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We consider a plasma in a magnetic field, with a non-equilibrium plasma momentum distribution, 
namely, o-like terms of all the components or the transverse components of the momentum (in the 
latter case p 10>> p 1/o ). In such a plasma, oscillations with circular polarization and negative energy 
are possible and can propagate along the magnetic field. In systems bounded along the magnetic field, 
for example in magnetic traps, the negative-energy oscillations build up as a result of the outflow of 
energy to the vacuum. Thus, the magnetic trap can serve as a source of electromagnetic radiation. 
The considered mechanism for the buildup of the unstable oscillations turns out to predominate in 
sufficiently short systems and not too large a plasma density. 

1. INTRODUCTION 

A. As is well known, negative-energy oscillations are 
possible in systems that are not in thermodynamic equi
librium. Such oscillations grow if their energy is dissi
pated or is extracted in some way from the system. 
Thus, for example, it was shown in [ 1 J that the boundary 
between supersonic flows is unstable, owing to radiation 
of oscillations into the interior of the liquid. In [2 J 

there were considered electrostatic oscillations of a 
thermodynamically-nonequilibrium plasma in an inhomo
geneous magnetic field. A stable solution of the wave 
equation was found; in the region of the magnetic-field 
minimum this solution describes cyclotron ion oscilla
tions with negative energy/ 3 l and far from the mini
mum it describes electron Langmuir oscillations that 
carry energy away to the external part of the plasma. 

We consider one more example of such an instability. 
In the present case, the unstable system can be used as 
a source of electromagnetic oscillations. 

B. We consider a plasma in a magnetic field, with a 
non-equilibrium momentum distribution of the charged 
particles (electrons or ions) 

1 
/o(P) =-4--6(pL- PLo)6(iPul- Puo). 

npj_, 

(The "parallel" and "perpendicular" symbols denote 
the direction with respect to the magnetic field.} We 
are interested in oscillations having a circular polari
zation, propagating along the magnetic field and having 
an electric vector that rotates in the electron or ion 
sides, depending on which of the plasma components is 
not in equilibrium. The energy of such oscillations is 
equal to 

(1) 

Here Wp is the plasma frequency, we the cyclotron 
frequency, the plasma and the magnetic field are as
sumed to be homogeneous, the electric field of the os
cillations is chosen in the form Eo exp (-iwt + ikz), 
the z axis is directed along the magnetic field, and the 
wavelength remains sufficiently large: k2 « wwt:/c2 • In 
investigations of oscillations having a frequency close 

to the cyclotron frequency, one need take into account 
only one of the plasma components (electrons or ions). 
Both cases are analyzed in a similar manner, and we 
therefore omit the symbol j(e, i). 

It follows from (1) that when w > we the energy of 
the oscillations can become negative. Let us assume 
now that the plasma is bounded and directed along the 
magnetic field, say it is locked in a magnetic trap. In 
this case oscillations with negative energy will grow as 
a result of the radiation into vacuums. The energy of 
the oscillations becomes negative because of the rela
tivistic dependence of the cyclotron frequency on the 
velocity. It is shown in [ 4 J that this effect can lead to 
a buildup of oscillations in homogeneous systems, owing 
to the influence of phase focusing. In order to exclude 
this possibility and to observe the type of instability of 
interest to us in pure form, it is necessary to impose 
certain conditions, spelled out below, on the system 
parameters. 

2. FUNDAMENTAL EQUATIONS 

Let us obtain the equation which must be satisfied 
by the amplitude of the oscillations E(z) in a bounded 
system (magnetic trap). We assume that the magnetic 
field is constant inside the trap, and that it increases 
jumpwise on its boundaries (z = ± L). 

From Maxwell's equations we have 

(2) 

Here E =Ex 'F iEy, jx 'F ijy, the "minus" sign must be 
taken for electrons and the '''plus" sign for ions, we are 
using a left-hand coordinate system, and the primes de
note differentiation with respect to z. 

The perturbing current j is conveniently calculated 
by integrating along the trajectories 

e'n ° of . "'! . 'faPLfa[, t ( u, 1 = --2- p m_oo -r iJPL -;;;;- PL opu(-r) 

of, ) a ] 
-pu(-r) OPL oz(-r) E(z(-r))exp{i(ro,-ro)-r}. 

(3) 
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In the system under consideration, the particle velocity 
and the plasma density are constant for I z I < L. The 
longitudinal velocity reverses sign at the point z = ± L 
were the particles are reflected from the magnetic 
mirrors. 

An analysis shows that the effect of buildup of the 
oscillations as a result of the outflow of energy from 
the ends prevails provided the oscillation frequency is 
close to the cyclotron frequency, I w- We I<< Pilo/mL. 
In the opposite case the oscillations that build up are 
those considered in [ 4 ' 5 J, which are not significantly 
influenced by the end effects. If the condition I w- We I 
<< p 110/mL is satisfied, then the particle can traverse 
the trap many times during the time (w- wcf\ so that 
the field E(z) acting on it averages out. In this case we 
can use the approximate equation 

where 1> 

So dtE(z(t))exp{i(w,-w)}~-~-· -(E), 
co-roc 

1 L 

(E) =-J dzE(z). 
2L 

-L 

Taking into account the relation 

d iJ Pu(t) iJ 
-=-+-~--, 
dt iJt ~- m iJz(t) 

