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Several static models are investigated and the possible behavior of the Green's function and of the 
vertex parts in the region where perturbation theory is not valid is ascertained with their exact solu­
tions as an example. This analysis shows that the possible solution variants proposed in [2- 51 (weak 
coupling, strong coupling, etc.) are actually realized, and it is possible to trace in explicit form how 
they can be matched with perturbation theory at high frequencies (energies). 

1. INTRODUCTION 

MANY physical problems (analysis of the scattering 
amplitude at high energy, investigation of systems con­
sisting of a large number of particles near the phase­
transition points, etc.) reduce to a determination of the 
Green's function of a nonrelativistic quasiparticle ({:3), 
capable of decaying into an arbitrary number of differ­
ent (or like) quasiparticles (a). The spectrum of the 
quasiparticles a has no gap, i.e., Ea(k)- 0 as k2 - 0. 
For example, when considering the behavior of the scat­
tering amplitude at high energy, the role of the quasi­
particles a is played by the vacuum reggeons, and the 
absence of the gap means that the spin of the Pomeran­
chuk pole at k2 = 0 is equal to unity. [1] 

When no account is taken of the decays we have 
Eof:3(k2) = {:3'k2 and the free Green's function takes the 
form G(E, k) = -1/(E - {:3'k2). The absence of a gap in 
the spectrum of the quasiparticles a leads to decay 
thresholds {:3 - na + {:3(En[3 = a'{:3' k2 /(a' + n{:3')), which 
are close at small k2 to the position of the pole corre­
sponding to the quasiparticle {:3. Owing to these singu­
larities that are close to the pole, the self-energy part 
~. which determines the exact Green's function 
(G-1(E, k2) = - E + {:3'k2 - ~(€, k2)), if calculated by per­
turbation theory (see, for example, c11 ) is large at small 
E and k2, i.e., ~ >> - E + {:3'k2 as E, k2 - 0. This means 
that the interaction should essentially renormalize either 
the vertex parts of r, which determine the interaction 
force, or the spectrum of the quasiparticles El?(k2) and 
Ea(k2). Obviously, perturbation theory cannot be used 
in this problem, even if the constants that determine 
the decay amplitudes are small, and therefore it is 
necessary to use other methods when attempts are 
made to solve it. 

The properties of the possible solutions of these 
problems were discussed in [2 ' 3\ with the self-action 
of the Pomeranchuk pole ({:3 = a) as an example. The 
main physical requirement imposed on the solution in 
this case was the presence of a pole in the Green's 
function at least at positive t (t = - k2). (In the region 
t > 0 this pole corresponds at sufficiently large t to a 
really existing particle lying on the Hegge trajectory 
j = {:3(t)). Depending on the character of the interaction, 
an investigation of problems of this type has revealed 
the presence of the following possible solution variants: 

1. Nonsingular weak coupling. In this solution, r is 
of the order of unity when k2 2: r 2 (r2 is the coupling 
constant of {:3 - a + {:3) and r tends to zero in a non­
singular manner (r ~ k2) as k2 - 0. (An example is r 
= (1 + r 2/k2f 1 ; r = 1 at k2 » r 2 and r = k2/r2 at k2 « r 2 .) 

This solution is realized, in all probability, for the 
vacuum Hegge pole. [2J The spectrum does not change 
in this solution. 

2. Singular weak coupling. r tends to zero in a sin­
gular manner (for example, r = [1 - r 2 ln (k2/LW1 is 
equal to - 1/r2 ln (k2 /L) as k2 - 0). This solution cor­
responds to the so-called "zero charge" and is dis­
cussed in detail, for example in c41 , for the case of non­
vacuum Hegge poles. The spectrum likewise remains 
unchanged in the limit of small k2, but the corrections 
to the spectrum in this case are more significant than 
for solution 1. 

3. Strong coupling. Interaction at small k2 leads to 
a strong change of the particle spectrum ( Ef:3 ~ (k2) 1/ v, 
and to a renormalization of G and r. The form of the 
self-consistent solution for this case was proposed in 
c31 (G = ci-Lf(k2/Ev), r = cVF(k2jEV)) and was then ap­
plied to problems dealing with second-order phase 
transitionsc51 and in nonvacuum Hegge poles. [41 

4. Unphysical solution. It may turn out that in some 
cases at definite values of the interaction constants, the 
solutions satisfying our physical requirement that a pole 
be present at least at t > 0 do not exist at all. This 
means that either the pole of the Green's function goes 
off to infinit~5 or else the infrared situation arises (for 
details see 4 ) • 

An essential shortcoming of the approach used in the 
cited paper, ca-5J however, is that it does not make it pos­
sible to obtain the solution in the entire region of the 
momenta, and it becomes necessary to make self-con­
sistent hypotheses concerning the behavior of the Green's 
functions in the vertex parts at small momenta. It re­
mains unclear whether this solution is unique, whether it 
can be matched to the results of perturbation theory at 
large momenta, and in general whether it can be real­
ized, i.e., whether the solutions satisfy the self-consis­
tent conditions of [3• 51 • 

To clarify this problem, we have investigated a num­
ber of statistical models. It is possible to obtain for 
these problems, on the one hand, an exact expression 
for the Green's functions, and on the other hand, it is 
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possible to realize in them all the solution types indi­
cated above. 

We shall consider, more concretely, a solvable non­
relativistic model with a Hamiltonian1> 

Here ak and b are field operators; b is a static field 
corresponding to a nonrelativistic particle (3 with in­
finitely large mass; ak is the field of the particle a with 
spectrum Ea(k2 ) = ~ + k2 ; r is the amplitude of the tran­
sitions (3 - (3 + a and (3 + a - (3; ~ is the amplitude of 
the scattering a + (3 - a + (3; ~1 is the amplitude of the 
transitions (3 - 2a + (3, (3 + 2a - (3. In (1) we imply in­
tegration with respect to k, k1, and k2 (we recall that for 
reggeons the integration with respect to the momenta is 
carried out in two-dimensional space and that r is pure 
imaginary. The parameters of the expansion of the per­
turbation theory for this Hamiltonian are of the order of 
r 2 I~. ~ ln ~. ~ 1 ln ~ in the two-dimensional case and 
r2j~31 2, ~d.[l;;, ~j...{l; in the one-dimensional case; at 
sufficiently small ~ (and small k2), perturbation theory 
is not valid no matter how small the bare constants are. 

