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The Born approximation is inapplicable for the scattering of electrons in thin (quantizing) films if the 
electrons' energy is sufficiently close to any of the thin- film levels, even if the impurity potential is 
small. In this article it is shown that an arbitrarily weak attraction of the impurity atom leads to the 
appearance of a bound state of the electron with an energy in the forbidden band. The dependence of 
the conductivity on the film's thickness turns out to be substantially more complicated than the result 
obtained in the ordinary Born approximation. 

I T is well known that the oscillations of the kinetic 
coefficients in thin films are related to the discontinu
ous dependence of the density of states at the Fermi 
level on the film's thickness (see, for example, Cll ). In 
this connection it is usually assumed that one can calcu
late the matrix element describing the scattering of an 
electron in the first Born approximation, and then the 
probability of an elementary scattering event turns out 
to be a smooth and monotonic function of the film's 
thickness. 

In the present article it will be shown that a more 
complicated situation occurs in the case of elastic scat
tering by impurities. If the electron's energy is suffi
ciently close to some kind of level En of transverse 
quantization, the Born approximation turns out to be 
inapplicable even for an arbitrarily small impurity po
tential. Taking this circumstance into account leads to 
the result that the probability for an elementary scatter
ing event becomes an oscillating function of the film's 
thickness. As a result the dependence of the kinetic co
efficients on the thickness is complicated although it 
retains the oscillating character. 

Let us start with an examination of the corrections 
associated with the second term in the Born series: 
y< 1 > + y< 2 > + ... (see Fig. 1). The graph representing the 
quantity y< 2 > (without any external lines) corresponds to 
the following expression: 

V<'> ~ \"1 s Uno (p- q) U,m (q- p') dq (1) 
~ E-E,(q)+ill (2n)'' 

where 
U.,(p-q)= J .p.*(z)U(r)IJl,(z)e-'<~-•>•dr; 

U(r) is the potential of the impurity atom, p is a two
dimensional vector in the plane of the film, which is 
perpendicular to the z axis; the 1/Jn(z) denote the eigen
functions of the electron's transverse motion, and Es(q) 
= Es + (q2/2) where Es are the film levels of energy 
(ft = m* = 1). 

The integral in (1) diverges logarithmically in the 
region of small momenta if E = Es· Thus, the contribu
tion of the second approximation is of the order of 
U2 ln!E- Esi/q2max• where qmax is the characteristic 
size of U(q), and the smallness of the perturbation U(r) 
may be compensated by the large magnitude of the 
logarithm. In order to obtain the correct result it is 
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FIG. I 

necessary to sum the entire Born series, which is 
equivalent to solving an integral equation for the Green's 
function: 

(E -E.(p)+ ill)Gnm (pp') = -ll.mll(p- p')+ ~ U.,(p- q)G,m(q,p'). 

•• (2) 

Below a model is considered in which Uns(P) does not 
depend on p (a short-range potential): Uns 
= Uoi/Jri(z) 1/J s(zo) where Zo denotes the z coordinate of 
the impurity atom, which is located at the point 
Ro(p 0 , zo). Integrals which diverge at large momenta 
are cut-off at qmax· Under these assumptions the solu
tion of Eq. (2) has the form (S denotes the area of the 
film) 

, 4n2 llnmll (p- p') , g (E) IJl.• (zo) IJlm (zo) e-i(p-p')p, 
Gnm(PP Ro) = -Sk-En(p)+ill' S(E-En(P) + ill)(E-Em(p')+ ill) 1 

(3) 

_ [' \"l!IJl.(z,) I'J aq ] -· 
g(E,R,)--U, 1-U,-'7 4n' E-E,(q)+ill . (4) 

In the r- representation one has G(r, ro) = G0 ( r, ro) 
+ G0(r, Ro) g(E, Ro)G0(Ro, r 0). It is clear that the elec
tron scattering amplitude is determined by the quantity 
g(E) which, for E close to a certain film level En, is 
given by 

