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A discussion is given of the S-representation for a nonspherical scatterer which generalizes the 
usual method of phases for a spherically symmetric problem. It is shown that the behavior of the 
phases for a low energy of the incident particle is analogous to the spherically symmetric case­
they can be classified in terms of the azimuthal quantum number l; there are 2l + 1 phases 
Til~ El+ 112 • For a symmetric scatterer the partial waves and the phases are classified in terms of 
the representations df the symmetry group, the degeneracy is determined by the dimension of the 
representation. A formulation is given of the Hulthen and Schwinger variational principles, of per­
turbation theory, of the virial theorem, of the Neumann-Wigner theorem concerning the noninter­
section of the curves 71(E) belonging to a single representation of the symmetry group. A discus­
sion is given of the Levinson theorem which connects the behavior of the phases with the number of 
bound states. 

For the case when the scatterer can be represented as a superposition of n potentials of zero 
range the problem reduces to a purely algebraic one-to the inversion of a matrix of the n-th order. 
The cross section averaged over the directions of the incident wave is expressed in terms of the 
trace of the matrix in a form convenient for calculations. Simple examples and cases of resonance 
are considered. The possibilities are discussed of applying the method, in particular, to the problem 
of elastic scattering of electrons by molecules. 

INTRODUCTION 

WE consider the scattering of waves or particles in 
the case when the operator V characterizing the 
scatterer does not have spherical symmetry. More­
over, we assume that the operator V is self-adjoint, 
does not depend on the time and falls off sufficiently 
rapidly as the value of the radius -vector r increases. 
Then the stationary scattering process is described by 
the equation 

(V' + k'- V)'¥=0, (1) 

where k is the propagation vector for the incident 
particle. 

The scattering amplitude f( 11, n) is defined in the 
usual manner: 

eikr r 
'Y~eikvr+f(v,n)kT; n=-,:; {2) 

where 11 is the unit vector characterizing the direction 
of the incident wave. 

The effective cross sections-the differential cross 
section a(11, n), the total cross section a(11) and the 
total cross section a averaged over all the directions 
of the incident wave, are defined by the formulas 

cr(v,n)= :, lt(v,n)l, cr(v)= s dncr(v,n), cr= 4~ Java(v), {3) 

where the integration is carried out over all the direc­
tions of the unit vectors n and 11. 

The case when the scatterer is not spherically sym­
metric can be encountered in a wide variety of physical 
problems described by Eq. (1) such as the scattering of 
sound or of electromagnetic waves or, for example, the 
scattering of electrons by a molecule. In the latter 
case the energy of the electrons should be insufficient 

for the excitation of the electronic states of the mole­
cule, i.e., it must generally not exceed a value of 
several eV. But if we assume that the rate of rotation 
and oscillation of the molecule is considerably smaller 
than the velocity of the incident electrons, then, know­
ing the amplitude f( 11, n), we can easily calculate the 
probabilities of transitions between the rotational 
states of the molecule in a collision. 

An analogous calculation for the transition between 
vibrational states can be carried out if we know the 
scattering for the different configurations R of atoms 
in a molecule near the equilibrium position. In this 
case the operator V depends on R and we must know 
the amplitude f{ll, n; R). Thus, knowing the solution of 
the problem of elastic scattering, because of the large 
value of the ratio of the masses of the nuclei and the 
electrons we can also calculate the inelastic processes 
associated with the excitation of slow motions in the 
scatterer. 

It should be noted that the problem formulated above 
(1)-{2) ·is quite complicated even for the simplest 
axially symmetric case (of a diatomic molecule) when 
V is the operator for the potential energy V( r) which 
is so chosen that the variables are separable in the 
elliptic system of coordinates (cf., for example, the 
calculations of the collisions e + H2 [ 11 ). 