In Sec. 2 of the article we consider the problem with 
~ 1 = 0 and~ * 0, r 2 * 0. This problem has a solution of 
type 4 in accordance with the classification given above. 
In this section we discuss the properties of this solution 
and the limit to which it tends as ~ - 0. 

In the remaining sections we consider the exact solu­
tion at r 2 = 0, ~ 1 * 0, ~ * 0 and investigate its proper­
ties for two-dimensional and one-dimensional systems. 
In Sec. 3 (which has a somewhat formal character) we 
give general formulas, equations, and their solutions, 
which do not depend on the concrete form of the system. 
In the following Sec. 4 we discuss in detail the one­
dimensional system for which we obtain at ;\.1 * ;\. a sin­
gular weak coupling (r2 ~ ..j w1 w2 as w1, w2 - 0), and at 
;\. 1 =;\.we obtain a solution of type 3 (i.e., strong cou­
pling). The last case is of greatest interest and makes 
it possible to trace the matching of the results with 
those of perturbation theory at large momenta. For the 
two-dimensional system we obtain a singular weak cou­
pling (see Sec. 5), and our solution makes it possible to 
verify the parquet equations, [4l with the aid of which the 
"zero charge" is usually proved. 

Of course, the real physical problems that must be 
solved are quite far from this simplified model, but in 
our opinion its investigation makes it possible to regard 
the general analysis in [2-51 with greater confidence; in 
addition, the problem with;\. * 0 and ;\. 1 * 0 has appar­
ently never been solved before, and this may be of inde­
pendent interest for certain problems of statistical 
physics. 

2. THE CASE ;\. 1 = 0 

When ;\. 1 = 0, the problem is solved in the simplest 
manner. We assume first for simplicity that ;\. is also 
equal to zero. We solve the problem in the ~ represen­
tation ( ~ has the meaning of the imaginary time), in 

1>Needless to say, problems with the Hamiltonian (l) can, in prin­
ciple, be solved by the standard methods [6 ); we claim merely a more 
complete investigation of them. 

which the bare Green's function G0(~) of the nonrelativ­
istic particle (3 is equal to J.m (J.(~ > 0) = 1, ~(~ < 0) 
= 0). It is easy to note that the total assembly of per­
turbation-theory diagrams for any static problem is ob­
tained by fixing in each order of perturbation theory the 
coordinates of the absorption of particles a and by inte­
grating in independent fashion with respect to the coor­
dinates of emission of the particles a. For example, in 
order r 4 we have the following diagrams: 

~~ 
o ~; ~z ~: r 

(2a) 
which correspond to different integration regions: 

li: > 1;;, > 6, >,1;;/ > 6•' > 0, 6 >·6, > s• > sz' > li:.' > o, 
s > s• > s.' > 1;;, > li:z' > o 

in the integral 
e 11 e e 

r'-&(s) J d6, J d6, J d6.' J ds.' D(6,- s.')D(s•- s•'), (2) 

where 
1 8+iDD dk 

D(s)=-. J dwe"'D(w), D(oo)=J w+s..(k) · 
2:u ~~-""" 

We see thus that to construct the perturbation-theory 
diagrams it suffices to specify the order of the points of 
absorption of the particle a and integrate over the emis­
sion coordinates in independent fashion. We note that in 
obtaining the last equation of (2) we have made use of 
the fact that D(~) = 0 when ~ < 0. This is obvious from 
(2), for when ~ < 0 the contour of the integration with 
respect to w can be closed on the right, and there are 
no singularities in the right-hand half-plane of D(w). 

Thus, the sum of diagrams of n-th order in r 2 is 

e t1 '"-1 e e 
(r')"-&(6) Jas.J d$ •... J ds. ~ds.' Jas,'... (3) 

• . • as.' v <s· - s.') ... v (6.- s.'). 

Changing over to the unordered region of integration 
with respect to the variables ~u ...• ~n. we obtain for 
(3) 

(4) 

Consequently the Green's function of the heavy particle 
is equal to 

=-&(s)exp{r f. d$, ~ ds.' D(s,-6,'>}· 

when ;\. * 0, the solution (5) must be modified only 
slightly. 

Let us consider diagrams of order r 2 but of arbitrary 
order of;\.: 

r~~ + r~r + r~~ " !: ~, ~ 0 f,' f, f 0 f: f, ~ 

+ ••• ~r+ 
f,' }; f, 

(6) r ,.s-M-t. r 

~: f, 
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We can readily see how to sum them over the powers of 
.\. For the sum of these diagrams we can readily set up 
the equation -

1:(6.- IV>= rD<s•- s.')- 1. J D(s.- s/')1:(6.''- s.')ds/'. (6') 

Changing to the w representation, we obtain 

:E(ro) = rD(ro)/[1 + 'J..D(ro)]. (7) 

Summing over r 2 in exactly the same manner as at .\ = 0, 
we obtain G(~) in the form 

I I . 

t;"(t;)=~(s)exp{J J:E(t;,-6/)dt;,d6.'}. (8) 

•• 
or, substituting (7) in (8) and integrating explicitly with 
respect to ~ 1 , we obtain 

•· d D( ) 
G(S)=~(t;)exp{r J~e·• 00 

}· (9) 
_,_ 2mro' 1 + 'J..D ( ro) 

The contour of integration with respect to win (9) passes 
to the right of all the singularities of the integrand (con­
tour C of Fig. 1). 

