprocal distance between the particles n1/ 3• Fur­
ther, the interaction energy of a particle pair is as­
sumed to be small compared with the characteristic 
kinetic energy, but the total interaction energy per par­
ticle pair can be of the order of or larger than the ki­
netic energy. 4 > The foregoing conditions, written out 
separately for Fermi systems (F) and Bose systems 
(B), are 

k,n-'h~ 1, mlvlko'n-'1•~ 1, mlvln'/•;?1, (lF) 
k,n-'h~ 1, mlvlko~ 1, mlvlnk,-';;2;1. (lB) 

In the latter case, the smallness of the parameter 
m I vI n1/ 3 makes it possible to neglect the excitation 
of the condensate (in this case n coincides with its 
density). 

When conditions (1) are satisfied, the system (in­
cluding the region adjacent to the phase-transition 
point) can be described in the Hartree approximation. 

Y(K) 

FIG. I 

4l In a compressed system, there are many particles inside the action 
radius of the forces, so that these conditions do not contradict each 
other. 
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This can readily be verified by recognizing that the 
corresponding corrections-exchange and correlation­
are determined by the second of the parameters enter­
ing in (1); only the term corresponding to the direct 
self-consistent interaction describes the interaction 
of the given particle with all the remaining particles 
located in the sphere of action of the forces, and is 
determined by the large third parameter. 

For Fermi systems, the Green's function in the 
Hartree approximation is given by 

[w- f~- f dx"n(x") V(x- x")] G(x, x', w) = ll(x- x'), (2F) 

where the particle-number density is 

S dw 
n(x) = -2i -G(x,x,w). 

2n 
(3F) 

For Bose systems, we can neglect the excitation of 
the condensate; introducing its wave function ~(x), 
we get 

{~t- :~- fdx'n(x')V(x-x')) 1;(x)=O, (2B) 

where 
n(x) = i;'(x) (3B) 

and fJ. is the chemical potential. The foregoing equa­
tions are nonlinear and each can have several solu­
tions. 

The system energy can be written in the form 

E = Ekin + E,n,, E,nt = ~ S dxdx'n(x)n(x') V(x- x'), 

where 

. dw . p' 
Ekin= -2L s dx s- hm -G(x,x', w), (4F) 

2:rt x'-+x 2m 

S p' 
Ekin= dxi;(x)-s(x). 

2m (4B) 

We introduce further in (2) an infinitesimally small 
time-dependent external field oU and relate it to the 
corresponding change of density with the aid of the 
response function X : 

lln(x, w) = f dx' x(x, x', w)6U(x', w). 

Simple calculation yields for x the equation 

x(x, x', w) = II(x, x', w) 

+ f dx" dx"'II(x, x", w) V (x"- x"') x(x'",x', w), 

where the polarization operator is 

(5) 

dw' 
Il(x, x', w) = -2i f-G(x, x', w') G(x', x, w' + w), 

2n 
(6F) 

II(x, x', w) = -1;(x)1;(x') [G(x, x', w- ~t) + G(x', x, It- w)]. (6B) 

By G is meant here the solution of Eq. (2F) with cir­
cuiting rules determined by the type of the statistics, 
i.e., the single-particle Green's function in the self­
consistent field. For a Bose system, the function G has 
the meaning of the propagation function of the conden-

5lWe omit the factor Oaa' of G and add an extra factor 2 when 
taking the trace. In the formulas that follow, the contours of integra­
tion with respect to the frequency are closed by a large circle in the 
upper half-plane. 

r::=> 0 
d +cJ I 

+ c:::i 

FIG. 2 

FIG. 3 

sate particle. In diagram language, Eq. (5) corresponds 
to summation of the sequences of diagrams shown in 
Fig. 2 (Fermi system) and Fig. 3 (Bose system). The 
dashed line corresponds to the interaction line and the 
wavy line to the condensate. 