[ Uo · q1mu iU,N~ _ ] -• 
g(E)=-Uo 1+z;l¢.(zo)I'In 21 E-e.j+2L.t j,P,(z,)[' .(5) 

8=i 

Here N(E) denotes the number of levels of transverse 
quantization having energies less than E. In order of 
magnitude 11/Jn(zo)l 2 ~ 1/a where a denotes the thickness 
of the film. If the potential of the impurity center is a 
small perturbation (U0 /a « 1) and Uo > 0, then jg(E)I 
does not exceed U0 • However, in the case of attraction 
(Uo < 0) the quantity ig(E)I has maxima near E =En, 
and there reaches a value of the order of a, but in the 
intervals between the maxima !g(E) I ~ Uo « a. On the 
segment of the real energy axis 0 :s E :s E1 the function 
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g(E) is real since N(E) = 0, and it has a pole at the 
point 

q~.. ( 2n ) 
E.=s,--2-exp -IUollt!J,(zo)l'. 

Thus, a bound state of the electron arises with an en
ergy below the first film level, i.e., in the forbidden 
band. This fact should be related to the following well
known result of quantum mechanics: for a two-dimen
sional problem in an arbitrarily shallow potential well 
there always exists a level of negative energy which is 
exponentially shallow in comparison with the depth of 
the well. The thin (quantizing) film makes the electron's 
motion effectively two-dimensional, and therefore an 
arbitrary attractive potential leads to the occurrence 
of localized states. 

As is clear from the expression for Ep, the energy 
of such a state depends on zo, i.e., on the position of the 
impurity atom. Since the impurities are randomly dis
tributed over the thickness of the film, an impurity 
band arises which merges with the bottom of the con
duction band. One can calculate the density of states in 
the impurity band, having assigned a specific model for 
the film, i.e., having chosen a specific form for lfn(z). 
For the model of a rectangular well having infinitely 
high walls, lfn(z) = v'2Tasin(nrrz/a). Assuming the im
purities to be uniformly distributed in the film, we ob
tain the following result for the density of states in the 
impurity band for a single impurity atom: 

v (E) = ~ dz~ = In'/• 2 (et ~ Ec) [(In'/• Bt- E) (et- E) In 2 (s\- E)]-', 
a d.tp qmax Bt - Ec qmax 

where Ec is the bottom of the impurity band: Ec = E1 
- (1 /2)q2 exp(-?Ta/ IUo I). max 

The function v(E) has singularities at the edges of 
the impurity band: for E - Ec we have v(E) 
~ (E- Ec)-112, and as E - E1 one will have v(E) 
~ ( E1- Er1ln-312 [2( E1- E)/ q~ax]. Strictly speaking 

(6) 

the result for E - E1 is not valid within a certain neigh
borhood of E1 due to the overlap between the wave func
tions of electrons localized on different impurity atoms. 
This neighborhood is small for a small impurity concen
tration and will not be considered in detail in the pres
ent article. 

The pole of g(E) investigated above turns out to be 
the only one associated with fulfillment of the condition 
Uo << a. In fact, for real and positive values of E out
side the interval 0 ~ E ~ E1 the equation [g(E)r1 = 0 
does not have any solutions since N(E) ;>' 0 and g(E) be
comes complex (see Eq. (5)). However, if the existence 
of poles in the complex E plane is postulated, then as
suming E = Eo + ir, from Eq. ( 4) we obtain two equations 
for the determination of Eo and r: 

2 

1 IUol '\1 1 ( ) l'l qm .. 
-~ "7" t!J, Zo n 2((s,-E,)'+f')'" =0, 

'\1lt!J,(zo) I' arctg-r- = 0. 
~ e,-Eo 

(7) 