Let us consider now the properties of the solution ob­
tained for the two-dimensional and one-dimensional sys­
tems. In the two-dimensional system 

D( s d'k J d'k L 
ro)= ro+s~(k') = ro+A+k' =nlnro+A · (10) 

We shall henceforth omit the coefficient preceding the 
logarithm, assuming it to be included in r 2 and.\; Lis 
the cutoff radius, which is determined, for example, by 
the succeeding terms of the expansion in powers of k2 

in the spectrum Ea(k2 ) = 11 + k 2 + k 4/L. 
Expression (9) is analytic in the right half-plane of 

w (if .\ > 0) and has a branch point at w = - 11. The pic­
ture of the singularities in the w plane is shown in Fig. 1. 
When .\ < 0 there is, in addition to these singularities, 
also a pole at some positive value w = w0 , due to the 
vanishing of the denominator of the integrand 1 + .\D( w0) 

= 0. Separating the contribution of this pole to (9), we 
get 

G (6) oo ~(6) exp {ae"•'} = ~(6) exp {aS"•}, 6 ->- oo. (11) 

Thus, when .\ < 0 we have a solution that increases 
more rapidly than any power of S (~ = ln S) with in­
creasing S. Such a solution does not satisfy our physi­
cal requirements (we recall, for example, that if the 
particles a and {3 are taken to be reggeons, then G(~) 
is the scattering amplitude and Sis the energy), and 
consequently the problem with.\< 0 has no solution. 
This was to be expected, since .\ < 0 corresponds to 
attraction. 

Cz 
---------""'\ 
- ·---------

FIG. I 

Let us consider now the asymptotic form of G(~) as 
~ - oo and at a finite gap 11 in the spectrum of the par­
ticles a. We close the contour C around the singulari­
ties of the integrand in (9) (see Fig. 1, the integration 
is along C1 and C2 ) and obtain 

{ r' 1 } { r'l G(s)=v(6)exp ------- exp ---£ 
A (1+!.l)' 1+!.l (12) 

-A dro L ' -• 
+r'J'e'"'-, [(1+/.ln--, ) +n'A.'] }• 

(H j_ -,- (!) 

l =o ln(L,' ;\). 

At fixed 11 and as ~ - oo, the integral in (12) is of the 
order of e-11~, and consequently can be discarded in the 
asymptotic expression. Then 

f r' 1 r'l } 
G(6)-+~(6)exp ~------, +---~ . 

A (i+'J..l) 1-f-J.l 

Expression (13) corresponds to a pole of G(w) at 

rl 
ro=IJo= 1+J.l' 

Expanding (12) in powers of the integral 
-A J ( ... ) ~ e-A•, 

(13) 

(14) 

we obtain the contributions made to G( ~) by the branch 
points in the w plane: 

Oln= fJ,-n/1.. (15) 

What happens when 11- 0? Obviously, all the thresh­
olds come closer together and give rise at 11 = 0 to a 
complicated singularity at the point w = r 2 j.\, leading to 
the following asymptotic form as ~ - oo : 

G(6)-+exp{ 1 :6~~~~6 }-+exp { ~ 6- 'J..~:sLs}. (16) 

In a one-dimensional system 

D(ro)=J dk = 1 
ro+A+k' "Vro+A 

The analytic properties are the same as in the two­
dimensional system, but the concrete formulas are 
modified in trivial fashion. In particular, {3 0 

= r 2/(..f7S: + .\)- r 2j.\ as 11- 0, and when~- oo we have 

G(s)=exp{~ s+const·l'I}. (17) 

Thus we see that we obtain for our problem a solu­
tion having no pole if 11 = 0. The Green's function has 
a finite limit here as 11 - 0, but the residue z{3 at the 
pole tends to zero (at r 2 > 0). In exactly the same man­
ner, the admixture of states with a finite number of par­
ticles a is small, and the main contribution to the 
Green's function is made by states with n ~ 11-\ i.e., 
a situation analogous to the infrared catastrophe in 
electrodynamics sets in. This is most clearly manifest 
in the wave function of the {3 particles. It can be ob­
tained in standard fashion C4l with the aid of a canonical 
transformation that annihilates the terms linear in a+ a 
in the Hamiltonian (1), 

(18) 
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where 

r ( dk )-' f(k)=-- 1+!. J-- . 
ea(k) e.(k) (19) 

The admixture of the n-particle state is described by 
the Poisson formula 

l<~ja,+a,+ •.. a.+b+jO)j ~ exp{- J f(k)dk} f,'~;'·' (20) 

Inasmuch as at small momenta we have 
r i 

t~T1+t.z' 
the average number of particles with zero momentum 
is of the order of r I A>..l. 

Thus, the static problem with A1 = 0 has no solution 
satisfying the physical requirement that the Green's 
function have a pole. We note that at A = 0 the pole is 
located at w = {3 0 = - r 2l and goes off to - oo as D. ~ 0. 
Then, G(~) is equal to exp {r2~ ln ~}, i.e., it increases 
more rapidly than any power of S. This solution, as be­
fore, does not satisfy the physical requirement, although 
we do not encounter the infrared situation here (the pole 
simply goes off to - oo ). It can be shown with the aid of 
the variational principle that for the two-dimensional 
and one-dimensional problems with a Hermitian Hamil­
tonian with A1 = A = 0, the fact that the pole goes off to 
infinity remains in force also when recoil is taken into 
account, i.e., also when (3' * 0. 

3. SOLUTION OF PROBLEM AT r = 0 (GENERAL 
ANALYSIS) 

In this section we consider the interaction of reg­
geons at r = 0 (see (1)). Since allowance for the cross 
scattering of the reggeons entails no difficulty (we have 
seen that in the preceding section), we assume for the 
time being, for simplicity, that A = 0 (see (1)). The 
Dyson equation for the Green's function of this problem 
is 

~ (21) 

+u '~~' ~ ~ 
G A,r G ll, C0 

or 
G(s) = Go(!;)+ t.l' .• G(!;~') r,(6", 6., £,, 6.') G{s'- !;,')D(s'- !;,) 

(21 ') 
X D (6'- sz) Go(!;- 61 ) d!;, d6, d!;,' d!;' d!;". 