Being interested in the stability of the homogeneous 
state, let us separate the translationally-symmetrical 
solution of Eqs. (2) 

k' 
n(x)=n, G-'(k,w)=w-Tr;-nv(O), ~t=nv(O), 6=-{ri:' 

Equation (5) yields 

x(k, ·<D) N [1- v(k)II(k, w) ]-', (5') 

where 

II k - mp, f dx :If 
( 'w) ---;:;;-- 0 m'w'/p,'k'- x' +ill ' 

(7F) 

Il(k w) = nk'/m 
' w'-(k'/2m)'+i6 

(7B) 

(Here Po is the limiting Fermi momentum). For pure 
imaginary values of w, the right-hand sides of (7) are 
correspondingly larger than- mp 0 /7T2 and- 4mn/k2• 

Therefore, when the following conditions are satisfied6 J 

y(k) == -(1 + mp0v(k) /n') > 0, 

y(k) ==- (1 + 4mnv(k) / k') > 0; 

(8F) 

(8B) 

x (k, w) has an anomalous pole at imaginary frequency, 
contradicting the spectral formulas and leading to an 
increase of the perturbations with time. 7 J 

Unlike in a superconductor, this pole does not arise 
at arbitrarily weak attraction, and there is a certain 
finite threshold for it. The reason is that on going over 
to the inhomogeneous state (see below) there must oc­
cur an increase of the kinetic energy, which can be 
compensated for by decreasing the interaction energy 
only at a sufficiently large value of I v(k) I . It follows 
from (8), in particular, that when 

n <ncr= -n' /3m''(v,.,n)', (9F) 

(9B) 

the homogeneous state is certainly stable. A phase 
transition to the CC state occurs thus with increasing 
pressure at a density equal to ncr· 

The interpretation of the results is quite simple. 
The Hartree equations (2) and (3) constitute, as is well 

6lThe criterion (8B) can be obtained directly from the Bogolyubov 
spectrum of a weakly-nonideal Bose gas [ 12 ] w 2 = k 2 (k2 /2m + 2nv(k))/ 
2m. 

7l An analogous pole also arises in the response function of the OC 
(see [ 13 ] ). In this case, however, it is brought about by short-range cor­
relations connected with repulsion. 
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known, the conditions for an extremum (not necessarily 
a minimum!) of the energy with respect to small varia­
tions of the density o1E = 0. At the same time, the sign 
of the second variation o2E, which determines the type 
of this extremum, is opposite to the sign of y. In fact, 
if one introduces a small external field U(x), then deri­
vations similar to those leading to (5) and (6) yield 

{),E=_!_fd'k /U(k) /' 
2 v(k) + n'/mp, ' 

(F) 

{),E =_!_f d'k /U(k) I' 
2 v (k) + k'/4mn 

(B) 

(For the particular case of a 6-function interaction 
see [141 ). 

Therefore, when y < 0 the homogeneous state real­
izes the minimum of the energy and is stable. On the 
other hand, when y > 0, the homogeneous solution cor­
responds to a maximum of the energy and there exists 
another inhomogeneous solution which is the stable 
one. 8 > 

Thus, when the condition y < 0 is violated, inhomo­
geneity in the particle distribution arises in the system. 
We note that the second variation of the energy corre­
sponds to the first variation of the Hartree equation, 
which, in turn, as is well known, corresponds to the 
equations for zero sound (Fermi system) or for ordi­
nary sound (Bose system). Therefore the instability 
in question becomes manifest in the fact that these ex­
citations increase in time, and are transformed in final 
analysis to "congealed" waves in the density distribu­
tion. 

3. CRYSTALLINE CHARACTER OF A STABLE STATE 
OF THE SYSTEM 

As seen from (8) and (9), when the critical density is 
reached the stability condition is violated first for the 
Fourier component with k = k0, where k0 is the point of 
the minimum of the function v(k) (Fermi system) or 
v(k)/k2 (Bose system): 

"V(k) /•• =min, 

v(k) / k'/•• =min. 