We consider this problem here by the method of 
eigenfunctions of the S-matrix which is a natural 
generalization of the method of partial waves for the 
scattering by a spherically symmetric scatterer. The 
S-representation was utilized earlier by a number of 
authors in different specific problems [2- 4 1. In connec­
tion with the problem concerning the elastic scattering 
by a nonspherical scatterer this method, as far as we 
know, has not been investigated previously. 
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2. THE METHOD OF PARTIAL WAVES 

The principal condition for the wave function w to 
be associated with the eigenfunction of the S-matrix is 
the requirement that the amplitude of the scattered 
wave should differ from the amplitude of the incident 
wave for all the directions n only by a certain factor 
whose modulus is equal to unity. This condition can be 
written in the form 

'1', ~ -.1- [A,(-n)e-"'-'"•-A,(n)e'''+<••]. (4) 
2zkr 

The totality of solutions of equation (1) for all pos­
sible values of k satisfying condition (4), forms (to­
gether with the bound state functions) a complete sys­
tem of functions. We shall call the functions AA ( n) the 
characteristic scattering amplitudes, while we shall 
call 1JA(k) (which are real for the self-conjugate oper­
ator V) the proper phases. It can be easily seen that 
the shift of the origin of coordinates by a certain vector 
a does not change the proper phases, while all the 
amplitudes are multiplied by the phase factor exp ( ikna). 

We shall prove that the characteristic amplitudes 
A and AJJ., belonging to dirferent proper phases are 
orthogonal. For this we utilize the equation 

In this case we have degeneracy corresponding to the 
spherical symmetry of the problem-the phases depend 
only on the angular momentum ( l ), but not on its 
component (m). 

In the general case, if the scatterer possesses some 
additional symmetry group (the most obvious ones are 
the different types of point groups-axial, cubic etc. 
symmetries), all the partial waves can be classified in 
terms of the representations of these groups; the de­
generacy will be determined by the existence of repre­
sentations of dimension greater than unity, i.e., it will 
always occur in the case of a noncommutative sym­
metry group. 

We now express the usual scattering amplitude 
f( 11, n) in terms of the characteristic amplitudes 
AA(n) and the proper phases 1JA(k). For this we write 
the asymptotic formula (2) in the form 

4n [ ( 2· 'l'~hlr .S(v+n)e-"'- .S(v-n)- 4~/(v,n))e"']· (9) 

The expansion of the function w in terms of the partial 
waves 'it.>.. is determined by the form of the coefficient 
in front of the convergent wave. We have 

.S(v+n)= _L,A:(v)A,(-n), (10) 
J dr ('I'; V''l',- '1', V''l';) = J dr ['I'; V'l',- '1', ( V'l' .) •]. (5) whence we obtain 

For the volume of integration we choose a sphere of 
radius R, we transform the left hand side into a sur­
face integral, we let R approach infinity and we utilize 
formula (4) for the asymptotic form of the functions Wf..., 
and .Yw The right hand side of the equation will tend 
to zero as a result of the self-adjoint nature of V, and 
we obtain 

(6) 

We note that the proper phases are determined by 
equation (4) up to an additive term which is a multiple 
of 7T, and, thus, the condition of orthogonality has been 
demonstrated. If degeneracy is present and several 
partial waves WA. and characteristic amplitudes AA 
correspond to a single value of 11.>.., then they are de­
termined up to a linear transformation among them, 
and we can carry out orthogonalization by the usual 
methods as a result of which we obtain orthogonal 
amplitudes defined up to a unitary transformation in 
the subspace of a given proper phase. 

We can choose the normalizing factor for the func­
tions wA in such a manner that the characteristic 
amplitudes A.>.. would satisfy the normalization condi­
tion. After this the totality of the functions A.>.. ( n) for 
each value of k forms a complete system of ortho­
normal functions on the surface of a unit sphere. 

In the simplest case when the scatterer is spher­
ically-symmetric, the partial waves WA. are given by 
the wave functions 

(7) 

the characteristic amplitudes AA are given by the 
spherical harmonics Yzm, while the proper phases are 
given by the usual phases 1JZ determined by the 
asymptotic form of the radial equation 

[ :;, +k'-l(l~i) V(r)] u, =0, u, ~sin[ kr-z; +tJ•]. (8) 

'I'= 4n L, e'••A: (v) '1',, 

• 
4n ~ . 

f(v, n) = 2i l...J (e''"• -1)A: (v)A,(n). 

