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We calculate the heat transfer coefficient of a rough boundary between liquid helium and a solid. We 
show that when the wavelength of the phonon is of the order of the characteristic dimensions of the 
roughness, there is a unique spatial resonance. It follows from the results that the roughnesses can 
significantly alter both the magnitude of the heat-transfer coefficient and its temperature dependence. 

INTRODUCTION 

THE temperature jump on the boundary between a 
solid and Hell was discovered by Kapitza back in 
1941 [IJ. A theoretical explanation of the observed phe
nomenon was given by Khalatnikov[2 J. According to[ 2l, 
the thermal jump is due to the obstacles encountered 
by the phonons as they go from the liquid helium into 
the solid (and back), this being connected with the low 
impedance of the boundary. The heat flux Q from 
liquid helium into the solid can be written in the form [zJ 

fie,' oo (he, ) 1 

Q = --s n -k k'dks P(k, tr)cos trdcos 17. 
(2n) 2 , T 0 

(1) 

Here n is Planck's function, c 1 is the velocity of 
sound in helium, T is the temperature in energy units, 
and P(k, J) is the coefficient of penetration of a pho
non with momentum tik, incident from He on the 
separation boundary at an angle J, into the solid. From 
this we obtain for the heat-transfer coefficient of a 
plane boundary 

Q _ /';.Qo _ 2n'p,e,Fo 3 

0 - /';.T - 15/i'p,ez' T' 

where ~Qo is the resultant heat flux, ~ T is the tem
perature jump, c 2 is the sound velocity in the solid, 

(2) 

p 1 and p 2 are respectively the densities of the helium 
and of the solid, and F 0 R;:i 1 is a certain function of the 
elastic constants of the solid. 

The phenomenon in question is not a unique 
property of the superfluid liquid. As follows from 
Khalatnikov's theory, all that is required for the 
existence of a temperature jump is the presence of 
two media with a low impedance of the separation 
boundary. Thus, for example, an analogous effect was 
also observed for the boundary between a solid and 
He 3 [ 31. To be sure, in this case it is important to take 
into account, in the temperature region below 0.2°K, 
the collective excitations of the liquid He 3--the so
called zero sound. The heat-transfer coefficient has 
here, as before, a cubic dependence on the tempera
ture[41. 

Numerous experiments have shown that the tem
perature dependence of the heat-transfer coefficient 
deviates from cubic, and different authors have ob
tained different values even for the same materials. 
As to the absolute values of Q, the discrepancies be-

tween them are even larger. For example, Fairbank 
and Wilks[ 5 J obtained at 0.3 :s T :s 1°K a heat transfer 
coefficient Q R;:i 2.2 x 10-2 T 2 [W/cm2oK] for a Cu-Hell 

boundary. Kuan Wei-yen[ 6 J obtained Q R:i 4.8 
x 10-2 T 2 "6 in the temperature interval 0.57-2.075°K. 
Anderson, Connolly and Wheatley [7 1, who performed 
measurements from 0.08 to 0.9°K, obtained a heat
transfer coefficient that behaved like 8.3 x 10-2 T4 at 
0.6°K, and then changed to 2.8 x 10-2 T 3 "5 in the region 
of 0.09°K, whereas substitutio~ of all the constants in 
formula (2) yields for copper Q0 R;:i 2 x 10-3 T 3 • In addi
tion, all the known experiments (see, for example[ 6 • 8• 9 l) 
point to a weaker dependence of the heat-transfer co
efficient on the external pressure than that which fol
lows from formula (2). 

Interest in the problem of the temperature jump is 
due apparently not only to the interest in the study of 
the physics of helium, the solid state, and surfaces, but 
also to a number of applications of this phenomenon, 
for example the production of infralow temperatures. 
The causes of the discrepancies between some experi
mental data and others and the deviations from 
Khalatnikov's theory were considered in a number of 
papers. Thus, in[sJ the weak dependence of the tem
perature jump on the pressure is attributed to the 
existence at the surface of the solid of a denser layer 
of helium produced under the influence of the Van der 
Waals forces. The thickness of the denser layer is of 
the order of 15 A.. The latter is obviously not very 
sensitive to the action of external pressure. The in
creased value of the impedance of the boundary als<_> 
explains why experiments reveal larger values of Q 
than predicted by formula (2). According to the calcu
lations of raJ, allowance for the denser layer should 
lead to a steeper dependence of the heat-transfer co
efficient on the temperature ( Q ~ T4·2 ). 