(lOF) 

(lOB) 

With further increase of the density, an entire interval 
of k is reached in which the system is unstable. This 
raises the question whether the resultant inhomogeneity 
in the particle distribution has Fourier components in 
this entire interval, or whether the system "prefers" 
to choose only certain discrete vector values k, with 
moduli lying in this interval. In other words, the ques­
tion is whether the density distribution has a periodic 
character. 

For simplicity we consider the case of a Bose system 
(the result for the Fermi system is the same) and deter­
mine the possible forms of violation of translational 
symmetry of the systems, on the basis of the consider­
ations advanced above. We turn to the Fourier trans-

8>we note that the indicated connection between the position of the 
pole of the response function and the sign of ll2 E has a general character. 
Therefore, if an inhomogeneous solution corresponding to the minimum 
of the energy is found for Eqs. (2) and (3), then one can be assured that 
the corresponding response function has no anomalous singularities, and 
vice versa. 

form of the wave function of the condensate ~(k) 
= ~ 0o 3(k) + <p (k), where we have separated the homo­
geneous term in the function ~(x). 

It is easy to verify that if the function <p (k) has singu­
larities of degree lower than the third9 > (and, in particu­
lar, if it is continuous), then its contribution to ~(x) is a 
function that attenuates at large x, and its contribution 
to the system energy increases more slowly than the 
first power of the volume V. A function <p (k) of this 
type describes a local violation of homogeneity. One 
can advance arguments indicating that such violations 
do not correspond to a minimum of the energy. In fact, 
if this were so, then it would be more convenient to pro­
duce as many violations of this type as possible, with a 
number that increases in proportion to the volume of 
the system. But then their contribution to the energy 
would be proportional to V, and we would then deal with 
the case of stronger singularities. 

On the other hand, if the degree of the singularity of 
cp(k) exceeds 3, the contribution to the energy increases 
more rapidly than V, i.e., the system becomes unstable. 
It is therefore meaningful to consider singularities of 
the third degree only. There are only two types of inte­
grable singularities of this degree, o3(k - kn) and 
P[l/((k- kn)nJ((k- kn)n2)((k- kn)n3)], where kn is a 
certain fixed vector, Pis the principal-value symbol, 
and n1 2 3 are noncomplanar unit vectors. Mixed singu­
laritie's'of the type o ((k- kn)n1)P[l/((k- kn)n2 ) 

x ((k- kn)n3)] are also possible, but their study yields 
nothing new. 

Let us consider first the first case, corresponding to 

(11) 

where {kn} is a certain set of fixed vectors containing 
the zero vector kn = 0 (the term a 0) 10 >. Substituting (11) 
in (2B) and (3B), we readily see that the sums of any 
pairs of vectors from {kn} should belong to the same 
set. In particular, the reciprocal vector - kn also be­
longs to the set. Therefore the set {kn} forms a dis­
crete vector group, and in accord with the well known 
theorem, [lsJ the vector kn can be represented in the 
form 

(12) 

where k1, 2 , 3 are the basis vectors and N1, 2 , 3 are integer 
coefficients. Thus, the density distribution in the case 
under consideration is spatially periodic (with the re­
ciprocal-lattice basis k1, 2 , 3). 

Let us show that we are dealing in essence here with 
a unique "condensation" of bosons (or "particle-hole" 
pairs in the case of a Fermi system) in a state with a 
definite value of the momentum transfer k. A "smear­
ing" over the continuous interval k would lead to a no­
ticeable lowering of the energy gain, by virtue of the 
nonlinear dependence of the interaction energy on ~(x). 
We note in this connection that substitution of (11) in 
(2B) and (3B) leads to equations that contain the Fourier 

9lThe degree n of the singularity of the function .,o(k) at the point 
k = kn is determined by the relation .,o(k)....,. a-n.,o(k) as k-kn....,. a(k-kn) 
(k is assumed to be close to kn). 

