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A study is made of the kinematic theory of diffraction of resonant y rays by single crystals. The 
differential cross sections of Bragg scattering are calculated for the case of total degeneracy and 
Zeeman splitting (in ferro- and antiferromagnets of the collinear type) of the nuclear levels, and 
the contributions of the nuclear-resonance, Rayleigh, and interference scatterings are determined 
exactly. The Moss bauer spectrum of the diffraction is also calculated, with account taken of the 
absorption of the primary and secondary beams in the scatterer. 

BRAGG scattering of resonant y rays by single 
crystals has been intensely investigated recently. The 
results of recent experiments (see, for example, [I,zl) 
demonstrate convincingly that there is a real possibil
ity of using Bragg scattering as a new method of dif
fraction, in addition to traditional methods of diffrac
tion of x-rays and neutrons. A number of features of 
both the kinematic[ 3- 51 and the dynamic theory of dif
fraction of resonant y raysC 2 • 6 • 7 l give grounds for hop
ing that this trend will become quiet promising for the 
study of different problems of physics, particularly 
solid-state physics. The development of experimental 
research in this direction obviously calls, first, for an 
exact kinematic theory capable of determining the in
tensity of the Bragg diffraction by ideal single crystals. 
Unfortunately, there is still no fully developed theory 
of this kind. 

We calculate in this paper the differential cross 
sections of Bragg elastic scattering of resonant y rays, 
with an exact determination of the contributions of the 
nuclear-resonance, Rayleigh, and interference scatter
ing in each Bragg peak. It should be noted that in ex
periments, these differential cross sections and the 
physical quantities associated with them are deter
mined from the Mossbauer diffraction spectra. Owing 
to the presence of interference between the nuclear
resonance and Rayleigh scatterings, this spectrum has 
a more complicated form than the ordinary absorption 
spectrum, and is very sensitive to variations of the 
effective thickness of the scatterer. This question is 
also considered in the paper. 

Without loss of generality, we assume henceforth 
that the crystal consists of identical (resonant) nuclei. 
Allowance for the isotopic incoherence is quite trivial 
(see, for exampleC 81 ). We also neglect the influence of 
thermal motion of the lattice. This influence can 
readily be taken into account by multiplying the scatter
ing amplitudes by certain known factors. This question 
was considered in[4 • 9 1. 

The differential cross section for elastic scattering 
of resonant y rays, referred to one nucleus of the 
crystal, can be written in the general case in the form 

dcr ~ f ,JI;. 
dQ =N ~M.exp{i(k-k')rn} , (1) 

where N is the number of atoms in the crystal, rn are 
the coordinates of the n-th atom in the lattice, k and 
k' are the wave vectors of the incident and scattered 
photons, and Mn is the amplitude of elastic scattering 
by the n-th atom, which consists of the amplitude of 
the nuclear-resonance scattering and the amplitude of 
the Rayleigh scattering 

M(kk' , .. , ) = N(kk'pp'j.j'.) +R(kk' '). 
PPlnl• E-E,+if/2 pp (2) 

In this expression, E0 is the resonant energy, r the 
width of the excited state of the nucleus, jn and j~ the 
projections of the ground-state spin of the scattering 
nucleus before and after scattering, and p and p' are 
the polarization indices of the incident and scattered 
photons ( p, p' = ± 1). 

Expression (1) produces diffraction maxima along 
directions satisfying the Bragg condition k' = k - 211 T, 

where T is the reciprocal lattice vector. Then, as is 
well known, only the coherent part of the scattering 
amplitude contributes to the intensity of the diffraction 
maxima. For this part we have 

{..!!::!. ) = (2n) 3 I "\1 (JI(0 h) n' exp {i(k- k') r.'} 13 (k- k'- 2n-t) ,(3) 
\ dQ coh Vo ~ 

•' 
where Vo is the volume of the unit cell, and n' now 
denotes the indices of summation over the atoms 
within the limits of one unit cell; Mcoh is the ampli
tude of the coherent elastic scattering. In the case 
when the scatterer consists of atoms of the same ele
ment, the quantity (Mcoh)2 can be taken outside the 
summation sign (with the exception of the case con
sidered in Sec. 3), i.e., we obtain 