Another reason for the discrepancy between theory 
and experiment is apparently, as indicated in [6\ the 
presence of an amorphous layer (the Beilby layer) on 
the surface of the solid. The strongly deformed Beilby 
layer has a thickness of the order of 10-6 em. On the 
other hand, the total thickness of the transition zone of 
the deformed metal is obviously of the order of 10-5 em. 

Finally, the real surface of a solid is not absolutely 
smooth. For helium phonons, the wavelength of which 
is A. R;:i 4 x 10-7 T- 1 em, even very well-finished sur-
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facesll are sufficiently rough. The role of the rough
ness has been noted in practically all experimental in
vestigations, starting with Kapitza's first work[1J. As 
to the theoretical estimates of the contribution of the 
roughness, they were made] insofar as is known, only 
in the papers by Little[lo,u • Thus, when the phonon 
wavelength A is much smaller than the roughness 
dimensions l, then the microscopic area is the true 
area S. The latter, for steep roughnesses, can differ 
greatly from the area 80 of the geometrical (smooth) 
surface. Thus, in this case allowance for the rough
ness leads to an increase of the heat-transfer coeffi
cient compared with formula (2) if in the latter, as 
usual, 6.Q0 is taken to mean the heat flux per unit of 
an absolutely smooth geometric surface. On the other 
hand, when A >> l, then obviously the effective area is 
the geometric one. In the general case Q = y(A)Q0 

(when A« l we have x(A) = S/80, and when A» l we 
have X(A) = 1). 

At intermediate temperatures, when the phonon 
wavelength is comparable with the dimensions of the 
roughnesses, it follows from Little's calculations[uJ 
that the heat transfer coefficient decreases (x(A) < 1 
when A ~ l). This rather unexpected result is a conse
quence of the assumption made by Little that the prin
cipal role in phonon scattering from a rough surface 
is played by the heights of the surfaces and not by 
their inclinations. In the calculation, the inclinations 
of the surface were in general assumed to be equal to 
zero, whereas the difference between the heat-transfer 
coefficient of a rough surface and a smooth one turned 
out in the final result of[ll to be of exactly the same 
order as the inclinations of the surface. 

In the present paper we have considered consistently 
the role of the roughnesses in the thermal resistance 
of the boundary. We show that the roughness can 
greatly change both the magnitude and the temperature 
of the heat-transfer coefficient, namely, the exponent 
can be both smaller and larger than 3. 

1. DIFFRACTION OF PHONONS BY AN UNEVEN 
SURFACE 

To calculate the penetration coefficient P( k, J) in 
the case of a rough surface, let us consider the prob
lem of the diffraction of a plane monochromatic sound 
wave exp[i(k · R - wt)] incident from liquid He on the 
boundary with the solid. The equation of the surface 
separating the helium (medium 1) from the solid 
(medium 2) is specified in the form z = ?;(r). We shall 
henceforth take ?;{r) to mean a certain random func
tion of two variables, r = {x, y }, and its statistical 
characteristics are assumed to be known. 

For simplicity we confine ourselves to an investiga
tion of only the longitudinal waves arising in a solid 
when phonons are incident from the liquid helium on 
the boundary. Allowance for the transverse waves 
leads to an inessential change of some numerical co
efficients and does not entail any fundamental difficul
ties, but the calculations become much more compli
cated and cumbersome. The potentials of the velocities 

I) At the highest, class-14 surface finish the roughness is- 10"6 em. 

in the first and second media will be denoted by 
-iwt · t cp 1(r, z)e (z > ?;) and cp 2(r, z)e-lw (z < !;). The 

potentials cp 1,2( r, z) satisfy the Helmholtz equations in 
media 1 and 2 and the boundary conditions on the sur
face that separates them: 

acp, - ii<p, = o 
aN aN • 

(3) 

where N is the normal to the surface z = ?;(r). The 
problem consists of determining the potential cp 2( r, z) 
in the second medium, under the condition that a wave 
with potential 'Pine = exp ( ik · R) is incident on the 
surface from the helium. 