Instead of the vertex r 2 it turns out to be more conve­
nient to consider the function F 2 defined by the equation 

J G(6") r,(6", 6~, !;,, !;,') G(6- !;,') d!;" d£,' = F,(!;~, £,, s) G (6). (22) 

The function F 2 ( ~ 1> ~2, ~) is convenient because out of 
the entire assembly of diagrams for GrG, owing to the 
independent integration with respect to the coordinates 
of the a-Reggeon emission (see Sec. 2), it receives con­
tributions only from diagrams that can be represented 
with the aid of a single directed a-Reggeon line, for 
example 

~22a) 

On the other hand, all the closed lines, for example 

(22b) 

are separated in the form of a factor G(~) in (22). Sub­
stituting (22) in (21'), we get 

' 
G(!;) = ~(!;)exp{ !.,' J d£, d£, d!;1F.(!;,, !;,, s')D(S'- £,)D(s'- sz)}. (23) 

0 

For F2(~ 1, ~ 2 , ~)we can write the simple equation 

_}{_+ 
(J ~~ { (J 

or 
' 
SF,(£.', 6z', s)D(s •. - S/)D(6,- !;,')ds/ d!;,' (24 ') 

' 
= J D(£,- 6')D(6z- s')d6' + !.,' J D(6,- s')D(sa- 6') 

0 • 

x D (6,- s.')D(6,- s.')F, (6.', 6.', !;,)ds.' dsz' d£, ds'. 

If we consider values of ~ 1 and ~ 2 smaller than ~. then 
the upper limit of integration with respect to ~~. ~~ and 
e in (24) must be set equal to infinity, since D(~i - ~D 
= 0 when H > ~i. We then obtain an equation containing 
F 2 only in the region ~ 1 , ~ 2 < ~. It is convenient to 
change over in this equation to a mixed representation, 
in which 

F,(!;,, !;,, s) = - 1-.- J e•·'·+•,•,F,(w,, w,, s)dw, dw,, 
(2m)' c 

with F2(~ 1 , ~ 2 , ~)defined for ~ 1 , ~ 2 > ~in accordance 
with (24') with an infinite upper limit in the integration 
with respect to ~~. ~~and ~, (the contour C is to the 
right of all the singularities of the integrand). 

Then 
1 

F,(w,, w,, s) = --+-+ 
Wt Uh 

2 s dw,1 dw,' D ( wt')D ( w,1 ) exp { ( w,' + w,') s} F, ( w,', w,, s) 
+ 1., (2ni)' (w, + Wz1 ) (w.' + w,') 

(25) 

It is easy to verify that 

1 
F,(w~, w,, s) = --+- [ y, (w,, s)y, (w,, s)- l..'y,(w,, s)y,(w,, s) ], (26) 

Wt Wz 

where 

1 J exp {w.'s} D 1 ) ( 1 d 1 y,(w,,s)=-2 . + 1 (w, y, w,,£) w,, 
1H Wt Wt (27) 

and y1(w, ~) satisfies the equation 
_ 2 J dw,' dw,1 D ( w.') D ( w,') exp { ( w,' + w,')S}y, ( w,', s) 

y,(w,,s)-1+!., (2 ')' ( + I)( I+ I) 
m W1 (J)z w, Wz (28) 

We now put,\ * 0. Since we have considered in (24) 
and (23) ~ 1 , ~ 2 < ~. it follows that the scattering of the 
vacuum Reggeons (a) by the {3 Reggeon occurs as if the 
a Reggeon were to move in an external field. This makes 
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it necessary to replace the vacuum-Reggeon Green's 
function 

(29) 

everywhere by 

(30) 

just as in the preceding section. 
In finding r 2(w 1, w2 , w) (r2 is the vertex of the decay 

of the {3 Reggeon into two a and {3 Reggeons) it is neces­
sary to know the correct value of F~(~ 1, ~ 2 , ~)for ~l' ~ 2 
> ~; this can be readily obtained in the mixed represen­
tation: 

J dm/ dwz' 
F,'(w~,(!),, s) = D,(w,)D,(w,) ~ 

D ( w,') D ( w,') exp { ( w,' +wz') £} F, ( w,', w,'. sl. (31) 
X D,(w,')D,(w,') (w,'- w,) ((!),'- w,) ' 

where D and D0 are defined in accordance with (29) and 
(30), and F2(w 1, w 2 , ~)satisfies Eq. (25), in which D(wi) 
is taken to mean expression (30). According to (31) we 
have (we have used (26) in this case) 

The notation in (32) is clear from the following diagram: 

(32') 

The function G(~) can also be expressed in terms of the 
solution of (28), namely 

! 

G(£) = 'l}(£)exp {J d£' J dw, ~w, D(w,)D(w2 ) 

, (2m)' w,+w, 

- 2a + (3. Indeed, if we introduce the functions 
Fn(~ 1, ~ 2 , •••• ~n• 0 (n is the number of vacuum Reg­
geons) in the same manner as F2(~ 11 ~ 2 , 0 (see (22)), 
then we obtain simple equations for these functions. 
For concreteness, we write them for F 4(~ 1 , ~ 2 , ~ 3 , ~ 4 , ~): 
and directly in the mixed representation: 

It is easy to see that the solution of (35) is 

F,(w,, wz, w,, w,, s) = F,(o,,, w,, £)F,(w,, w,, s) 
+F,(w,, w,, s)F,(w,, w,, £J+F,(w,, w,, £)F,(w,, u.lJ, s). (36) 

Analogously 

Fn= .LJIF,(w,,w,,£). (37) 
ik 

The summation is over all possible combinations of 
particles by pairs. Such a form of Fn leads to a simple 
expression for r n• namely 

G ( (J) + E(J)·) rn(w,, ... ' UJn, w)G((l)) = ~se-w! G(s) II f,(w,, w,, s)d£. 