Finally, for the total and for the averaged effective 
cross sections we obtain 

(4n)' ~ 4n 
a(v) = k' l...J IA,(v) I' sin' tJ•, a= "k' L, sin' fl•· 

(11) 

(12) 

(13) 

All these formulas go over into the usual formulas of 
the method of phases for a spherically symmetric case. 

3. BEHAVIOR OF THE PHASES AT LOW ENERGIES 

The index .A by means of which we number the 
proper phases for the spherically symmetric case can 
be replaced by two indices: l and m which have a 
simple physical meaning. The question arises, how 
should we classify the partial waves in the general 
case? One of the possible methods is the consideration 
of their behavior at low energies, i.e., for k - 0. In 
this case the wavelength of the particle will be large 
compared to the dimensions of the scatterer and the 
results must in some sense approach the results of the 
spherically symmetric problem. In particular, we 
shall see that the proper phases can be classified by 
the azimuthal ~uantum number l, so that for k - 0 the 
phase 1JA ~ k 2l+\ while the corresponding characteristic 
amplitude tends to some spherical harmonic Yz( n). 

In order to obtain this result we shall investigate to 
what limit does the ~artial wave wA tend as k - 0 if 
the phase is 1JA ~ k2 • 1 • For large r where the opera­
tor V can be neglected the solution will be a general 
solution of the Laplace equation: 

~ I 

'I'~ L, L, (c,mr'+d,mr-'-')Y,m(n}. (14) 
l=O m=-1 

For small but nonzero values of k this same solution 
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can be written outside the scatterer in the form of a 
general solution of the Helmholz equation {V 2 + k 2 )>lt 
= 0: 

- f 

'I'~ L L [C,mRz'(kr)+D,mR.'(kr)]Y,m(n), {15) 
1=0 m=-l 

where Rf and Ri are the regular and the irregular 
radial functions of the solutions of the Helmholz equa­
tion 

R,' = lf...!!:_l, .. •h(kr), R.' = l/ n '-•-v,(kr), (16) f 2kr f 2kr 

which behave for small values of r like 
(kr)' ·~ (kr)_,_, (17) 

R,' ~ (2l+1)!! I R, (2l-1)!1' 

while for large values of r have the form 

R,' ~sin( kr- ~1'1 ). R.' ~cos( kr- ~). (18) 

In order for All. to be a characteristic function of 
the S-matrix it is necessary and sufficient in accord­
ance with (4) (taking into account the parity ( -1) l of 
the spherical harmonics) that the ratio 

{19) 

should not depend on l and m. From a comparison of 
formulas (14), (15), {17), and {18) it can be seen that if 
tg 1J ~ k2lo+\ then in the limit k - 0 we can obtain 
nonzero values of the coefficients cz, dz only for l = lo. 
Also in this case Cz 0m ~ k-l and Dzom ~ kl•1 • For all 

the other spherical harmonics czm = 0 for l > lo, and 
dzm = 0 for l < l 0 • Thus, in the limit k - 0 the wave 
function >ItA. must have the form 

" I GO l 

'l'~~E Ec,mr'Y,m(n)+L Ld,mr-•-•Y,m(n). {20) 
1=0 m=-l b:fo m=-1 

For l = lo the ratio y = dzaffi I c lorn must not depend 
on m. Then we have 

tg11 ~ yk"•+• + O(k"•+'). {21) 

In other words, if the phase is proportional to k 2lo•t, 
then for the harmonics with l < l 0 as k - 0 it tends to 
zero too rapidly, so that in the limit only the regular 
solution is left. But if l > l 0 , then for k - 0 the phase 
will vanish too slowly and in the limit only the irregu­
lar solution remains. And only for l = lo will both 
solutions be preserved in the limit. 

The inverse assertion is also valid: if there exists 
a solution of the eq•1ation 

(22) 

which has the asymptotic form {20), then there exists 
a partial wave with the proper phase 1J ~ k2lo+1, which 
in the limit k- 0 goes over into this solution. 