We assume first that the wavelength of the sound 
greatly exceeds the characteristic height of the rough
ness. The latter can be taken to equal the variance 
a = ../( {; 2 ( r )) of the deviations of the random function 
!;(r) from the mean level ( ~(r)) = 0. Here and 
throughout ( ... ) denotes averaging over the ensemble 
of the realizations of !;(r). 

If (ka)2 « 1 and the angles of inclination of the 
surface to the median plane z =0 are sufficiently small 
( y 2 = ( I Vr ?;( r) 12) « 1), then the boundary conditions 
(3) can be transferred from the surface z = ~(r) to the 
median plane z = 0[12-151 by expanding cp 1 2(r, z) in 
powers of !; and using the relation ' 

(4) 

Confining ourselves in (3) to the quadratic terms in the 
small heights {; and inclinations j = Vr {;, we arrive 
at a system of effective boundary conditions for cp 1 
and cp 2 on the plane z = 0: 

a r 
az(cp,- cp,) = (iV) (cp,- cp,)- ~ih'(cp,- cp,) 

a ~· a• +OV)~ oz (cp,-cp,)--zaz;(cp,- cp,), (5) 

a ~· a' 
p,cp,- p,cp, = ~-az<p,cp,- p,cp,J + 2 ih'(p,cp,- p,cp,J. <B> 

It will be more convenient in what follows to change 
over to the Fourier representation of the potentials 
cp 1, 2( r, z) and of the random function ~ ( r): 

00 -ik(l)z 

·cpt(r, z ;;;> 0) = cpinc + cpref = ~~ d'x [6 (k.t- x) e ' 
-00 

ix(l)z * 
+ <1>1 (x) e ' I eix• • 

IT i (xr x(2) z) 
cp, (r, z ,;:;;0) = JJ d2x<l>2 (x) e - ' , 

-oo 
00 

~ (r) = ~~ d'~ (q) eiqr, 
-oo 

where K 0 • 21 = ../k2 - K2 ( Im K (1,2> > 0) k< 1•2> 

(7a) 

(7b) 

(7c) 

'-""",--:::.Z-:-::- 1,2 Z ' Z 
= ../k~, 2 - k1, and k 1 is the projection of the vector k 
on the plane z = 0. The coefficients <P 1,2( K) in (7a) 
and (7b) determine the amplitudes of the reflected and 
refracted plane waves, the projections of the wave 
vectors of which on the plane z = 0 are equal to K. 

The waves with K < k1 in medium 1 (reflected) and 

*Kr = K•r. 
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with K < k2 in medium 2 (refracted) are homogeneous 
plane waves and the normal components K~1 • 2 ' of their 
wave vectors are real. The opposite inequalities cor
respond to inhomogeneous waves with amplitudes that 
decrease exponentially away from the surface z = o, 
and which thus carry no energy away from the bounary-
these are surface waves. 

Substituting (7a)-(7c) in the boundary conditions (5) 
and (6), we obtain a system of integral equations for 
the amplitudes .P1,2 ( K): 

ID.(x) = V.(k)ll(x- k-'-)+iC.(x, k)[(x- k_c) 
(8) 

2 ~ ~ 

+i L, J J d'q~(x-q)A.1 (x,q)<D1 (q)+B.(x,k) J J d'q~(q)~(x-q-k-'-). 
The indices 01. and (3 assume here two values 1 and 2, 
and the following notation is used (for a 'i"- (3): 

A •• (x, q) = ( -i)"[p.x~'' q~•l + p1(k.'- xq) ]n-• (x), 

A.1(x, q) = (-1)"p1 [x~'l l'- k1' + xq]D-'(x), 

C.(x, k) = [- p1(k12 - xk-'-)+(-1) 1p,k~''x!'' ]D-'(x), 

B ( k) =- p,k~') (k,'- k,') [ k(z) +(-1)" zX~I)] 
" x, D(x)D(k) p, ' p ' 

D(x) = p.x~'l + p,x~'l. 