.. (38) 

A particularly simple form is possessed by the Gr n 
in the limiting case as w - 0: 

Gr" = E II (Gr,), (39) 

(33) with 

We note that as ~ - oo, expression (33) contains the 
factor exp (aE13 ~), which describes the shift of the energy 
of the single-particle state 

J d(!) 
BE~= -. [y,(w,oo)-1]. 

2m (34) 

The energy shift is immaterial for our purposes, and we 
shall henceforth omit this factor, with the understanding 
that the frequencies w are reckoned from the exact en­
ergy of the single-particle state. 

Thus, the problem will be completely solved if Eq. 
(28) is solved. 

Let us stop to discuss one interesting feature of the 
static problems. In these problems, the amplitudes of 
the transition of the Reggeon into n particles a are ex­
pressed in simple fashion in terms of the amplitude {3 

where 

We note that as w - 0 the quantities Gr n enter in the 
unitarity condition for G(w) and their determination 
solves the problem in a certain sense: 

Thus, we gain much knowledge of the Green's function 
of the {3 Reggeon if we obtain the solution of (28) as 
~ - oo. It is easy to show that the solution of the com­
plete static problem with Hamiltonian (1) can be ob­
tained in terms of the solution of (28) (see Appendix I) 
when r * 0, ;\1 * 0, A * 0. 

Let us now find y 1(w, oo) = y~(w). As ~ - oo it suf­
fices for us to confine ourselves in the integration with 
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FIG. 2 

respect to w~ in (28) to the contribution of the pole at 
w~ = - w~ (the remainder constitutes at most a power­
law small quantity in terms of 1/~), and therefore y~(w) 
satisfies the equation 

y,'(w) = 1 +Ic, (42) 

where 

Ic ""~ Jdw' D(w')D(- w')y,'(w'), 
2ni w-w' 

(42') 
c 

and the integration contour C is shown in Fig. 2. 
The singularities of y~ arise from the fact that the 

pole w' = w and the cut D(w') pinch the integration con­
tour. We see therefore that y~(w) is analytic on the 
plane with a cut along the real axis from w = - Cl. to 
w = -co. The value of the function y~(w) on the upper 
edge of this cut, y~+ (w), is (see Fig. 2) 

y,'+(w) = 1 + Ic, = J.,'y,+(w)D+(w)D( -w) + 1 + Ic 

and on the lower edge 

(43) 

y,'-(w) = 1 +Ic, = J.,'y,-(w)D-(w)D(-w) + 1 +I c. (44) 

Comparing (43) and (44) we get 

y,'+(w) 1- J.t'D-(w)D(-.w) 
y,'-(w) = 1- J.,'D+(w)D(- w) · 

(45) 

The solution of the boundary-value problem (45) is 

0 1 -oo dw' 1-J.,'D-(w')D(-w') 
'I'• (w) = c exp { 2n J w' _ w Im ln 1 _ J.,'D+ (w')D ( _ w')}. (46) -· 

Since perturbation theory is valid as w - co, we get 
c = y~( co) = 1. We note that for the two-dimensional and 
one-dimensional cases, the value of 1- A~D+(w)D(- w) 
as w- 0 is 1- A~/A2 , and as w- co its value is 1, and 
consequently when A~> A2 the logarithm ln [1- A~D(w) 
x D(- w)] acquires a phase 211 as w varies along the con­
tour L (see Fig. 2). Since in this case y~(w) = 1 at large 
w (on a circle of large radius), the function y~(w) has in 
the case of A~ > A2 a pole on the real axis to the right of 
the origin. Just as in the preceding section (see (11 )), 
this leads to a solution that does not agree with the phys­
ical requirements after y~(w) is substituted in (33). Thus, 
a solution exists only when A~ ~ A2 and A > 0. 

4. ONE-DIMENSIONAL MODEL. SCALE INVARIANCE 

Let us now determine the properties of the Green's 
function and of the vertex parts in the one-dimensional 
model. We recall that in the one-dimensional model the 
Green's function of the a Reggeon is 

D,(w) = (w+LW"', D(w) =D,f(1+AD,) =1/[J..+ (w +.1)11]. 

The constants A1 and A satisfy the stability condition 
A 2: I A1 I . 

Let us consider first the case when the amplitude of 
the decays I A1 I is smaller than the maximum value of 
A. In this case it turns out that the solution corresponds 
to the singular weak coupling in accordance with the 
classification proposed in the Introduction. It is seen 
first of all from (45) and (46) that when w « A~, A2 the 
function 1'1 (w, ~ = co) tends to a finite limit 

(47) 

It then follows from (39) and (40) that the quantities 
Grn I w=o that enter in the unitarity condition (41) for 
the Green's function are homogeneous functions, of de­
gree zero, of the frequencies wi and of the gap Cl.. For 
example 

G( + )F ( 0) - J.,A'(J.,/J.) l'w 1 +.1l'w,+.1 
Wt Oh 2 (l)t,Wz, - • (48) 

)._Z i(l)t+l(i)z 

Substituting these expressions in the unitarity condi­
tion (41), we see that the individual terms in (41) are 
homogeneous functions of wand tl.: 

lm G(w) In= J (Gr.)' 6 ( w+ ni\ + .E k,') dk, ... dk. (49) 

= ~ fn ( ~ ) ( J.,A:f~ ) n • 

In the region w ~ Cl. << A 2 of interest to us, these terms 
are small compared with the pole term 

(50) 

Thus, when Cl., w << A2, A~ the Green's function coin­
cides with the free one, apart from the renormalized 
factor Z (A 1 /A) and the shift of the pole position (we 
recall that the frequencies w of the particle {3 are 
reckoned in all the formulas from the position of the 
renormalized pole). The vertex parts rn (wl> ... ,wn, w) 
of the decays {3 - {3 + na are homogeneous functions of 
t~., wi> and w of order w. For example, r 2 (w 1w2 , w = 0) 
= A1A2 .,; w1 + tl. .,; w2 + Cl. /A 2 Z. The amplitudes of the 
scattering na + {3 - rna + {3 have a larger order of mag­
nitude; for example, the scattering amplitude A is de­
termined by the two-particle states and its value at 
w, t1. « A is 

Xw'-~= Im - -JiiJ,+{A)+~ I 

(A) tu' 

The corrections to this expression, due to the many­
particle states, contain the small parameter w/A~, in 
analogy with (49). 

