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The contribution of van der Waals forces to the form factor of a liquid is found on the basis of the 
general macroscopic theory of the forces. The formula for this contribution involves the dielectric 
permittivity of the liquid, and is valid for all values of the wave vector k that are small in compar­
ison with the inverse interatomic distance 1 /a. It is shown that the van der Waals forces in liquid 
helium lead to the appearance of a singular term of the type J.Lk3 in the phonon dispersion law. The 
value of the coefficient J.L is estimated. 

IN this research, the contribution which the long-range 
van der Waals forces make to the correlation functions 
of the molecules of a liquid (the liquid form factor) is 
calculated. This question has previously been treated 
on the basis of microscopic theory. [1-sJ It has been as­
sumed that the atoms of the liquid interact through a 
pair van der Waals potential. Such an assumption gen­
erally does not have a basis, in fact, since the van der 
Waals forces in a liquid do not have a pair character. 
Below, we carry out the calculation on the basis of the 
general macroscopic theory of such forces without any 
additional assumptions. lSJ The resultant formulas will 
be suitable for any relation between k and the charac­
teristic wavelength ~ 0 in the spectrum of the liquid. 

The form factor of the liquid S(k) is determined by 
the formula 

1 s . S(k)= ii e~•.•-")(6n(r)6n(r'))d'(r-r'), (1) 

where n is the mean number of atoms of the liquid per 
unit volume, lin the deviation of this number from its 
mean value. Averaging is carried out over the state of 
the liquid with given temperature and pressure. As is 
known, S(k) is determined experimentally in experi­
ments on x-rar or neutron scattering in the liquid (see, 
for example/7 ). At the present time, the accuracy of 
the experiment has been so improved that one can ex­
pect a detailed study of S(k) for small k, i.e., in the case 

ka<1, (2) 

where a is the interatomic distance in the liquid. The 
theory to be set forth will be suitable under precisely 
such conditions. 

For the calculation of S(k), we use its connection with 
the second variational derivative of the free energy F 
with respect to the density of atoms n. We represent 
.6F in the form 

11F= 2~ Jq>(r-r')lln(r)lln(r')d'rd'r', (3} 

Then S(k) is expressed in terms of the Fourier compon­
ent cp (see, for example, lBJ ): 

S(k) = rnp~k) , q>(k) = J e-,.'q>(r)d'r. (4) 

range forces. The possibility of the separation of the 
comparatively small contribution from the van der 
Waals forces is connected with another character of the 
dependence of this contribution on k. If we represent 
cp(k} in the form 

q> = q>, +cpz, 

where cp1 and (/)2 are determined by the contributions of 
the short-range and long-range forces, then cp1 = cp1(ka) 
and CfJ2 = (/)2(k~ 0}. Therefore, for the condition (2), cp1 

can be represented in the form 

cp, = a + ~k', a = --!- ( ap ) . 
n an T 

In this region, the function cp 2 has a complicated and 
generally a singular dependence on k, for under the con­
dition (2} the parameter k~o can be larger or smaller 
than unity. 

We proceed to the calculation of CfJ2· For this pur­
pose, we make use of the formula obtained inl 9J for the 
variation of F with respect with the dielectric permit­
tivity of the medium, E: 

T ~I 

11F =- 4:rt E Olm 2 J Dii(r, r; Olm) lle(r, irom)d'r, (5) -where Wm = 21rmT, m = 0, 1, 2, ... , and Dik is the 
"Matsubara" Green's function, which satisfies the 
equation 

a• a• } 
{ e(r.irom)rom'll,. -l),~a--.+a-a- D,.(r.r,, rom)= -4:rtO(r,- r,)ll ... 

Xp X1 X, ( 6) 

It is seen from (6} that finding the second variation of F 
reduces to the variation of Du with respect to E. From 
(6) we get the equation for liDu: 

{ a• a• } ---6,.--2 +e(r,irom)Wm'l),, IID,.(r.,r,;w,) ax,ax, ax. - (7} 

This equation is easily solved with account of the fact 
that Dik• by virtue of (6}, is the Green's function for (7). 
As a result, 