Finally, V 1(k) and V 2(k) denote the Fresnel coeffi
cients for reflection and refraction by a plane surface: 

V, (k) = [pzk~''- p,k!''JD-'(k), V,(k) = 2p,k~l D-'(k). (9) 

The solution of the system of integral equations (8) is, 
accurate to terms quadratic in {;, . ~ 
ID.(x) = V.(k)ll(x -k-'-)+ tG.(x, k)~(x- k-'-)-L, JS d'q~(x- q) · 

~ i!=l -~ (10) 

·1(q- k-'-)A.,(x, q)G,(q, k)+ B.(x, k) JS d'<Jb(q)-~(lt- q- k-'-), 

where 
• 

G.(x,k) = C.(x,k)+ L A.,(x,k)V1(k). 
I'= I 

2. HEAT FLOW THROUGH A ROUGH BOUNDARY 

Let us now calculate the average energy flux enter
ing into the solid. The energy through a unit area per
pendicular to the z axis per unit time is 

rop, { oq>.(r, z) • } 
p(r,z)v,(r,z)=TRe i oz CJl• (r,z) (11) 

(p-pressure, vz-normal component of sound-wave 
velocity in the solid, the bar denotes averaging over 
the time). This quantity, unlike in the case of a plane 
boundary, depends, generally speaking, on the coordi
nates r and z, i.e., on the position of the unit area. 
The total energy flowing per unit time through a plane 
parallel to the boundary is obtained from (11) by inte
grating with respect to d2 r and, naturally, does not 
depend on z. Changing over to the Fourier represen
tation in accordance with formula (7b), we obtain 
the following formula from (11) for the energy flux E I 
averaged over the plane {x, y }: 

(12) 

As expected, only homogeneous waves with K < k2 
contribute to the energy flux in the solid; the energy of 
each of these waves is proportional to the square of 
the amplitude .P2( K), so that formula (12) has a simple 
physical meaning. By normalizing El to the energy 
flux in the incident wave Einc = p 1 w~112 and averaging 
over the ensemble of realizations of the random sur
face ?;( r ), we obtain for the penetration coefficient 
P(k, J) the expression 

2 )' 00 

P(k, ~) = P•<tl lim (Sit Re ~\d'xx~''<l<l>,(x) I'>· (13) 
, p1kz Brae o ~ 

Substitution of .P2( K) from (10) in this formula results 
in an average, over the ensemble, of products of the 
type f(ql )f(q2 ). Assuming the random function ?;(r) 
to be spatially homogeneous (in the sense that all its 
statistical characteristics are independent of r ), we 
define the correlation function W(p) as follows: 

(~(r)~(r+ p)) = o-'W(p). (14) 

It is easy to verify that W(p) = W(-p) s 1, W(O) = 1, 
and W( I pI- oo)- 0. 

Further, from the definition (7c), as a direct con
sequence of statistical homogeneity, we obtain the 
following relations : 
<1(q}1(q')) = 6(q+q')o-'W(q), <f(q)~"(q')) = ll(q-q')cr'W(q), 

(15) 
where W( q) is the so-called "spatial spectrum" of 
the surface-the Fourier transform of the correlation 
function: 

- 1 00 

W(q) =-- ~~e-iq•W(p)d'p 
(2n)' 1;, · (16) 

Using the already noted properties of the correlation 
function, we can verify that \V( q) is an even, real, and 
nonnegative function of the two-dimensional vector q • 
Recognizing, finally, that for a two-dimensional o func
tion we have by definition 5(0) = S0 /( 2rr)2, we obtain 
ultimately from (13) 

P (k, ~) = p\1, Re {k~'' [ jV, (k) I' - 2cr2 Re v. • (k) 
Ptkz 

X § d'xW (k.L- x) [A21 (k, x) G1 (x, k) + A 02 (k, x) G, (x, k)] (17) 

+ 2a' Rev; (k) B, (k, k) J + a• § d'xx~' w (x- k.L) I G (x, k) 1'}. 
-oo 

Formula (17), in conjunction with (1), solves, in 
general form, the problem of the heat flux Q through 
a rough surface separating liquid helium from a solid, 
with low ( kof « 1 and gently sloping ( ·/ « 1) rough
nesses. For the actual calculation of the quadratures 
it is necessary to know the correlation function of the 
roughnesses, the explicit form of which can be deter
mined by the surface-finish method-grinding, electric 
polishing, etc. Under sufficiently general assumptions, 
the surface can be regarded as statistically isotropic, 
and the correlation function as Gaussian: 