( dcr) (2n)', , , 
--;:; =--McohF(k-k ).S(k-k- 2n-r), 
d" coh V, 

(4) 

where F( k - k' ) is the usual structure factor. 
To determine the expression for Mcoh, we first 

note that the quantum-mechanical coherence condition 
requires that the scattering act leave the state of the 
scattering system unchanged [!OJ. Applying this to our 
problem, we see that Rayleigh scattering is com
pletely coherent, whereas for the nuclear-resonance 
scattering the coherence condition is satisfied only if 
the projection of the spin of the ground state of the 
nucleus is conserved. This corresponds to the ampli-
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tude N(kk'pp' jn). In addition, Mcoh should be taken 
to mean the scattering amplitude averaged over the 
initial state of the scattering system [uJ. We thus have 
in our problem 

(N(kk'pp'j)) +R(kk' ') 
E-E,+ir/2 pp ' 

where the angle brackets denote averaging over the 
spin states of the scattering nucleus. 

Starting from the general theory of radiation and 
scatteringofaphoton(see, tor example,[10l), we can 
write 

N(kk'pp'j) = (2L + 1) 

rR E ( 1 L I )' L• L (2I + 1) 8 -4k . . Dpm (k)DP'm (k') t 
1m -7-m 

(5) 

(6) 

where rR and I are the radiation width and the spin of 
the excited state of the nucleus, L is the multipolarity 
of the y transition, E: = 1 for a magnetic transition, 
and E: = pp' for an electric transition. The amplitude 
of the Rayleigh scattering is conveniently written in 
the form 

R(kk'pp') = Zr,pp' I: n~: (k)D~,.(k'), (7) 
1'•0, ±i 

where r 0 = e 2/mc 2 is the classical radius of the elec
tron, and Z is the atomic form factor. In formula (7) 
the indices Jl = 0 and± 1, and in formula (6) the 
values of the summation indices m depend on the con
crete conditions of the scattering problem. Let us con
sider certain cases. 

1. Case of Total Degeneracy of Nuclear Levels 

In this case it can readily be shown, using for con
venience the direction of the wave vector k as the 
quantization axis, that 

<N(kk/ '")) 1 ~ 21 + 1 rR L PPl =--£...i.N(kk1pp1j)=-- -eD,,,(k1 ). 

and 2/ + 1 1 21 ..J.. 1 4k 

R(kk'pp') = Zr,pp1D~~.(k'). 

(8) 

(9) 

The energy dependence of the differential cross sec
tion of the Bragg scattering is expressed in terms of 
the quantity I Mcoh 12 • It is convenient to write it in the 
form 

IM I'= Ar'/4+Br(E-E,) +C 
coh (E- E,) '+ r'/4 ' 

(10) 

where A and C characterize the intensities of the 
nuclear-resonance and Rayleigh scatterings, and B is 
the contribution of the interference between these 
channels. For the case of a polarized incident beam we 
obtain after simple manipulations 

( 21 + 1 1. r R ) ' 1 ~ ( L L 2v ) ' 
A= 21 + 1 2 r 2 £....!. (4v + 1) 1 -1 0 P,(cos 2a}, 

1t v (11) 

C = '/,(Zr,)'(1 +cos' 2a), (12) 

B _ 2I + 1 1. rR ~ ( L 1 ") · 
- 21 + 1 2Zr'r£...!.(2v+1) 1 10 P.(cos2a), 

1t • - (13) 

where A. is the photon wavelength and 2a is the scat
tering angle. In (13), the indices v assume odd values 
for a magnetic transition and even ones for an electric 
one. In the experiments one usually has the dipole
magnetic transition Ml. For this case, Eqs. (11)-(13) 
take the form 

1/ A = _1_ 2I + 1 _!::. _J._ 
y C 4n 21 + 1 r Zr, 

(14) 

B 1/A 2cos2a 
C = Y C 1 +cos' 2a 

(15) 

2. Case of Zeeman Splitting of Nuclear Levels 

We consider now the case of Zeeman splitting of 
nuclear levels in a scatterer. We shall assume that 
the energy spectrum of the incident beam is a single 
line, and the magnitude of the Zeeman splitting is suf
ficiently larger than the width of the excited state of 
the nucleus so that a "Doppler adjustment" of the 
frequency on the incident beam makes it possible to 
investigate the Bragg scattering by individual Zeeman 
components. Thus, we assume that we investigate in 
the experiment scattering by the Zeeman component 
corresponding to a y transition from the sublevel of 
the ground state j to the sublevel of the excited state 
j + m. For the differential cross section of the Bragg 
scattering we also have formula (4) with 