(51) 

The relatively large order of magnitude of the scat­
tering amplitude A explains why the decay amplitude r 2 

is different from the nonrenormalized value r 2 = A1, 

namely, this is due to the "interaction in the final 
state," i.e., to diagrams of the form 

+ 
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These diagrams are sign-alternating (A < 0) and cancel 
out the nonrenormalized coupling constant A 1 • 

The solution considered here is an example of the 
singular weak coupling in accordance with the classifi­
cation proposed in the introduction, and has scale in­
variance, i.e., it maintains its structure when the fre­
quencies (time) and D. are subjected to a scale transfor­
mation. )We note that the solution in Sec. 2 of the prob­
lem with r * 0, A * 0, A1 = 0 had no scale invariance.) 

Let us now consider the limiting case when the decay 
amplitude A1 reaches its maximum possible value 

(52) 

This limiting case is of interest because the solution 
under condition (52) corresponds to strong coupling. In­
deed, when I A 1 I = A, the coefficient A (A 1 /A) in ( 48) be­
comes infinite, A~ A/..JA2 - A~. When IA1 1 =A» w, D. 
the function y~(w) equals, in accordance with (46), 

const·'A'h {1J~ dz [ 1/z-1 n]} 
y,'(oo)---r(w+~)''•exp--;:;- z+wl~ arctgVz+ 1 - 4 (53) 

1 

'}.'I• ( {i) ) 

= (w+~)'f,l ~ · 

If we now find the value of Gr2 (w 11 w2 , 0) in accordance 
with the formula (40), then it turns out that Gr2 is inde­
pendent of the coupling constant: 

[(w,+~)(w,+~)J"• ({J)') (w') 
G(w1 +w,)f2 ((J),,{J),,O) lw~o-+ + I T I T · 

w, w, (54) 

In order to find the Green's function G(w) when w 
<< A 2 , it is no longer convenient, as before, to use the 
unitarity condition (or the Lehmann expansion) (41) since 
this gives rise to the series 

1 ((J))( '}.2 )n G(w) ~----;;;- ~lpn ~ In-;;; , (55) 

which contains powers of the large parameter ln (A 2 /w). 
Instead of summing this series, we make use of formula 
(33), which expresses G(~) in terms of y 1(w, ~). Since 
y 1(w, ~)has no singularities in w at finite values of ~. 
the integral in (33) reduces to the residue at w = oo. It 
is shown in Appendix II that the asymptotic form of 
y 1(w, ~)when~» A-2 and w~- oo is 

y,(w,£)=1-1/16w£. (56) 

Then (33) yields 

G(£)= (£,1£)'1", G(w)=(w£,)'1"/w. (57) 

Here ~ 0 ~A -2 is the lower limit of the logarithmic inte­
gral 

Using the solution obtained in Appendix II for y 1(w, ~) 
at w « A2, ~ » A -2 : 

c£-''• dp 
y,(w,s)=--=- J-r''•(p+1)-''•ePw<, (58) 

1w 2ni 

We can find also the vertex parts r n in accordance with 
formulas (32), (37), (38), and (40). 

Thus, the solution has a power-law asymptotic form 
at t:. = 0, i.e., it corresponds to strong coupling (see the 
Introduction). At finite !:. « A 2 , the Green's function and 
the vertex parts are homogeneous functions of the type 

(59) 

(60) 

The ratio of the powers of G and rn confirms the 
similarity hypothesis of [3J, whereby all diagrams of 
any quantity (G, r, ... ) containing in their interior 
Green's functions and vertex parts, have the same 
order of magnitude. In our case the similarity law 
means that (Grn)2 t:.n 12 ~ 1. 

5. TWO-DIMENSIONAL MODEL. THE ZERO-CHARGE 
PROBLEM 

Let us now consider the properties of the solution in 
the two-dimensional model. If we confine ourselves only 
to quadratic terms in the spectrum Ea(k) = t:. + k2 , then 
theory gives rise to logarithmic divergences at large 
momenta. The asymptotic form of the solution when the 
momenta and t:. are much smaller than the cutoff radius 
L can be investigated by the usual methods, by summing 
the principal diagrams; this leads, as in the relativistic 
theory, [7J to zero charge (see [4l). 

r,-+[1+(}.-'A,)ln ~ r[ 1+0-+'A,)ln ~ r-+0. (61) 

This formula was obtained in [4J for the general case 
when the particles {3 (non-vacuum Reggeons) have {3' * 0 
(moving Hegge pole). Just as in the relativistic theory, 
the "parquet" solution (61) can be verified only when 
A, A1 << 1, and when A11 A ~ 1 it is possible to have for­
mally a solution corresponding to strong coupling, i.e., 
to a finite charge. 