W(p) = e-•'1", (18) 
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In this case has the meaning of the characteristic 
dimension (length) of the roughnesses, which turns out 
to be connected with the root-mean-squared height of 
the roughnesses a and their inclination y by the rela
tion y = 2a/Z. It should be noted that for a semiquanti
tative description of the influence of the roughnesses 
and the heat exchange between helium and a solid, it 
suffices to know only these two parameters, y and l. 
The explicit form of the correlation function is of 
little importance in this case and affects the values of 
constants of the order of unity, which enter in the final 
results. Such a stability of the final results against 
variations of the type of the function W(p) is due to the 
fact that the quantities of interest to us (the penetration 
coefficient P(k, J) and the heat flux Q) contain not the 
function W(p) itself, but integrals of this function 
(see (1) and (17)). On the other hand, specification of 
the correlation function in the form (18) makes it pos
sible to express the integrals contained in (7) in terms 
of tabulated functions. 

Using the smallness of the parameters c 1 /c2 « 1 
and p 1 /p 2 « 1 and omitting the rather cumbersome 
derivations, we present directly the result for the inte
gral of P(k, J) with respect to dJ, which enters in 
formula (1): • 

, 1 [h ( c, ) , ·s 2 [ 1 , ( kl ) ] F(k)==--- P(k,tt)costtdcostt=-3 1+--zv'll 2 , 
2 P• c, , o 

(19) 
where 

\jl(x) = 2{ xe-"' J e"dt+x'e-"'h[ Ko( ~') +K, (x~)] }. 
0 

and K0 and K1 are McDonald functions of orders 0 and 
1. F( k) is proportional to the probability, averaged 
over all the incidence angles J, of penetration, into 
the solid, of a phonon with momentum nk incident on 
the separation boundary from the liquid helium, As 
seen from (19), the increment to this probability due 
to the roughnesses on the surface is always positive 
and has a rather sharp maximum at kZ"" 2.5, (1/!max 
""4.5). In regions far from the maximum, the incre
ment to the penetration probability has the following 
asymptotic forms: 

\j)(x% 1) !'::! 6x', \jl(x~1) !'::! 1+1/2x' 

X= 1l2kl. (20) 
Averaging of kF(k) with the phonon distribution 

function over the wavelength, i.e., calculation of the 
integral with respect to dk in formula (1 ), leads to the 
following dependence of the heat flux on the tempera
ture: 

Q(T)IQ,(T)= 1 + '/2y'w(8), (21) 

where Q0( T) is the heat flux from the helium into the 
solid for an ideally smooth surface[21, 

Q0 (T) = n'p,c,FoT' I 30/i'p,c,', (22) 

and F 0 = % in the simplified model considered here 
(without allowance for the transverse waves in the 
solid). The temperature dependence of the additional 
heat flux connected with the scattering of the phonons 
by the roughnesses is given by the function 

240 ~ 
w(8)=--Jn (-=-) \j)(x)x'dx, (23) 

(2n8)' 0 8 

wf 

J.O 

Z.D 

!.0 

D.J !.D !,J Z.fl 8 

where the dimensionless temperature 8 = ZT/2llc 1 is 
introduced. A plot of w( ®) is shown in the figure. 

Thus, at a temperature ® "" 0.3, when the thermal
phonon wavelength A."" 2lic 1 /T is of the order of the 
linear dimensions l of the roughnesses, a unique 
spatial resonance takes place2>. At ® « 1, the addi
tional heat flux increases in proportion to the square 
of the temperature, w ( ® « 1) "" 113 ® 2, while in the 
region of high temperatures we have w(® » 1)"" 1 
+ 0.127/® 2. Recognizing that when y 2 « 1 the ratio 
of the area S of the rough surface to the area S0 of its 
projection on the plane z = 0 is 

_!_=(~)=(Y1+<vs)') ~ 1+t_ (24l 
So N, 2 

we can write the high-temperature asymptotic expres
sion for Q( T) in the form 

Q(T) = Qo(T)S I So. (25) 

At a small temperature difference t:. T between the 
liquid helium and the solid, the resultant heat flux is 
t:.Q = Qt:. T. From (21) we obtain for the heat-transfer 
coefficient Q 

Q I Qo = 1 + 1l2v'/(8), 

8 dw(8) 60 s~ e"i"x' (26) 
/(8)=w(8)+4ae= (2n)'®'o (e"i"-1)'\jl(x)dx. 