M. 1 N(kk'pp 1jm) 1 1 

coh= 21+1 E-E,+if/2+R(kkpp), (16) 

where Eo now denotes the resonant energy of the given 
Zeeman component, and 

N(kk'pp'jm) = (2L + 1) (21 + 1)e2 
4k 

( ~ L ~ )'n:;(k)D~'m(k1 ). 
Jm-J-m 

(17) 

The amplitude of the Rayleigh scattering is deter
mined from the general formula (7). The quantity 
I Mcoh 12 can also be written conveniently in the form 
(10), where the coefficients A and B defined by formu
las (10), (16), and (17) take the form 

A =A,+A,, (18) 

( L L 
X m -m 

2v) (L L 2v') 
0 m _ m 0 P,.(cos 8)P2,,(cos 81), (19) 

A,=i(G- a·), (20) 

where 

G=Zr,a E(-1)"+m(2v+1)(2v 1 +1)(~ _! 1 ~)(~ _\ ~~) 
j.IV'V' 

( L 1 'II ) ( L 1 '11 1 
) v ,, , 1 X Dom-•(8<p)Do.-m(8 <p ), 

m-,_,,_,-m -mt-tm-t-t 

a= (2L + 1) (21 + 1) ~-). ( 1 L I )' 
21+1 r 2n jm-j-m; 

(21) 
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In {19) and (21), e, cp and e', cp' denote the spherical 
angles of the vectors k and k' in a coordinate system 
having a z axis parallel to the direction of the mag
netic field acting on the nucleus. In (21 ), the indices v 
and v' are even for an electric transition and odd for 
a magnetic transition. The coefficient B is determined 
from the formula 

B = 1/2(G + G"), {22) 

and the coefficient C from formula (12). 
The use of formulas (18)-(20) in the case of an M1 

transition leads to the rather simple results: 

a' 
A = [ 1 + (- 1) m+t cos' 8] [ 1 + (- 1) m+t cos'S'] 

8(1+lml)' 

+ ; Zr, sin 8 sin 8' sin m(<p'- <p), (23) 

B= 8 (1-t~lmiJ Zr,[cos2a-(1-lml)cos8cos8']. (24) 

3. Bragg Scattering of Resonant y Rays by Antiferro
magnetic Crystals 

Belyakov and A1vazyanrsJ were the first to call at
tention to the possibility of using Bragg scattering of 
resonant y rays for the determination of the structure 
made up by the crystal magnetic fields at the lattice 
nuclei. Physically this is connected with the depend
ence of the amplitude of the Mossbauer scattering on 
the direction of the magnetic field acting on the reso
nant nucleus. If the periods of the magnetic and crystal 
structures are different, then additional, purely nuclear 
Bragg maxima should appear in the diffraction of 
resonant y rays, just as in the case of neutron diffrac
tion by magnetically-ordered crystals. Smirnov et 
alY 1 noted, and demonstrated experimentally with 
hematite as an example, that even when the magnetic 
and crystal structures coincide, new maxima can ap
pear in directions corresponding to the extinction of 
the Rayleigh scattering. Under the special experimental 
conditions of( 1J, the nuclei of each antiferromagnetic 
sublattice scatter y quanta of definite circular polari
zation, so that the waves scattered by the two sub
lattices do not interfere with each other and make 
independent contributions to the intensity of the new 
diffraction maximum. We note also that in both cases 
noted above there is no Rayleigh scattering at all in 
the new magnetic diffraction maxima. Such a singu
larity of magnetic diffraction produces favorable con
ditions for the investigation of certain effects connected 
with purely nuclear scattering by single crystals (1, 61. 

In this section of the paper we consider, for con
creteness, Bragg scattering of resonant y rays by 
antiferromagnetic crystals of the collinear type. We 
assume also that each antiferromagnetic cell contains 
two atoms, at which the magnetic fields have opposite 
directions. (The results can be generalized to the 
case of a complex magnetic cell by the standard 
methodf 11 l.) As stated above, it is necessary here to 
distinguish between two cases. 