We shall show that such solutions indeed exist, and 
for each value of l there exist, in the general case, 
2Z + 1 such solutions. In order to show this we con­
sider the solutions of equation (22) satisfying the inte­
gral equation 

r' 1 Ja, V(r') ,.. ( ') <I>,m = Y,m(n)-- r -1--,-j""'m r . 
4n r-r {23) 

If the operator V falls off sufficiently rapidly, then the 
iteration process converges and the unique solution of 

this equation can be easily constructed. It is evident 
that the solution has the asymptotic form 

• I 

II>,.,~ r' Y,,m,(n)+ L L g:;:•,-•-• Y,m(n). (24) 

We can now sequentially construct from these func­
tions the functions cp lomo which have the asymptotic 
form (20 ). It is evident that <}) 00 itself satisfies the 
condition (20) for lo = 0. Further we must exclude from 
the summation over l in (24) the lowest terms. We ob­
tain 

cp.o = II>oo, 
Cootm 

Cf>tm = <Dtm - -,-0 (!)oo, • • • • g,. (25) 

Here in order to eliminate the l~ lowest terms in the 
expansion (24) each time we have zg functions <})lm 
with l < l 0 • Thus, we obtain the set of functions cp lm 
with the asymptotic form 

lo-1 l liD l 

lj)10m1 ~ E Ep:::"'r'Y,m(n)+r'•Y,,m,(n)+ L, E q~'r'-'Y,m(n), 
1=0 m ... -1 1=10 m=-l ( 2 6} 

However, these functions do not yet satisfy all the re­
quirements since the coefficients for the regular and 
the irregular solutions are not proportional for l = l 0 • 

If we now construct the linear combination .. 
'I' lo = E hl~': cpr0m (27) 

and require such proportionality, then we will have 
constructed the desired functions. In this case the 
problem reduces to the diagonalization of a matrix of 
order 2l 0 + 1 of the coefficients qf~o. 

It is not difficult to prove that this matrix is 
Hermitean. The 2l + 1 eigenvalues of this matrix 
YloJ1. ( J.L = - lo, -lo + 1, ... , l o) determine the 2l 0 + 1 

phases 1/loJ.L ~ k 2lo+l and 2l 0 + 1 characteristic scatter­
ing amplitudes which in the limit k - 0 will tend to 
the given linear combinations of spherical harmonics: 

'• 
A,., = E h:.':, Y,,m (n) (28) 

'11'11:::::=-l, 

-combinations which are determined by the explicit 
form of the potential V. (Of course, one can not in the 
general case assign to the index J.L some simple mean­
ing, such as, for example, the component of the angular 
momentum.) 

Thus, the assertion formulated above concerning the 
classification of the phases has been proved. This 
classification enables one to make an estimate as to 
what number of phases make an appreciable contribu­
tion to the cross section in slow collisions. If the ef­
fective radius of the scatterer is R, then, evidently, 
the quantity L = kR determines the maximum angular 
momentum which makes an appreciable contribution to 
the cross section. Then the phases 1/l with l < L will 
differ appreciably from zero, while for l > L the 
phases will be small and their contribution to the 
scattering will fall off rapidly with increasing l. If 
kR 0 « 1, then the scattering with l = 0 will predomi­
nate and the problem reduces to finding the solution of 
equation (22) with the asymptotic form: 

(29) 
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or of the equivalent integral equation 

i J , V(r') 
l¥,=1-- dr I 'I'¥,. 4:n: r-r 

The scattering length 

a=~ JdrV(r)'P',(r) 
4:n: 

(30) 

(31) 

determines the limit to which the effective cross sec­
tion tends 

(32) 

and in the limit the scattering becomes isotropic. 
We do not consider here special cases when one of 

the coefficients Yl vanishes. Then the corresponding 
phase will be proportional to k 2l+ 3 or to higher powers 
of k. The resonance case is also a special case when 
the corresponding bound state reaches the limit of the 
continuous spectrum. In this case the integral equation 
(23) does not have a solution since there exists a solu­
tion of the corresponding homogeneous equation. Then 
tg 71 l tends to zero slower than k 2l+1 • 

4. THE VARIATIONAL PRINCIPLE 

We formulate the variational principles which en­
able one to determine the partial waves and the proper 
phases by direct methods. For the sake of simplicity 
we restrict ourselves to the case when the operator V 
has the form of a local potential energy operator V( r ). 
We seek the solution of equation (1) with the boundary 
condition (4) in the form 

m -J d 1 ( 1)sin(klr-r1 1+1J•) (33 ) 
..-.- rx. r klr-rll . 