Here Q0 is the heat transfer coefficient of the smooth 
surface (2). As seen from the plot of the function 
f( ®) in the figure, the maximum difference between the 
thermal conductivity of a smooth surface and that of a 
rough one occurs, as before, at a temperature ® "" 0.3, 
corresponding to spatial resonance between the thermal 
phonons and the roughnesses. In the limiting cases of 
low and high temperatures we have 

/(8~ 1)1'::! 1698', /(8~1)1'::! 1+0.06358-'. (27) 

3. GENERALIZATION TO VERY ROUGH SURFACES 

As follows from the foregoing results, the reasons 
for the increase of the heat flux through a rough sur
face compared with a flat helium-solid boundary are 
different at high and at low temperatures ®. When 
® > 1 the increase of the heat flux is due to the in
crease of the effective area of the surface resulting 
from the roughnesses of the boundary. On the other 
hand, when ® :S 1, and the wavelength of the thermal 
phonons becomes comparable with the linear dimen
sion l of the roughnesses, the scattering of the phonons 
by the surface becomes nearly diffuse. This causes 

2lThe possibility of resonant scattering was first noted in [ 13 ], where 
the diffraction of radio waves by a statistically rough surface was con
sidered. 
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the phonons with sin J. > c 1 /c 2 , which make no contri
bution to the heat flux in the case of a smooth surface, 
owing to total internal reflection from the boundary, 
now to acquire a finite probability of becoming scat
tered by the roughnesses and carrying away energy 
from the surface into the interior of the solid. At still 
lower temperatures (® « 1) the phonon wavelength 
increases and the roughnesses of the surface play an 
ever decreasing role--the reflection and refraction of 
the phonons occur in the same manner as for a plane 
surface. 

The calculations in the preceding sections pertain, 
strictly speaking, only to the case of gently sloping 
roughnesses, with heights smaller than the thermal
phonon wavelengths. Although the latter limitation was 
used by us (in the expansion of the boundary conditions 
(3) and in the solution of the integral equation (8) for 
the Fourier amplitudes of the refracted waves), the 
results are actually independent of the height of the 
roughnesses, provided the latter are sufficiently gently 
sloping. Indeed, in the temperature region ® $ 1 (kl 
;:; 1), where the influence of the roughnesses is the 
strongest, the inequality (ka)2 « 1 is always satisfied, 
since/= (20'/l)2 « 1. At higher temperatures, when 
kl >> 1, scattering of the phonons by the surface obeys 
the laws of geometrical optics and the relative increase 
of the heat flux is completely independent of the tem
perature (and consequently of the ratio of the phonon 
wavelength to the height of the roughness) and is 
governed only by the effective area of the surface. 

We note that this result holds true for roughnesses 
of arbitrary slope (not necessarily gently sloping), 
provided the characteristic curvature radii a of the 
surface greatly exceed the phonon wavelength, i.e., 
in the temperature region defined by the inequality 
(ka)113 » 1. In this case, to calculate the field that 
penetrates into the second medium, we can use the 
geometrical-optics approximation-at each point of the 
surface the refraction and reflection occur as if by the 
plane tangent to the surface at the given point. 

If a plane wave Cflinc = exp ( ik · R) is incident on the 
surface from the helium, then we have for the field cp 2 

on the surface S 

cp,(r) = V,(k)e'"', iJcp,(r)/ iJN = -iV2 (k) [k,'- k12 +(Nk)'] 'i'e'"', 
rES, V,(k):::::: 2p,/pz. (28) 

From this we obtain for the energy flux from the sur
face into the solid 

E1 =~lim - 1-JJ dS Re { i iJcp, q>,'} = 
2 s,-.w So 8 iJN (29} 

2rop' 
= --' ReJJ dS'fk,'--'- k,' -(Nk)'. p.s. • 

Normalizing this quantity to the flux of the incident 
energy and integrating over the angle J, we obtain 
F = F oS/S0 • As a result we obtain formula (25), which 
thus is valid in the region of relatively high tempera
tures without limitations on the height and slopes of 
the roughnesses, for the total heat flux from the helium 
into the solid. 