IID .. (r., r,) = - 1-w.' Jlle(r,)D,.(r,- r,)D,.(r,- r,)d'ra. (8) 
4:rt 

Thus, our problem consists of the calculation of the con- Setting 
tribution of the van der Waals forces in cp(k). Of course, . ae(iwm) 

lle(IWm,r) = an l)n(r) (9) the principal contribution to cp(k) is made by the short-
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and substituting (8) and (9) in (5), we obtain 

T ~ o ' 
M = 4; .E J rom'D,,'(r -r') ( 0:) 6n(r)lln(r')d'rd'r'. (10) 

m...O 

Expressing Dik in the form of a Fourier integral, we 
directly obtain the expression for the van der Waals 
part of cp(k): 

cp,(k)-= _T_ ~rom •J D,,(p)D,,(p- k) ( 08 )' d'p. (11) 
2(2n)' £...J on 

m~o 

In the derivation of (4), we assumed that the tempera­
ture T is sufficiently high that the density fluctuations 
can be assumed to be classical. On the other hand, the 
fluctuations of the electromagnetic field will be as­
sumed to be zero, i.e., purely quantum in nature. Satis­
faction of both these conditions is guaranteed by the in­
equalities 

hku~ T~hkc (12) 

(u is the velocity of sound in the liquid, c the velocity of 
light). In this case, we can go from summation over w 
to integration. We then obtain 

cp,(k) = Z(;n)' f dro J ro'D,,(p)D,,(p- k) [ 08!:ro) r d'p. (13) 

Here 

4n ( P<P•) D,,(p)=- '+ , 6,,+-,- . 
ero p 8ro 

(14) 

We compute the integral over d3p. From the formal 
point of view, this integral diverges. However, this is 
connected with the fact that the expression (13) holds 
only for pa « 1. In actuality, the integrand falls off for 
large p, because of the spatial dispersion of E, for ex­
ample. This indicates the correctness of the method of 
taking the integral. 

First of all, we note that, after integrating over the 
directions of p, the integrand becomes an even function 
of jpj, so that integration with respect to jpj can be car­
ried out from -oo to +oo. The falling off of the integrand 
outside the region of applicability of (13), already noted 
above, allows us to close the contour of integration in 
the plane of the complex variable, so that integration 
with respect to dp reduces to taking the residues at the 
poles of the integrand (such a method of calculation of 
an integral similar to (13), was used inl101 ). 

The final result has the form 

J~ dro ( o8 ) ' , ( k ) cpa(k)-= -= - ro g -:::-- • 
0 ye on )'e ro 

(15) 

Here E = E(iw) and 

g(x)=n[( ~ +x+ :')(arctgx-arctg ~) (16) 

+ (~+2x+~x+_:' '--1-arctg-2 11 +~)+x'] -2n. 
X 16 8 X 2 X 2 

1+2 

Correspondingly, with the necessary accuracy, 

S(k)~:a(1-~k'-~)· (17) 

In the limit of large k, kAo » 1, 

cpa(k) ~ ~sd~( oe)' ~. 
4 0 l'e on e'l• (18) 

For small k, kAo « 1, 

J~ dro ( 08 )'( 11 k'ro + 23 k' ) 
q>z(k) ~ 1t -= - --- ---- · 

0 1e on 6 8 120 e'ro 
(19) 

The integral with respect to dw in the second term of 
(19) diverges logarithmically and it must be cut off at 
w ~ 1 /k. As a result, we get a singular term of the 
form 

(20) 

where Eo = E{O) is the static value of the dielectric per­
mittivity. If we replace BE/on by K (iw)/41T in (18) and 
(19) (K is the dielectric polarizability of an isolated 
atom) and replace E in the denominator by unity, then 
these expressions go over into the expression for the 
Fourier components of the ordinary formulas of London 
and Casimir- Polder for the atomic interaction potential. 
Then the formulas for cp(k) become identical with the 
formulas ofll-51 • We see that the deviation of E from 
unity and of a~:/an from K/4 are measures of the non­
additivity of the van der Waals interactions in a liquid. 
In other words, the formulas obtained inl1- 51 are strictly 
valid only for a gas. We also note that Eqs. (18) and 
(20) are formally identical with the formulas for the 
interaction of foreign particles dissolved in a liquid. luJ 
This identity appears to us to be somewhat accidental, 
since the atoms of the liquid cannot be regarded as for­
eign particles. 

Equations (15) and (16) express the van der Waals 
form factor in general form in terms of the dielectric 
permittivity of the liquid (the dielectric constant on the 
imaginary axis is expressed in well-known fashion by 
the imaginary part of E for real frequenciesl61 ). 