10lThe normalization Jdx6'(x)= N yields lao I'+ .L, ja.l' = 1. 
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components of the interaction potential v(kn) themselves 
(and not their integral over k-space ). Therefore the 
state in question arises when the potential reduces to 
a single unique Fourier component (and consequently, 
it is not manifest in any way in the scattering experi­
ments). This is the typical many-particle effect result­
ing from the infinite number of particles in the system 
and reducing to the already mentioned condensation in 
a state with k = kn. This effect is very similar in its 
nature to superconductivity (condensation of fermion 
pairs in a state with total momentum p = 0), u> and also 
to the Ruelle- Fisher instability, [161 where the system 
condenses in space about two or several centers as a 
result of an infinitesimally narrow negative potential 
"spike." 

The presence of a macroscopic number of bosons 
(or Bose complexes) in the state kn with a single wave­
length and phase makes it possible to regard the cor­
responding state of the system as the static analog of 
coherent scattering. [2J We have in mind here the maxi­
mally classical state of the "density oscillator" akn a 0 

(for the Bose system) or ap+knaP (for the Fermi sys­

tem). It can be shown that this state also satisfies all 
the formal requirements that are valid for coherent 
states. It is, in particular, the eigenstate of the indi­
cated operators, which have the meaning of annihilation 
operators for the density oscillations. 

Let us turn now to the terms of cp (k) whose singu­
larities have the form of principal values. Changing 
over to x-space, we can readily see that we deal, as 
before, with a periodic state, but one characterized 
by a "collapse" of the phase on planes whose normals 
coincide with the vectors n~> n2, and n3 • Thus, in the 
one-dimensional case, 1/(k- kn) corresponds to the 
function E(x) exp (iknx). Thus, we actually deal with a 
polycrystal. Even without ascertaining whether such 
states satisfy the Hartree equation, they can be re­
jected by indicating that the phase discontinuity sur­
faces correspond to a positive addition to the kinetic 
energy (surface energy). 

Let us stop to consider in conclusion the possible 
CC lattice types. It is natural to assume that if the 
criterion (8) is satisfied and the inhomogeneous state 
becomes stable, a three-dimensional crystalline struc­
ture appears, in which, in comparison with the one­
dimensional or two-dimensional structure, the largest 
energy gain is ensured. 12> In addition, owing to the 
symmetry of the problem ink-space (v(k) depends only 
on I k I), all the vectors k 1, 2 , 3 will be equal to one another 
in absolute magnitude. This makes it possible to pick 
out the crystal systems to which the CC can belong. 
These are the cubic system (primitive PC, face-cen­
tered FCC, and body-centered BCC), rhombohedral R, 
and hexagonal H (with a definite ratio of the height to 
the side of the base of the prism). In all other cases, 

11>we note in this connection that to describe the CC we can suc­
cessfully use in practice any method of superconductivity theory, with 
the particle-particle pairing replaced by particle-hole pairing. 

12l The known considerations concerning the instability of one- and 
two-dimensional crystals [ 17 ] are not applicable directly to CC (details 
will be given in a separate article). 

the reciprocal-lattice basis vectors have different 
lengths. 

The magnitude of these vectors should itself obvi­
ously fall in the interval referred to at the beginning of 
this section; in particular, near the transition point 
I k1 2 3 1 ~ k0 (see (10)). Even this shows that the CC lat-

' ' tice period is determined not by the density but by the 
type of interaction between the particles. Another most 
important difference between CC and OC is connected 
with the fact that CC particles, obeying the Hartree 
equation, behave like particles in an external periodic 
field, i.e., they move practically independently of one 
another in the entire volume of the crystal. 

4. PHASE TRANSITION TO THE CC STATE 

To determine the type of the phase transition to the 
CC state (see (9)), it is useful to introduce the concept 
of fundamental reciprocal-lattice vectors. These will 
include, besides the basis vectors k 10 k2 , and k3, also 
the reciprocal-lattice vectors (see (12 )), which have 
the same length. Denoting their number by s, we pre­
sent expressions for the fundamental vectors in Carte­
sian coordinates, assuming the basis vector length to 
be unity: [181 

FC, s = 6, (±i, ±i, ±k), 

1 
BCC, s = 12, -=.(±i±j, ±i±k, ±j±k), 

l'2 
1 

FCC, s=8, -=(±i, ±j, ±k). 
l'3 

H, s=8, ( ±i ~3 ± j, ±i, ±k) ' 

P, s=6, (±(i+a(i+k)), ±(a(i+k)+j), 
(13) ±(a(i+iHk)). 