With decreasing temperature, the wavelength of the 
thermal phonons becomes comparable with the linear 
dimensions of the roughnesses and the scattering be
comes more and more diffuse. However, whereas at 

kl"" 1 and y 2 « 1 the degree of diffuseness always 
remains small for small surface inclination angles, 
when y 2 2 1 and kl "" ka R~ 1 the degree of diffuseness 
can be arbitrarily large. Unfortunately at present we 
have not even a phenomenological theory of wave dif
fraction by an uneven surface with steep slopes and 
linear roughness dimensions comparable with the 
wavelength. It is only known from general considera
tion that in the limiting case of a very rough surface 
the radiation is scattered in accordance with Lam
bert's law (equal energies are scattered into equal 
solid angles in all directions). In this respect, such a 
roughness is equivalent to an absolutely black body-a 
phonon incident on its surface is reflected by the rough
ness in such a way that it loses completely the 
"memory" of its initial direction. Obviously, in this 
case not only the reflected radiation is isotropic, but 
also that penetrating into the solid, i.e., we can postu
late for the Fourier amplitudes of the penetrating field 
(compare with (10)) the following distribution: 

{ s ( p, )' 1 -- 2~ -- x<k, 
ICl>(x)l'= (2:n:)' p, :n:k,'' 

' 0 x>k,· 

Substituting this distribution in (13), we obtain 

P(k,'!'})=~~-k_, -, F=!:_(.::_)'. 
3 Pz k, COS'!'} 3 c, 

(30) 

(31) 

Thus, the thermal conductivity of an uneven surface 
at a temperature ® "" 0.3, corresponding to maximum 
diffuseness of the scattering, can exceed in the limiting 
case of a very rough surface the thermal conductivity 
of a plane separation boundary by a factor 2(c 2 /c 1 ) 2 

f':j 102 • Such a possibility can be realized, at least 
partially if not fully, in the case of steep roughnesses 
y 2 2; 1. The physical cause of the anomalously large 
thermal conductivity in this case is quite simple. In 
the case of an ideally smooth surface, the phonon inci
dent at an angle sinJ > c 1 /c 2 excites in the solid an 
inhomogeneous wave, the normal component of whose 
wave vector k~2 ) = k 2 ( 1 - k~22 sin2 J ) 112 is an imagi
nary quantity, so that such a wave does not carry en
ergy away from the surface. As follows from (9), all 
that changes with the angle J in the reflection coeffi
cient V 1(k) is the phase, while the modulus remains 
constant and equal to unity. But if the surface is rough, 
then such an inhomogeneous wave propagating along the 
boundary can become transformed, as it is scattered 
from the roughnesses, into a volume wave and carry 
away energy from the surface. This case is perfectly 
analogous to a phenomenon known in optics, whereby 
the surface wave produced on total internal reflection 
is scattered by inhomogeneities (see, for example,[ 16,). 

In the case of gently sloping roughnesses, such an 
effect is certainly small and therefore calculations 
performed as above by perturbation theory lead to an 
additional heat flux, which is small to the extent that 
the parameter y 2 is small. In the opposite limiting 
case of a very rough surface with y 2 ~ 1 at a tempera
ture ® f':j 0.3, one should actually expect no inhomo
geneous waves to occur, and there is a near-unity 
probability that diffuse scattering of the inhomogeneous 
wave and its transformation into a volume wave occur 
at distances on the order of the dimension of the rough-
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nesses (which at resonance is precisely equal to the 
wavelength of the surface phonon). The number of pho
nons transporting energy into the solid increases thus 
by an amount equal to the ratio of the solid angle 
sin J < c1/c2 to the solid angle of the entire hemis
phere, i.e., by a factor 2(c 2/c 1)2. 

We emphasize once more that such an anomalous 
increase of the thermal conductivity pertains only to 
the limiting case of completely diffuse scattering. We 
note, however, that the existence of a surface that 
satisfies the last requirement completely is impossible 
for the same reason that the existence of an absolutely 
black body is impossible. Thus the increase of the 
thermal conductivity of the boundary by a factor 
2(c2/c1)2 is the upper limit of the effect of rough
nesses under real conditions. 