Let us now find the asymptotic form of r 2 in the static 
model. It turns out that formula (61) is valid for all A1 

and A satisfying the stability condition (IA 1 1 :s: A), if 
ln (L/w1) - ln (L/w2 ) » 1. Let us rewrite formula (40) 
for Gr2 1 w=o in a more convenient form: 

(62) 

where 

{ 1 L de } 
x(w) = exp - J--arctg nA(e) , 

n " e + {i) (63) 

1 +('A'- A.,')l+ 
A ( 6 ) = 'A -:(-:-1-:+-"-:-:l-:+ )'-c(-':-1-:+-'-:-:l,-::_ )~----'7'}.--::, 'l:-+:-L ' 

L 
l±=ln--. 

e±~ 

(64) 

(We have substituted D0 = l+ in the general expression 
(46) for y~(w) = (D0 /D) x(w). We see now that for all A 
and A1 satisfying the condition I A1 I :s: A, the value of 
A(E) tends to zero as ln (L/E)- oo, and we can put 
tan-1 1rA = 1rA. Then we have, with logarithmic accuracy, 

L )' L ]-~ x(w)=[(1+'Aln-- -'At'ln'-- . 
~+w ~+w 

(65) 

Thus, Gr2 ~ 1/w ln2 (L/w) when A1 *A and Gr2 

~ [w ln (L/wlr1 when I A1 1 =A. According to the unitar­
ity condition (41) and the recurrence formula (39) for 
G r n• the quantity wG r 2 is the effective renormalized 
charge, i.e., the perturbation theory expansion param­
eter. The effective charge is logarithmically small, so 
that the Green's function is determined by the pole term 
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G- Z/w, and the vertex r 2 equals, in accordance with 
(62) and (65), 

r,-+ ~ [ ( 1 +AI,)'- ;,;z,'J-''•[ ( 1 + AZ,)'- A/Z,'J-''•, 

L 
!,,=In---

, w,,,+L'> 

(66) 

If the frequencies w1 and w2 are of the same order, i.e., 
l 1 = l 2 , then this formula goes over into the "parquet" 
solution (61). We note that the quantity A(E) in (64) is 
the amplitude of the a + {3 - a + {3 scattering with en­
ergy E, as can be readily verified from the "parquet" 
equations. [41 

Thus, in the two-dimensional static model, the re­
normalized charges A1c and Ac vanish with increasing 
cutoff radius for all nonrenormalized constants A1 and 
A. If we vary the nonrenormalized constants A1(L) and 
A(L) together with the radius L, leaving the renormal­
ized AlC and Ac fixed, then we encounter the same para­
dox as in quantum electrodynamics, [71 namely, the re­
normalized amplitudes, for example 

(67) 

have logarithmic poles at E ~ A exp {-1/(Ac ± AlC)}. 
From the point of view of applications to the Reggeon 

problem, [41 where L is fixed and w, A - 0, the solution 
(61) contains no paradoxes and simply denotes the 
screening of the interaction at low frequencies and 
momenta. 

In conclusion we wish to thank A. I. Larkin, who 
called our attention to the one-dimensional model. 

APPENDIX I 

We consider here the solution of the complete prob­
lem, when all the constants r, A, and A1 are not equal to 
zero. We shall not analyze this solution in detail, since 
its properties are similar to those of the case r * 0, 
A * 0, A1 * 0 (see Sec. 2), i.e., this problem has no solu­
tion in the sense indicated in the introduction. The Dy­
son equation of this problem is of the form 

__..,__- -- + 
C C0 

(1.1) 

If we introduce in lieu of r 1 and r 2 the functions F 1 

and F 2 in analogy with the procedure used in Sec. 3, 
then we can easily write for them equations in graphic 
form: 

~=~ + 
rF, r 

We assume that A = 0; A is accounted for by the method 
already described above (see (29) and (30)). 

In the mixed representation, the equation for F 1 is 

1 /., ( F,(w, £) = -+- (D(w, £)-D(O, m 1.3) 
(J) (J) 

+ A,' J d 1 d 1 D(w,')D(wz')exp{(w,' + w,'g}F,(w,', £) 
(2ni)' w, w, ( w + w,') ( w,' + w,') 

It is easy to verify that a solution of this equation is 

F,(w, £) = w-'[y,(w, £) -/.,y,(w, 6)], (1.4) 

where y 1 and y 2 are defined by (27) and (28). 
The following obvious statement can be made with 

respect to F 2 (w10 W 2 , 0: 
-- r 2 (r=o) 

F,(w,w,,6)=T,F,(w,6)F,(w,,s)+F, (w,,w,,£); (1.5) 

F ~r=o)(wl, w2, n is the solution of the problem at r = 0, 
i.e., it satisfies Eq. (25). 

Since the Green's function is equal to 

' 
FORMULAS G(6) = 1'to(6)exp { J B (s 1)ds 1), (1.6) 

0 

~(6)=r' JD(w)F,(w,£)e"1 dw 

+ !.,' J'F,( w,, w,, s)D ( w,)D(w,) e<•,+••>1 dw, dw, (I. 7) 

= r' [I D(w)F,(w, 6)e"1 dw +A, ( J D(w)e"1 F,(w, S)dw) '] 

+A/ J F,<'~o)(w,, w2, s)e\••+-•>1 D(w,)D(·w,)dw, dw, 

(dw = dw/27Ti), we obtain by using the equation for y 1(w, 0 
I 

G(s) = 1'to(6)G<'d) (s)exp {r' s~(s1)ds' }. (1.8) 
0 

where 

~(g)= ('\',(0, 6) -J,,-'y,(O, £)+A,-'] 
+A,[y,(O, 6)- A,-'y,(O, s) +A,-']'. (1. 9 ) 

The new position of the pole Ef3 is determined from 
(I. 9): 

E, = E,(r' = 0) + r'[ (A-'- ;.,,-')y,0 (0) +A,-'] [2 + (AtA _,- 1)y1° (0) ]. 

It is seen, in particular, that at A = A 1 the pole shifts by 
2r2 /A, and when A = - A1 it goes off to infinity (y~ 
~ 1/VA2 - A~). The Green's function, for example, for 
the most interesting case of the one-dimensional prob­
lem, is of the order of exp (e/ 2 ) when A~ * A2 and of the 
order of exp (e/ 4) when A2 =At i.e., the interaction due 
to the presence of A1 and A in the Hamiltonian indeed 
does not alter the main conclusion that when r 2 * 0 we 
encounter the infrared situation in this problem. 