A. If the magnetic and crystal unit cells are identi
cal, then purely nuclear maxima can appear along the 
directions corresponding to the extinction of the 

Rayleigh scattering. Since the structure factor of the 
Rayleigh scattering is equal to zero along these direc
tions, we have in accordance with the general formula 
(3) 

( !!:!___) =!_(2n)' INt-Nd' 6(k-k'-2m ) (25) 
dQ .coh 2 V, (E- E,) 2 + f'/4 ext ' 

where Text is the vector, in reciprocal-lattice space, 
corresponding to extinction of the Rayleigh scattering, 
and indices II are introduced to denote the amplitudes 
of resonant scattering by nuclei at which the magnetic 
fields have opposite directions. 

B. If the magnetic cell is larger than the crystal 
cell, then additional maxima, connected with the in
creased period of the magnetic lattice, can appear on 
the diffraction pattern. In this case we can show that 

( ~) =!___ (2n)' INt-,Nd", .S(k-k'-2n-rmag), {26) 
dQ cob 2 Vo<mag> (E- Eo) + f /4 

where Vomag is the volume of the magnetic unit cell 
and Tmag are the reciprocal-lattice vectors of the 
magnetic structure, which do not coincide with the 
reciprocal-lattice vectors of the crystal structure. 

Thus, in both cases the coefficients B and C in 
(10) are equal to zero, and the coefficient A is deter
mined from the quantity I Nt- N 1j 2 • We have: 

IJV -N I'=[ (2L+1)(2I+1) rR(' L 1 )']' 
t 1 21+1 2kjm-j-m 

X \"1 ( 4" + 1) ( 4v' + 1) ( L L 2v ) ( L L 2v' ) 
£..... m -m 0 m -m 0 .,, 

{( L L 2")(L L 2v') · 1 _ 1 0 1 _ 1 0 P,(cos 8)P,,,(cos 8) 

_ [(2v-2)1(2v'-2)!J'''(L L 2v) 
(2v+2)!(2v'+2)! 1 1 -2 

( L L 2v') 2 2 , } X P,.(cos8)P,.,(cos8) , 
1 1 -2 

where P~v( cos ()) is the associated Legendre poly
nomial. 

(27) 

The use of formula (27) in the case of a M1 transi
tion yields 

( J 1 I )' lm I . . -- (cos• 8 .L cos2 8 
Jm-}-m 8 · 

4. Mossbauer Diffraction Spectrum. Allowance for 
Absorption in the Scatterer 

Let us now calculate the Mossbauer diffraction 
spectrum. This quest ion was already cons ide red in r 81 , 

where, however, the absorption of the primary and 
secondary beams inside the scatterer, which is known 
to greatly influence the intensity and the form of the 
diffraction spectrum, were actually not taken into ac
count. 

It is convenient to represent the differential diffrac
tion cross section [3, 4 , 101 in the form 

(dcr) (dcr) [A'+B'x ] 
dQ cob= dQ ~ 1 + x' + 1 ' 

(29) 

where x = 2(E- E 0)/r, A' =A/C, B' = B/C, (da/dn) 00 

is the differential diffraction cross section far from 
resonance E - Eo» r/2. 
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Let the incident beam of the y quanta (emission 
line) have a natural width r with a center of gravity 
shifted from the resonant energy Eo by an amount 
AE0 + E0v/c, where vis the Doppler velocity and 
AE0 is a certain energy shift existing at zero Doppler 
velocity. Then, when account is taken of the absorption 
of the primary and secondary beams inside the scat
terer, the diffraction intensity can be represented in 
the form 

A'+B'z 
J(y) = const· J( + 1) 

1+z' 

( 1- exp {- 2JL.Lcoseca}) ck 
2JL.costca 1+(z+y)' • (30) 

where y = 2( A Eo + Eo v / c )/r, L is the scatterer 
thickness, J.J.x is the absorption coefficient of the y 
quanta: 

fl• =fl.·+ f!n/(1 + x'), (31) 

J.J.e is the coefficient of electron absorption, and J.J.n is 
the coefficient of nuclear absorption at resonance. 

It is impossible to obtain an exact expression for 
I( y) in the general case. However, by approximating 
the function 

{ 2JLnL cosec a } 
1-exp - 1 +x' , 

by the method proposed in[ 12• 13l for the calculation of 
Mossbauer absorption spectra, we can readily obtain a 
fairly exact expression for I( y) in a wide range of 
variation of the effective scatterer thickness Leff 

2J.J.nL cosec a. According to[ 12 l 

( Lerr ) ~ K{Lerr)x(Lerd (32) 
1-exp - 1+x' ~ x'{Lerr)+x' • 

where 

K(Lerr) 
x{Lerr) = 1- e Lem''J,(Lerr/2) 

1; 

10 and I1 are the zeroth- and first-order Bessel func
tions of an imaginary argument. The use of the ap
proximation (32) and of the inequality J.J.c « J.J.n, which 
is usually satisfied in the experiments, yields 

f x'+B'z+A'+1 (34) 
l(y)= const· [1 +(z+y)'] [x'(Lerr)+z'] dx. 