4. DISCUSSION OF RESULTS 

We note that by using the perturbation method with
out any fundamental changes it would be possible, of 
course, to take into account the contribution of the 
transverse waves to the heat-transfer coefficient. The 
complexity of the calculations is then greatly in
creased3>. It is clear, however, that no fundamental 
differences can arise between the results obtained 
above and those obtained by solving the more general 
problem, for when account is taken of the transverse 
waves, the heat fluxes through the smooth and through 
the rough surfaces increase by equal degrees. A trans
verse wave appears in the solid in addition to the longi
tudinal wave investigated by us, and leads, roughly, to 
a doubling of the heat flux through the boundary. One 
can hope that the formula (26) obtained above, which 
takes into account the influence of the roughnesses on 
the thermal resistance of the boundary, remains valid 
also in the general case, accurate to insignificant 
changes of the explicit form of the function f( ® ). 

Particular notice should be taken of the role of the 
roughnesses in the transformation of the surface 
Rayleigh waves into volume waves, and to the ensuing 
increase of the heat flux. Calculations in(l?J show that 
even in the case of small roughnesses the damping of 
the Rayleigh waves by scattering from the roughnesses 
and by transformation into volume waves can be quite 
appreciable. This mechanism of transformation of 
Rayleigh waves, unlike the mechanism connected with 
the conduction electronsf18l, is not sensitive to the 
state of the metal--normal or superconducting. It is 
possible that the predominance of the first of the two 
mechanisms explains why a metal had the same thermal 
resistance in the normal and in the superconducting 
states in certain experiments (see, for examplef 6 l). 

Thus, allowance for the roughnesses of the boundary 
always leads to an increase of the heat-transfer coef
ficient compared with (2). As to the temperature de
pendence, it can be either weaker or stronger than 

3) As the first step towards solving this problem, one can use the re
sults of [ 14), where the scattering of a plane acoustic wave by the sur
face of a solid with two-dimensional roughnesses having generators per
pendicular to the incidence plane, was investigated in first-<lrder pertur
bation theory. 

cubic, depending on the location of the temperature in
terval in question relative to the maximum (see the 
figure). Thus, for l ~ 10-6 em one should expect the 
maximum at T ~ 0.1°K. It should be particularly em
phasized here that when speaking of roughnesses, it 
should be kept in mind that the surfaces can have many 
parameters, i.e., besides the large-scale roughnesses 
obtained during the surface finishing of the sample, 
there can exist also small-scale roughnesses due to 
the microstructure of the boundary. At a suitable slope, 
it may turn out that it is the latter that play the princi
pal role. 

We note also that, as follows from (31 ), the rough
nesses can also change the dependence of the heat
transfer coefficient on the pressure, compared with 
the dependence given by formula (2) (where F = Fo 
~ 1), since the speed of sound in liquid helium changes 
noticeably with changing external pressure. 

A more concrete comparison of the foregoing calcu
lations and the conclusions that follow from them with 
the available experimental data is made very difficult 
by a number of factors. First, there are at present no 
experiments in a sufficiently wide temperature inter
val, so that it is impossible to trace completely the 
change of the temperature dependence of the heat
transfer coefficient. Second, usually little is known of 
the surface state of the sample. Third, besides the 
roughnesses, other heat-transfer mechanisms, not ac
counted for by Khalatnikov's theory (and mentioned at 
the beginning of the paper) can make a noticeable con
tribution to the heat flux. All these mechanisms, like 
the boundary roughnesses, increase the heat-transfer 
coefficient. As to the temperature dependence of the 
latter, insofar as we know, only roughnesses can lead 
to a weaker dependence compared with that predicted 
by formula (2}. 

We note finally that when infralow temperatures are 
to be obtained, the presence of steep "resonant" 
roughnesses on the separation boundary should lead to 
a sharp decrease of the thermal resistance of the 
boundary. 

In conclusion, we consider it our pleasant duty to 
thank M. I. Kaganov and E. A. Kaner for valuable ad
vice and remarks made during the course of the work. 
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