APPENDIX II 

We obtain here the solution of (28) for A~= A2 in the 
region w « A2 , ~ » 1/A2 • In this region we can rewrite 
(28), using the expansion of D for w « A2, in the form 

( t) = 1 + _1_ J 6Xp{(w,' + W/)6} y,(w,', S) dOl 1 d!Jl 1 

y, w, ~ (2ni)' (w + w,') (w,' + w2') 1 2 

- - (11.1) 
___ 1_ J O'w/ + l'w,') exp { ( w,' + w,') 6} y, ( w/, s) dw,' dw,' + Co (s). 

(2ni)' A (w + w,') (w,' + w,') ' 

C0(0 is a certain function of ~. resulting from the inte­
gration with respect to wi w~ ~ A 2 in the right-hand side 
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FIG. 3 

of (28). Recognizing that y 1(w, ~)has no singularities in 
w, we can easily rewrite (II.1) in the form 

o = G(6)--1-J <l'.; +l'.iJe<•·+"'>y,(x,, 6) dx,dx,, (IT.2) 
(2ni}' (x + x,) (x, + Xz) 

where x = w~, GW = v'[(1 + C0W). Alternately, integrat­
ing with respect to x2, we have 

-y-;y,(x, 6) = G(s>+~S (-"t£ e-*• +'}'=;Jy,(x,, s) dx,. (IT.3) 
2m x,-x 

It is convenient to introduce the function x (x, ~) 
= eX..fX y(x, n. For this function, Eq. (11.3) takes the 
form 

( ) G(•) • 1 J (1- ie•-••signx,)x(x,) d x x = ~ e -- x,. 
2ni x,-x 

Changing over to the Laplace transform 
f i-

x(p} = -. J e••x(x)dx, 
2m_,_ 

we obtain for x (p) the equation 

(IT.4) 

x(p} = G(s)ll(p + 1)+'~(p)X(p)- ~(p + 1) 2~ J e••·x(x,)signx,dx, 

= G(s)ll(p + 1}+~(P)X(P)- ~(p + 1) _!_p s X(P 1 )d;1
• (I1. 5) 

n p-p 

It is easy to see that the homogeneous equation (at G(~) 
= 0) reduces to the need for reconstructing the analytic 
function 

F(p) = .!.._ j x(P1)dp1 
, 

n _, p- PI 

where Re F and 1m F satisfy the condition 

ImF = ~(p)lmF + ~(p + 1)Re F, (ll.6) 

as is shown in Fig. 3. 
Such a function can be found readily; it is equal to 

F(p) = [(-p-1)(-p)]-'1•. (II. 7) 

The solution of the inhomogeneous equation is 

F(p}-= G(6)/(-p-1)"•(-p)'l•. (11.8) 

Returning to the function y1(w, ~), we have for it 

G (6) e-<•+~>• 
y,(ro,s}=--=- f dp (IT.9) 

"fx 0 (-p-f)'l•(-p)'!. 

(The contour C is shown in Fig. 3), which is better re­
written in the form 

(II.10) 

We reconstruct the function G(~) by examining the be­
havior of y 1(w, ~) as x - +co: 

G(S) J e-• ( 
y,(ro,6)-+--;.t.""a, a= c dq (-q)'f•" IT.ll) 

On the other hand, we know a solution for ~ - co and 
for w fixed but smaller than X2 (see Sec. 3, formula 
(46)), namely 

(11.12) 

where b is a certain constant. Comparing (II.ll) and 
(II.12) we obtain 

G(s) = b6'1•f a. (11.13) 

We now find the next term of the expansion in 1 /x as 
x- co. It is equal to G(~)y/x514, where 

• dq 
v = (-q)'l• e-•. (ll.14) 

Thus, comparing (11.14), (II.13), and (11.11) we get 
for y 1 the following behavior as x - co : 

y,(x,6)= {1-....!..)~. (11.15) 
4xa w'l• 

or, since a = 4y, 

y,(.x,6)={ 1 - 1L6)v.(ro). (II.16) 

We recall that w « X 2 and ~ » 1/X 2 • It is easily seen 
that formula (IT.16) is valid also when w 2: X2 • This is 
connected with the fact that the equation for the correc­
tion to y~ (YD has for ~ - co the form 

, _ 1 J D(ro,')D(roz1 ) 1 1 

y, --(2 ')' ( + 1 ) ( 1 + 1 ) exp {(ro, + ro, )6} 
m c ro ro, ro, ro, II 17) 

'( , ")d 'd 1 + 1 JD(ro,')D(-ro,')y,'(ro/,6) d t 1 • 
X 'Vt oo, , ~;, rot. <Dz 2n:i 00 _ rot' OOt • 

In the first integral, the pole w~ + w~ = 0 lies outside 
the integration contour, and therefore the values w~ ~ 1 
play an important role in it, and it is necessary to take 
the expression (II.10) for y~. Substituting it in (II.17), 
we find that the first integral behaves like ~-5/ 4 as 
~ - co, and therefore the terms of order 1/ ~ should be 
determined as ~ - co from the solution of the homoge­
neous equation. It is easy to verify that (II.16) is indeed 
a solution of this homogeneous equation, if the pole at 
W1 = 0 lies on the left side of the contour of integration 
with respect to w'. 

In conclusion we wish to note that the phenomena 
occurring in (II.1) are precisely those characteristic 
of strong coupling,[6 l namely, the contributions from 
the region of large w (w ~ X2) cause cancellation of the 
nonrenormalized constant (which is equal to unity in 
(IT.4)), and therefore the solution is obtained accurate 
to a certain function of ~(G(~)), which, in turn, is deter­
mined from the matching of the results with those in 
the region of high frequencies. 
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