Investigation of the system (7) leads to the following 
conclusions. In the case IDol <<a no solutions exist on 
the physical energy sheet apart from the solution 

already found: r = 0, E = Ep. The remaining resonan
ces in the scattering amplitude correspond to poles 
lying on other sheets of the Riemann surface, namely: 
the resonance associated with E close to En corre
sponds to a pole on the n-th sheet. Thus, only the first 
pole belongs to the physical energy sheet and corre
sponds to a real bound state. Quasi- stationary levels 
of the electron do not appear (one should keep in mind 
that the quantity E - En plays the role of the particle's 
kinetic energy; at a resonance E - En 
~ q~ax exp(-?Ta/ IDol) and the width C.E of the reson
ance at half- maximum turns out to be numerically lar
ger: t.E ~ e21Tq~axexp(-1Ta/IUoi), i.e., the resonances 
are not narrow and they do not correspond to metastable 
states) .1J 

One can eliminate the explicit dependence on the 
cut- off parameter qmax and express all of the results 
in terms of the amplitude f for the scattering of a zero
energy electron by a potential U(r) in an infinite crys
tal. In the case of scattering by short- range impurities 
in a magnetic field, this problem was solved by 
Skobov. l2l The starting point is the Lippmann
Schwingerl3l integral equation or the expression for 
the electron's Green's function in the r- representation 
without taking the impurity field into account. The latter 
is given by (seer4 J): 

G ( , ')-(' ip(P-P') sinRz'sinR(a-z)dp 
E p, p ' zz - j e 4n' sin Ra for z>z', 

z ""'z' for z < z', 
(8) 

where R = R(p) = v'2E - p2 + i o. The following treatment 
is completely analogous to articlel2J. The matrix ele
ment of the transition np - mq has the form 

M (np, mq) = 4af ei(q-p)Po'g (E) sin nnzo sin mnzo 
aS a a ' 

rill 

g (E) = [ 1 + 2f ~ sin Rz0 sin R (a- z0) cosec (Ra) R-Ipdp 
0 

N(E) 

+ i 2nj "' . 2 nnz0 ,_1 
a~ sm -J. 

n=l a 
(9) 

For E = (n?T) 2/2a2 the integral in expression (9) diverges 
logarithmically, and a formula of type (5) is obtained. 
Thus, the matrix element of the scattering oscillates 
upon variation of E or a. 

The relaxation time and the kinetic characteristics 
of the electrons are determined by the quantity 
I M(np, mq) 12, averaged over the positions of the impur
ity atoms. In the problem under consideration the scat
tering is isotropic, that is, IMI 2 does not depend on the 
angle between p and q. Therefore the transport relaxa
tion time is determined by the usual scattering cross 
section: 

- 1- = 211 '\11M(np, mq) l'll(en + p'/2- em- q'/2) 
't'n(P) ~ 

mq 
(10) 

= 16:rt: Ill' .E J lg(E; <p) I' E>(E- em)sin' m<p sin' n<p d<p. 
m 0 

Here cp = ?TZo/a, E =En+ (p2/2), ®(x) = 1 for x > 0, 
®(x) = 0 for x < 0, and c denotes the impurity concen
tration. 

!)The author thanks V. L. Pokrovski1 for a discussion of this part of 
the work. 
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In connection with averaging over the distribution of 
the impurity atoms, one should keep in mind the single 
property which distinguishes a film from a bulk sample. 
As a consequence of the dependence of the scattering 
amplitude on the z-coordinate of the impurity atom, the 
quantity 

1. • 
- JIJlm•(z)g(E;z)l)l.(z)dz 
a o 

does not vanish for m >" n. Because of this W contains, 
in addition to the usual terms that are diagonal with 
respect to the number of the impurity atom and corre
spond to incoherent scattering by different atoms, the 
contributions of nondiagonal terms coming from coher
ent scattering by atoms that are located "one above the 
other," that is, the x andy coordinates of these atoms 
are the same but their z coordinates are different. The 
relative magnitude of this correction is of the order of 
caa~, where ao is the linear size of the region in which 
the impurity atom is localized. It is natural to assume 
that a0 is of the order of the lattice parameter. Then 
caa~ $ 1 for a $ 1000 A up to values of c ~ 1020 cm-3 • 

In this work it is assumed that the impurity concentra
tion does not attain such a high value, so that caa~ « 1, 
and one can neglect the contribution due to coherent 
scattering. 