The ± signs combine here independently. 
It turns out that the type of the phase transition de­

pends on whether it is possible to find among the funda­
mental vectors at least one triad forming a closed tri­
angle. If there are no such triads (type I), then the tran­
sition to the CC state can be a second-order transition: 
the lattice first appears in the system with infinitesi­
mally small amplitude, which increases with increasing 
distance from the critical point. 13 > On the other hand, if 
there are closed triads of the fundamental vectors (type 
II), then we deal of necessity with a first-order transi­
tion. It follows from (13) that type I consists of the sys­
tems BCC, H, and R (the latter at a =- %, i.e., when the 
angle between the basis vectors is 120°). 

We shall carry out the analysis near the critical point, 
i.e., at y(k) « 1 (see (8)) but far enough from it to be 
able to neglect correlation effects. We emphasize that 
in a compressed system the correlation effects are 
small (see, for example, [19' 201 ), and we are therefore 
dealing with the very close vicinity of the critical point; 
accordingly, when speaking of a first- or second-order 
transition, we have in mind the behavior of the phase 
curve outside this vicinity. The investigation of the role 

13lThe reason why the well-known Landau theorem [ 17 ], that a 
second-order "solid-liquid" transition is impossible, does not apply in 
this case is that the energy terms of third order in the amplitude of the 
inhomogeneity vanish identically. 
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of correlation effects will be the subject of a separate 
article. 

Confining ourselves to the simpler case of a Bose 
system, we find, first, an expression for the thermo­
dynamic potential <I>= E +pV, the variation of which at 
constant p and N yields the necessary information on 
the phase transition. From Eq. (2B) we have 

<D = !!N = Ekrn + 2E'"" 

whence p = Eint/V. Substituting {11) in (4B) and the ex­
pression for Eint. we obtain after changing over to Fou­
rier components 

N~l 12 kf 
Ekin= ai -, 

2m , 

Etnt = ~2 
{ 2 ~ v(k,) lad'laol' 

i 

+ ~ v(k,- k;)a;"a;'a,a, + ,E v(k,- k;)a,"a;"a,a, }· 
ijk ijkl 

Here and below, the symbol ijk under the summation 
sign denotes summation over the reciprocal-lattice 
vectors satisfying the condition ki + kj + kk = 0, and 
analogously for ijkl. Expressing the volume in terms 
of the pressure p = n2v{0)/2, we have 

<Ii ~ I' kt { ~ ' I' v (k) ~=~Ia, -+n'v(O) 1+4 lad lao - 0-
N , 2m , v( ) 

~ v(k,-k) ~ v (k-k) }''' + 2 ~ a;'a;'a,a, ' + 2 ~ a;'a;'a,a, ' . ' . {14) 
'" 1v(O) <;<~ v(O) 

Near the critical point, we seek a weakly-inhomogene­
ous state of the system I ai I « a 0 ~ 1. Accordingly, we 
expand the curly bracket in {14) and obtain 

~ =nv(O)+ ~lad'(;~ +2v(k,)laol'n) (14') 

+ n ~ a;'a;'a,a,v(k,- k;) + n ~ a;'a;'a,a,v(k,- k;) + ... 
ijk ijkl 

Let us examine the second term of (14'), and mark 
the fundamental vectors with a tilde. In our case their 
length is close to k0 (see {10)). Therefore in the sum 
over i we separate the terms corresponding to sum­
mation over the fundamental vectors and containing the 