Investigating the asymptotic behavior of the right hand 
side of this equation under the assumption that V( r) 
falls off sufficiently rapidly with increasing r it is 
easy to show that condition (4) is satisfied automatically 
for any x, while the scattering amplitude has the form 

A,(n) =-J dr1 e"••' x.(r1 ). 
(34) 

Substituting (32) into (1) we obtain the equation which 
must be satisfied by the function x: 

4:n: J cos(klr-r1 1) 
--x.(r)+ dr1 x.(r1 ) 

V(r) lr-r'l 

J sin(klr- r1 1) 
= -ctg1J dr1 ( 1 ) • lr-rll X. r • (35) 

Using this integral equation and regarding -cot71z as 
eigenvalues we arrive at a functional the stationary 
values of which will be the quantities: 

d 
- [ctg1J•l = -zi; 

d =4:n:Jdr lx.(r} I'+ JJdrdrlx.•(r) cos~klr--:rl> X•(rl). 
V(r) r-r 

JJ 
sin(klr-r1 1) 1 

fB= drdr1 x.•(r) . lr-r1 l X•(r ). (36) 

The function X.h which in accordance with formula (33) 
can be called the distribution function for the sources 
for the partial wave must evidently vanish everywhere 
where V(r) vanishes, while for decreasing V(r) it 
must vanish sufficiently rapidly so that the first inte­
gral in the numerator of formula (36) would converge. 

The denominator of this formula fJa can be repre­
sented by utilizing (34) in the form 

JJJ drdr1 dnx.•(r)e' .. 1•-"lx.(r1)= J dniA.(n) I', (37) 

from which it can be seen that the denominator is a 
nonnegative quantity. If the denominator were positive 
definite then the given variational principle would have 
allowed us in variational calculations to approach the 
exact values of the phases from one side, since the set 
of values of -cot 71.h is bounded from above or from 
below respectively for a negative or a positive V( r ). 
However, in actual fact it is easy to construct such 
functions x ( r) for the distribution of sources which 
quench all the scattered waves and the amplitude A(n) 
vanishes for all values of n. For this it is sufficient 
(and necessary) that the Fourier transform of the func­
tion x(r) would vanish on the surface of a sphere of 
radius k in momentum space. Thus, the operator with 
the kernel sin(k I r - r 1 I )/I r - r' I is similar to a pro­
jection operator and accordingly in the general case we 
do not obtain a definite variational principle. However, 
in some special cases, as we shall see below, the posi­
tive definiteness of the denominator ."/3 and, correspond­
ingly, the definiteness of the variational principle (36) 
can be guaranteed. 

In the spherically symmetric case the variational 
principle (36) goes over into the well known variational 
principle of Schwinger[sJ. It is interesting that the 
potential V( r) which characterizes the scatterer ap­
pears only in the single integral in the numerator, and 
this, in principle, facilitates direct calculations for 
different potentials V in accordance with this method. 

We now formulate a variational principle, analogous 
to the variational principle of Hulthen for the spher­
ically symmetric case. In order to do this we consider 
the functional 

l (cD., <I>,)= J dr cD," ( V' + k'- V) cD., (38) 

in which the asymptotic form of the functions <1'1 1 and 
<1'1 2 is determined by formula (4) with the normalized 
amplitudes A1(n) and A2(n) and the phases 711 and 712 
respectively, and these amplitudes and phases need not 
coincide with the corresponding quantities for the exact 
partial waves. 

We represent the functions <1'1 1 and <1'1 2 in the form 
<1'11 = W'.h + ~<1'11 and <1'12 = W'.h + ~<1'12, where W'.h is the 
exact partial wave with the amplitude A.h(n) and the 
phase 71.h• and we substitute these expressions into the 
functional (38). After standard transformations we ob­
tain 

' J = ksin(1J.-1J,) J dnA."(n)A,(n) + J dril<D3(V' + k'- V)llcD,. 