It is easy to verify that the integrand of (15) has no 
singularities in the right half-plane of w. This allows 
us to move the contour of integration and make it coin­
cide with the lower half of the imaginary axis. We then 
set iw = w', so that the answer is expressed in terms of 
the value of E for real w. 

At the present time, the dependence of E and a~:/an 
on w is unknown in the entire range of frequencies with 
sufficient accuracy for any one liquid. It would there­
fore be of great interest to determine cp 2(k) experimen­
tally, which would allow us to draw definite conclusions 
on the form of E(w). 1 > 

Let us make a comparative estimate of the van der 
Waals and "short-range" parts of cp. Of course, we are 
dealing with the terms that depend on k. The contribu­
tion of the van der Waals forces to the isothermal com­
pressibility a is negligible. 2> A simple estimate, based 
on dimensional considerations, shows that 

llFormulas (IS) and (16) allow us, in principle, to express the value 
of oE(iw)jan in terms of the quantity wy'E(iw) if the function op2 (k) 
is known. Actually, (IS) can be regarded as an integral equation for the 
determination of aE/an as a function of wy'E. This equation can be 
solved explicitly with the help of a Mellin transformation. If a specific 
dependence of E on n is given, for example, the "gas" dependence 
(E-1 - n) or the dependence according to the Clausius-Mosotti for­
mula, then we can determine the form of the function E(iw) from the 
dependence of aE(iWyE(iw)jan. 

2lThe part of op2 (k) that does not depend on k2 diverges logari­
thmically, and we have already taken it into account in (IS) by requir­
ing that op2 (k) -> 0 as k-> 0. 
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w ~~k', 
a 

(21) 

where ® is the Debye temperature of the liquid in energy 
units, and a is a length of the order of the interatomic 
distance in the liquid. On the other hand, cp 2 is of the 
order 

{ li.ro,k', 
<pz ~ 

firoo k'/'Ao, 

k'Ao>1, 
k'A,«f, 1, 

(22) 

where w0 is the characteristic frequency of the electron 
spectrum of the liquid. It is seen from (22) that for 
k,\ 0 >> 1 the van der Waals contribution exceeds the 
short- range contribution for the condition 

ka >E> / li.ro,. (23) 

Since 11 w 0 » ®, the condition (23) is compatible with 
(2) (the characteristic value is fi.w 0 ~ 10 eV, and 
® ~ 0.1 V). On the other hand, for small k (k,\ 0 « 1), 
the short- range term ®k2/ a and the long- range term 

11 wok2/i\ 0 are generally of the same order, although the 
possibility is not excluded that the van der Waals term 
can be large in a liquid consisting of heavy atoms. In 
the opposite case, only the singular term of order k4 lnk 
could be determined from the experimental data. 

The presence of terms in cp(k) that are singular in k2 

leads to the appearance of the same terms in the law of 
sound dispersion w(k). We discuss this question as ap­
plied to liquid He4 at T = 0. The Fourier component of 
the van der Waals interaction potential of helium atoms 
is equal tol12 J 

U(k)=- ;;u,R'(kR)'. k'Ao>1, (24) 

where Uo = 36°K and R = 2.6 A. Since, from the electro­
dynamic point of view, helium is close to a gas, exactly 
such a term will be contained in cp(k). On the other hand, 
the law of sound dispersion for T = 0 and sufficiently 
small k has the form l13 J 

(25) 

The expression (24) then leads to the appearance of an 
anomalous term ~ k3 in the sound velocity u. Normally, 
expansion of u(k) is carried out in powers of k2 • We 
have already mentioned that the term ~ k3 in the region 
k,\ 0 >> 1 can exceed the term ~ k2• Further, there is 

evidence that the term ~ k 2 in helium is especially and 
anomalously small (seel14 ' 15 J). Therefore, for not too 
small k, the formula 

u= ~ :=::! Uo [1- ~ f!(kR)'], 

should hold, where f.l = 1T2pU 0R3/12m 2 ~ 0.42, u0 

~239m/sec; p = 0.145 g/cm3 is the helium density. 
In conclusion, the authors express their thanks to 

A. F. Andreev and I. E. Dzyaloshinski:l for useful dis­
cussions. 
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