(4) 

and also the fact that the momentum distribution func
tion depends on the modulus of p 11 , we get from (3) 

. _ ie'n, { 1 Ja h ( 2 of, of, }E 
1--2- "(; p~ P.L iJpu'- iJp.'-

-Jdph [-1 -~+_!_(2PJ._~-~)] (E)}. (5) 
m w- w, iJpj_ w iJpu iJpj_ 

Substituting (5) in (2) and integrating over the velocities 
we obtain ultimately 

E"+[w' -~(1+..E:L)]E 
c' c' 2Puo2 

+~[-w-(-1+ Pj_•' _w_)+(1+ h••)]<E)=O. (6) 
C 2 W- We 2m2C 2 (I)- (l)c 2puo~ 

3. STABILITY ANALYSIS 

A. Let us consider a symmetrical solution of (6) 
E(z) = E(- z), which goes over outside the plasma \ 
(I z I > L) into outgoing waves E(z) =Eo exp (iw I z I /c). 
Some idea of the stability of such oscillations can be 
obtained without solving (6). Indeed, let us multiply (6) 
byE *(z) and average the result over z: 

i~ IE(L) 1'-<IE'I'>+ w' <lEI'> 
cL c' 

+ w.'_w_(-1+ Pj_•' _w_) I<E>I' 
C2 ffi- ffic 2m1C 2 (I)- ffic 

- w:' (1+ Pj_•',) ((IEI'>-I<E)j')=O. 
c 2puo 

(7) 

The first term, which takes into account the outflow of 
energy from the system, was obtained here as a result 
of integration by parts. 

l)If E(z) is expanded in a Fourier series E(z) = :EE~xp(in nz/L) , as 
was done in the analysis of cyclotron oscillations i; [6] , and if it is rec
ognized that En:$ E0 (see below), then we really find that the addi
tional terms in (4) are smaller by a factor [(w-wc)mL/p110 ] 2 • 

If the plasma density is sufficiently high, so that the 
third term in (7) can be omitted, and the energy outflow 
is disregarded, then the oscillations are stable. To 
prove this statement, it suffices to take into account the 
relation ( IEI 2)- I(E>J2 > 0. We then obtain from (7) two 
real values for the natural-oscillation frequencies. If 
we then regard the first term in (7) as a small correc
tion, we find that the oscillations with 

are unstable. Thus, in accordance with the statement 
made at the beginning of the paper, the energy outflow 
into vacuum can actually lead to a buildup of the oscil
lations. 

B. Let us consider the unstable oscillations in 
greater detail. The symmetrical solution of (6) at 
lzl < L is of the form 

Here 

a 1 
E(z)=chxz+---shxL. 

x'-a xL 
(8) 

Matching this solution at z = ± L with the outgoing 
waves Eo exp (iwlzl/c), we obtain the dispersion equa
tion for the frequency of the natural oscillations: 

·a [ ( c)-']-' ~= 1- xLcthxL+ix'L-;; . 

In the derivation of (9) we used the relation p 11ofmL 
<< lw -wei· 

(9) 

An analysis of (9) shows that the oscillations are un-
stable only if Jwc/(w- Wc)l > Pio /2m2c2, see also (1) 
and (7). In addition, it is necessary to exclude the pos
sibility of the instability of the oscillations withlw- wei 
>> p 110 /mL, considered in [ 4' 5J, the buildup of which is 
not connected with the boundary effect (outflow of energy 
into the vacuum), and therefore is possible also in homo
geneous systems. All these conditions will be satisfied 
if the plasma density is not too large, Wc/Wp 
>> p lo /me, and the length of the system is sufficiently 
small 

Lw, ~ Min{1; ( w, Pj_o )'; w, (1 + PH',)-'/'}· 
c Wp me Wp 2puo 

For the frequency of the unstable oscillations, regard
less of the sign of K2, we have the following simple ex
pression: 

1 + t PH { Lw, )''• ro~roc+--w.- -- . 
2 me c (10) 

The amplitude of the considered oscillations inside the 
system is almost constant: IKLI << 1. 

Let us examine now the velocity distributions, other 
than those in the form of a li -function, for which buildup 
of oscillations with negative energy is possible. To ex
clude the cyclotron absorption due to the relativistic de
pendence of the cyclotron frequency on the velocity, it is 
necessary to satisfy the condition 

P• !lp, ~ ·~·~·~·' 
m2C2 We 
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where ~Po is the thermal momentum spread. On the 
other hand, the oscillations with negative energy them
selves exist only if 

Comparing these conditions, we obtain Po ~Po << P~o. 
Thus, the transverse-velocity distribution should be 
close to a a-function. The same can be said also con
cerning the longitudinal-velocity distribution if p110 
~ p .lo' However, if p .1o >> p 110, then the scatter in p II 
can be comparable with the average longitudinal veloc
ity, as, for example, in the case of a Maxwellian dis
tribution. 

An analysis shows that for a Maxwellian longitudinal
velocity distribution 

1 { Pn'} /o(pn)=-,1-exp -~, , 
n 'Pno Pno 

the ratio p~0/2p~10 in {6) is replaced by -pf0/pFio. The 
corresponding changes must be made also in {8) and {9). 
It turns out, however, that neither the conditions for the 

existence of the instability, nor the expression for the 
frequency of the unstable oscillations {10) are altered 
thereby. 

The authors are grateful to A. B. Mikhailovskii for 
a discussion of the work. 
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