(39) 

If we now assume that ~<1'1 1 and ~<1'1 2 are small and set 
71 1 - 71.h = I'> 171, we then arrive at Hulthen 's variational 
principle 

(40) 

and the phase can be obtained as the stationary value 
of the functional 

[1]] = 1J• + k/(<1>,, «D.). (41) 

From the variational principle thus obtained it is 
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easy to obtain all those consequences which are ob­
tained from Hulthen's variational principle for the 
spherically symmetric case. For example, by varying 
the scale we obtain the formulation of the virial 
theorem (sJ, :·= Jar'l',"(2V+rVV)'l' •. (42) 

If to the potential V we add the small perturbation V 1, 

then from the variational principle (41) the formula 
immediately follows for the correction to the phase 1JA. 
in the first approximation of perturbation theory: 

a<•>11, = -k J dr 'l',"V,'¥,. (43) 

But this formula is valid only in the absence of de­
generacy. But if in the unperturbed problem degeneracy 
is present, then it is necessary to diagonalize the 
matrix V 1 in the subspace of the degenerate functions 
\IT,\ in exactly the same way as in the stationary per­
turbation theory for energy levels. 

From this result the Neumann-Wigner theorem for 
the phases follows immediately: if when k is varied 
two phases 1J 1 and 1J 2 coincide, then this requires that 
another subsidiary condition be satisfied, and a small 
perturbation of a sufficiently general form will lead to 
the fact that the crossing will be replaced by a pseudo­
crossing. The crossing is possible and the subsidiary 
conditions are satisfied automatically if the partial 
waves and phases belong to different representations 
of the symmetry group of the scatterer, for example 
the phases 1Jl for a spherically symmetric problem. 

5. SCATTERING BY A SYSTEM OF POTENTIALS OF 
ZERO RANGE 

We consider the case when the scatterer can be 
regarded as a set of potentials of zero range situated 
at the points rj(j = 1, 2, ... n). Then at these points 
the wave function must satisfy the boundary conditions 

'l',...,.=s;(-
1

- 1-
1
-a;)+O(Ir-r;l), (44) 

' r-r1 

where aj are parameters characterizing the depth of 
each potential well. If a > 0, then in an isolated well 
there exists a bound state with the energy -a 2/2, 
(1/1 ~ e-arjr); if a< 0, then there is no bound state. 
As aj - - oo the well disappears, Sj - 0 and 1/1 in the 
limit has no singularity at the point rj. Outside the 
points rj the wave function must evidently in our case 
satisfy the equation for a free particle. 

We seek the solution of the scattering problem 
(positive energy) for the partial wave >It in the form 

E• sin(klr-r;I+TJ) 
'f = C;. • 

. lr-r;l 
J=1 

(45) 

We require that for this function the boundary condi­
tions (44) should be satisfied. We obtain the system of 
homogeneous equations: 

f, sin(klr,-r;I+TJ) 
£ ... /J I +c,(kcos1J+a,sin1J)=O, i=1,2, ... ,n. 
i..p< r,-r;j (46) 

If we denote 

N _ sinkr,; ij __ _ 

rii 
N.,=k,(47) 

then the proper phases can be obtained from the secu­
lar equation 

detiMu + ctg 1JN•;I= 0. (48) 

Thus, we have only n proper phases which differ from 
zero (this assertion is valid for any separable potential 

n 
V= ~lcpj)(cpjl). 

j= 1 

The matrix N is positive 1>. From this it follows that 
sin 1JZ can not vanish fork"' 0. Consequently each 
phase 7JA. can vary only in the interval 0 < 1Jl < rr (in 
contrast, for example, to the spherically symmetric 
case, which can not be realized by a choice of a finite 
number of potentials q_f zero range). This assertion is 
closely related to Levinson's theorem( 7 J according to 
which the total value of all the phases for k = 0 is 
equal to srr, where s is the number of bound states of 
the system. Thus, we obtain in our case a pairwise 
correspondence between n partial phases and n possi­
ble bound states. If a bound state actually exists, then 
the corresponding phase at zero is equal to rr, but if it 
is absent, i.e., if for given parameters of the problem 
(aj, qj) the pole of the Green's function is situated on 
a nonphysical sheet of the complex energy surface, then 
the corresponding phase at zero is equal to zero. 