:'2 ~ 2 ~ 

small factor kiJ2m + 2v{ki) I a0 I ~ y(ki) « 1. We as-
sume (as will be subsequently confirmed) that the larg­
est of all the ai are the coefficients ai corresponding to 
the fundamental vectors, and that for the remaining vec­
tors we have a/a~ a. Accordingly, in the third and 
fourth terms of (14') the principal role will be played 
by the sum over the fundamental vectors. For a lattice 
of the type I (there are no triads of fundamental vectors) 
the principal part of the third term drops out, and the 
main role is assumed by the second and fourth terms of 
{14'). The second term turns out here to be of the order 

"'2 ~ 

of aiy{ki), and the fourth of the order at. Hence, varying 
with respect to ai, we get 

a,~ l'v(li,) ~ l'(n- ncrl I ncr. {15) 

The energy correction connected with the inhomogeneity 
turns out to be of the order of i?y2(k). 14J We are there-

14lEven this indicates that the length of the fundamental vector is 
close to k0 : the condition for minimizing the energy with respect to 
this l~gth yields for (d/dk) (v(k)/k 2 )1k a small quantity of the order 
of -y(k). 

Type I 

7' 

FIG. 4 

fore dealing with a typical second-order phase transi­
tion. For nonfundamental vectors that are sums of two 
fundamental ones, we obtain the estimate a ~ y(k), an-d 
for the remainder we obtain an even smaller quantity, 
in agreement with the assumption made above. 

On the other hand, if the lattice is of type II, then the 
principal role is played by the third term in {14'), the 
order of which is a3 • 

Hence 
ii ~ y(Ji:). (16) 

and the correction to the energy is of the order of y3(k). 
At first glance it appears from a comparison of {15) and 
{16) that the formation of a lattice of type I is favored 
energywise. However, in the considered case of an iso­
tropic interaction potential v( I k I), the weakly-inhomoge­
neous solution {15) is unstable. Namely, if we produce 
besides the lattice {16) also a pair of one-dimensional 
lattices such that closed triangles appear in the aggre­
gate in the reciprocal lattice, then such a configuration 
will have a lower energy. It can be shown that in such 
a situation the sign of the third term in the curly brack­
ets of {14) is negative, and the absolute minimum of the 
thermodynamic potential corresponds to competition be­
tween the third and fourth terms in these brackets. This 
obviously, leads to a~ 1. In this case, the inhomogene­
ous solution enters the region y < 0, where it competes 
with the homogeneous one (an analog of a superheated 
crystal). The foregoing is illustrated by Fig. 4. 

It follows from all the foregoing that a stable state of 
the CC corresponds to a lattice of type II {BCC, H, and 
R with a = - %). The choice between these systems 
calls for a complicated energy calculation which has 
not yet been performed. 

5. SHEAR MODULI OF CC 

We shall demonstrate that CC has nonzero shear 
moduli, i.e., that it is a solid body, using as an example 
a weakly-inhomogeneous PC lattice. Such a lattice has 
shear elasticity, although, as indicated at the end of 
Sec. 4, it is unstable in other respects. A cubic lattice 
has two shear moduli, which enter in the elastic energy 
of the crystal in the following manner: [21 J 

{17) 

The coordinate axes are assumed here to coincide with 
the fourfold axes, and the deformations different from 
zero were chosen to be uxx. uyy = - uxx and uxy = uyx· 

We do not present here the details of the calculations, 
and indicate only the path followed in the calculations 
and the result. The problem consists of determining the 
energy of the system in the case of the weakly-deformed 
lattice. This can be done by minimizing the energy at 
given deformations. The difference between the ob­
tained expression and the energy of the undeformed lat-
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tice yields, when compared with {17), the values of the 
shear modulus. We obtain 

= n1i:' ( 1 + 1i'v'' ('/i) ) a' 
1., m 2lv(7i)l ' 

{18) 

And the modulus ,\2 turns out to be of the order of a4 • 

Thus, the shear elasticity of the CC is finite, although 
it tends to zero on approaching the critical density. We 
therefore cannot agree with the statement that the CC is 
not a solid. 
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