From the experimental point of view it is conven
ient to measure the quantity W(y) = [I(y)- I(oo)]/I(oo), 
which takes the form 

x+1 A'+ 1-x'+B'y ( ) 
W(y)=-x- (x+if'+y' , 35 

where K = K( Leff) determined from formula (33). 
Thus, the coefficients in the formula for the differen
tial cross section can be determined directly from the 
Mossbauer diffraction spectrum. 

We note that W(O), calculated from formula (35), 
is exact, independently of the employed approximation 
(32) 

W(O) =(A'+ 1-x') /x(x + 1). (36) 

Consequently, the quantity A'= A/C can be deter-

mined accurately from the intensity of the diffraction 
at resonance. It is also interesting to note that at a 
certain critical scatterer thickness, when 

x'(Lerr) = .4' + 1, 

the Mossbauer spectrum represents the dispersion 
curve 

W(y)= B'y I [(x + 1)' + y']. 

(37) 

(38) 

This critical scatterer thickness does not depend on 
the contribution of the interference scattering (B'). 
According to (33) and (37), the larger the ratio of the 
intensity of the nuclear-resonance and Rayleigh scat
terings (A'), the larger this thickness. This interesting 
fact was observed in some experiments (see, for ex
ample, [1• 141), which serve by the same token as a con
vincing confirmation of the existence of interference 
between the Rayleigh and nuclear-resonance scatter
ings. 

We note in conclusion that when account is taken of 
electronic absorption, formulas (35), (37), and (38) do 
not change qualitatively, and in place of K( Leff) it is 
necessary to introduce some other quantity that de
pends on the electronic-absorption coefficient[ 12l. In 
addition, the use of the approximation (32) makes it 
possible to generalize the calculation to include the 
case when the emission and absorption lines have 
widths larger than the natural width r. 

1 G. V. Smirnov, V. V. Sklyarevski1, R. A. Voskan
yan, and A. N. Artem'ev, ZhETF Pis. Red. 9, 123 
(1969) (JETP Lett. 9, 70 (1969)]. 

2 V. N. Vo'ltovetski"l, I. P. Korsunskii, A. I. Novikov, 
and Yu. F. Pazhin, ibid. 11, 149 (1970) [11, 91 (1970)]. 

3 P. B. Moon, Proc. Roy. Soc,, 263, 1314 (1961). 
4 H. J. Lipkin, Phys. Rev., 123, 62 (1961). 
5 V. A. Belyakov and Yu. M. A1vazyan, ZhETF Pis. 

Red. 7, 477 (1968) (JETP Lett. 7, 368 (1968)]. 
6 A.M. Manas'ev and Yu. M. Kagan, Zh. Eksp. 

Teor. Fiz. 48, 327 (1965) (Sov. Phys.-JETP 21, 215 
(1965)]. 

7 A.M. Afanas'ev, Yu. M. Kagan, and I. P. Perstnev, 
ibid. 54, 1530 (1968) [27, 819 (1968)]. 

8 0. A. O'Connor and P. J. Black, Proc. Phys. Soc., 
83, 941 (1964). 

9 C. Tzara, J. Phys. Rad., 22, 303 (1961). 
10 V. v. Berestetski1, E. M. Lifshitz, and L. P. 

Pitaevski1, Relyativistskaya kvantovaya teoriya 
(Relativistic Quantum Theory), Part I, Nauka, 1968. 

11 1. I. Gurevich and L. v. Tarasov, Fizika neitronov 
nizkikh imergii (Physics of Low-Energy Neutrons), 
Nauka, 1965. 

12 G. A. Bykov and Pham Zyu Hien, JINR preprint 
R1231, Dubna, 1963. 

13 G. A. Bykov and Pham Zhu Hien, Zh. Eksp. Teor. 
Fiz. 43, 909 (1962) (Sov. Phys.-JETP 16, 646 (1963)]. 

Translated by J. G. Adashko 
238 