We now transform the linear problem (46)- (48) in 
such a manner as to obtain a compact expression for 
the averaged total effective cross section a. We have 

MC = -NC ctg 1], N-Y·MN-V>C' = LC' = -C' ctg'l], (49) 

(1 + L')-'C' =C'sin2 1J, N'I•(M + iN)-'N(M- iN)-'N'I•C' =C' sin'~; 

4:rt 
cr=k'Sp[N(M+iN)-'N(M-iN)-']. (50) 

Formula (50) is a generalization of the simple reso­
nance formula 

a= 4:rt/ (k' +a') (N= k, M=a) 

for a single well of zero range. 

(51) 

Thus, the problem reduces to the inversion of one 
complex symmetric matrix P of order n: 

P=M+iN, 
eikrii 

Pt;=-­
rij 

(i*j), P" = a;+ik, 

to the multiplication of the matrixes N,P-r, N, and 
( p-I)* and to the evaluation of a trace. 

(52) 

If k is large, so that all the krij » 1 and kaj » 1, 
then all the phases are close to rr/ 2 so that cot 17 ~ k-1 • 

Then in formula (50) we can set N ~ ki and N » M 
and obtain the first two terms of the expansion in in­
verse powers 

4:rt ( 1 ) 4:rt [ ~ L(k) ] cr=k' N-k'SpM'+ ... =k' .l....l (k'+a.')-'+k'+ ... , 

' (53) 
where L(k) is the oscillating part of the quantity 
Sp M2 • 

Thus, in the limit, after averaging over a certain 

!)The quadratic form ~NijCiCj is analogous to the denominator 91 
in formula (36). It is sufficiently obvious that by varying the intensities 
of the sources Ci at the points ri, we can not guarantee the elimination 
(due to interference) of the scattered wave in all directions n, and, thus, 
the positive definiteness in this particular case does indeed hold. 
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FIG. I. The dependence of sin2 1);>._ on k for the S, P, D and F partial 
waves; ex= 0.2. All the phases oscillate near rr/2. For the S-phase fork= 
3.5 one can see the effect of "replusion by zero". 

interval Ak ~ rij we obtain an apparently independent 
scattering by all the n centers. However, in this case 
just those properties of our model potentials are mani­
fested which make it differ from the smooth potentials 
V( r ), in particular, the tendency of all the phases to 
approach rr/2. 

If we consider the scattering of an electron by a 
molecule, then the simplest and most natural approxi­
mation will be the replacement of each atom in the 
molecule by a potential of zero range. In such a case 
the energy of the electron must not be too low, since 
the approximation does not take into account polariza­
tion forces, and must not be too large, since we are 
not taking into account the electronic excitation of the 
molecule (a typical range is from several tenth's of 
eV to several eV). In carrying out systematic calcula­
tions one can doubtless propose recipes for determin­
ing aj (the simplest choice is aj = aj\ where aj is 
the scattering length for the corresponding isolated 
atom) taking into account the nature of the binding, its 
length, its surrounding etc. 

The approximation of zero range potentials is widely 
utilized for the scattering of neutrons by nuclei in 
molecules or in crystals (cf., also[ 8' 9 l). But in this 
case the scattering amplitude is simply a superposi­
tion of the amplitudes for the scattering by each 
nucleus. In this case the scattering cross section is 
considerably smaller than the dimensions of the mole­
cule and one can neglect multiple scattering. In our 
case such an approximation is not allowable, and within 
the framework of the given model multiple scattering 
is taken into account exactly. 