In the limit of a strongly degenerate electron gas, the 
electrical conductivity of the film is expressed by the 
following formula: 

z N(o) N(o) • -I 

a= e ~(1-t-e.)[ ~flie(E;<p)l-'sin'm<psin'n<pd<p] , 
16:rt'l!l'c ~ ~ 

•=1 m=1 0 (ll} 

where JJ. denotes the Fermi level and e is the electron 
charge. In the first Born approximation g(E; cp) =' 1, 
and the well-known saw-tooth dependence of the conduc
tivity on the thickness is obtained: ao = 
= e2na/47r2lfl2c[N(J.J.} + (1/2)], where n denotes the elec
tron concentration. This dependence is depicted by the 
dashed line shown in Fig. 2. In the neighborhood of the 
critical points a1, a2, ... , which are determined by the 
equation J.J.(3j) = Ej + 11 the inapplicability of the Born 
approximation becomes important, and one must use 
formula (9) for g (E, cp). 

In the general case the evaluation of the integral in 
(11} leads to extremely cumbersome expressions; 
therefore, below only the neighborhood of the point a1 
will be investigated. Qualitatively the same thing hap
pens near the other critical values of the film thickness. 
In the region a < a1 one finds 

s'(~-t-e,) [J• sin'<pdcp ]-' 
a·= 16n'l/l' c (1- 2Aifla-• sin' 2cp)' + 4n'l/ I' a-• sin' cp ; 

o (12a) 

for a > a1 one finds 

a= 16:rt,~'/l'c { (~-t-e,) n L(q>)sin'cpdcp r 
+<p.-e,) [JL(cp)sin*2(Jldcpr'}. (12b) 

0 

where 
L(cp)=~~~~~~~5~-~s-in~57<p~~~i~n~cp~~~~--~~ 

(1- 21/IAa-• sin' 2q>)' + 4n'l/l'a-• sin' q>( 1 + 4 oos1 cp) 

A= In (4n/ a'l~-t-e,l). 

of a 

FIG. 2 

If A = 2 A If 1/ a < 1, a < a1, then the conductivity at 
first increases linearly, and then falls with increase of 
a, and at the minimum it becomes substantially smaller 
than its characteristic value a= e2na/47r2 ifi 2c. Namely, 
in the region 1 ~ 1- A ~ jfj/a one finds 

e'na 
a~ 2n'lfl'c (1-J.)''•<cr. (13) 

It should be emphasized that a calculated in the Born 
approximation is of the order of a everywhere. How
ever, if A > 1 then the conductivity increases with in
creasing thickness (as before a < a1}. Upon fulfillment 
of the inequality A- 1 » lfl/a 

a~ 4;·~~'c ( n~~~ ) [(2J. -1 + 2l'J.' -J.)'" -(21. -1- 2yP- J.)'"]. 
(14) 

If A- 1 ~ lfl/a the conductivity is of the same order of 
magnitude as in formula (13}, i.e., a ~ a(ifi/a)312. But 
for A - oo, which corresponds to a- a1, JJ. - E2, a 
formally tends to infinity: 

a~ ti'( Ill/ a)''•l'Jn(4n I a, ill- e,j. 

This is related to the fact that the scattering amplitude 
vanishes for JJ. = En (see Eq. (9}). 

Actually, for a finite impurity concentration, a finite 
damping appears in the Green's function, and the con
ductivity remains finite. Taking the temperature broad
ening of the Fermi distribution into account or taking 
other scattering mechanisms into consideration leads 
to the same result. However, it hardly makes sense to 
consider these refinements since a becomes substan
tially larger than a in an extremely narrow region near 
a1. The size of this region is proportional to 
exp(-a3/lfl3) where a~ lfl. A graph ofa(a) is shown 
in Fig. 2 (the solid line). For scattering by screened 
Coulomb centers and for a temperature close to zero 
( T << E2 - E1}, the width of the region near a1 where the 
difference between a and a0 is appreciable amounts to 
approximately 20% of the period of oscillations. 

In conclusion I express my gratitude to S. K. 
Savinykh for a helpful comment. 
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