6. EXAMPLE 

In those cases when the scatterer-a system of 
potentials of zero range-possesses high symmetry, 
the coefficients Cj of the solution of the system (46) 
can be obtained immediately from the symmetry prop­
erties. Thus, for example, for two identical wells of 
short range we have the solutions S( +1, +1) and 
P( +1, -1). For eight identical wells, situated at the 
vertices of a cube, we have one monopole solution S of 
the type ( +1, +1, +1, +1, +1, +1, +1, +1 ), three dipole 
solutions P of the type (+1, +1, +1, +1, -1, -1, -1, -1) 
three quadrupole solutions D of the type 
(+1, +1, -1, -1, -1, -1, +1, +1), and one octopole solu­
tion F of the type (+1, -1, +1, -1, +1, -1, +1, -1). 
(The numbering of the vertices of the cube is given 
below in Fig. 2). Denoting the distance between nearest 
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FIG. 2. The dependence on k of the total averaged scattering cross 
section. On the right hand side is given the method of numbering the 
scatterers. It is noted, as to which partial waves do the resonance maxi­
ma belong. 

wells by R and measuring the cross section in units of 
R 2 , and k and a in units of R-\ we obtain without any 
intermediate calculations the averaged cross section 
for two wells (cf., [lol): 

a= 4n { [ 1 + (a+ c~s k) '] _, + [ 1 + ( a- ~os k) '] _,} (54) 
k 2 k + Sill k k - Sill k 

and for a cubic configuration 
4n 

a=~· 
k' 

. { [ 1 + ( a+3 cos k + (3/{2) cos k liz+ ( 1/yS) cos k l'S) '] _, 
k+3 sink+ (3/l'2) sink "ji2 + ( 1/l'3) sink y3 (monopole) 

+ 3 [ 1 +( a+cosk-(1/iZ)coskl'Z-(1/"jiS)coskl'ff)']-' (dipole) 
k +sink- (1/l'2) sink l'2- (1/"ji3) sink l'3 

+ 3 [ 1 + a- cos k- (1/{z")cos kl'Z + (1/l'S)cos k"ji3 ']-' 
k- sink- (1/12)sin kl'2 + (1/"ji3)sin k y3 (quadrupole) 

+ [ 1 + ( a-3 cos k + (3/l'Z)cos kl'Z- (1/"jiS)cos k l'S)'] _,} octopole) 
k- 3sink + (3/l'2)sin kl'2- (1/"ji3)sin k y3 

(55) 

where the square brackets indicate the contributions of 
the corresponding partial waves. Resonance peaks 
arise if the numerator within the curved brackets 
vanishes for a certain k, while the value of the de­
nominator for the same value of k is small. Then the 
corresponding phase is equal to rr/2 and the contribu­
tion of the given partial wave is at a maximum. Par­
ticularly narrow resonances are obtained for higher 
multipoles for small k, since for k - 0 the denomina­
tors are proportional to k 2Z+\ so that if the resonance 
is situated at k ~ k 0 , then the width of the maximum is 
given by Ak ~ k~Z+r, just as for the spherically sym­
metric case[ 111 • 

The presence of trigonometric functions in the 
formulas leads to an oscillation in the cross section 
associated with diffraction effects, when the wave 
length is by an integral number of times smaller than 
the distance between the wells. Figure 2 gives the 
results of calculations by formula (55) for the value 
a = 0.2. In Fig. 1 the contributions of the different 
partial waves are singled out. 

7. CONCLUSION 

We thus see that the method of partial waves for a 
nonspherical scatterer has many properties which are 
analogous to the spherically symmetric case. Its main 
advantage consists of the fact that the asymmetry 
associated with the existence of a plane incident wave 
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is here taken into account at the very last stage (and 
in the evaluation of a this asymmetry does not appear 
at all). This enables us, in particular, to take into ac­
count in the most natural manner the symmetry of the 
scatterer. 

Of course, the calculation of partial waves for a 
specific potential V(r) is a sufficiently complicated 
problem, but this complexity is an internal feature of 
the problem itself, and is not a defect of the method. 
The calculation of partial waves resembles the calcu­
lation of energy levels for bound states, so that in 
utilizing it a certain kind of symmetry appears in 
considering bound states (negative energy) and scatter­
ing (positive energy). The existence of variational 
principles which enable one to calculate the phases and 
the partial waves by direct methods also demonstrates 
this symmetry. 

In analogy with the spherically symmetric case, 
there is every reason to assume that in slow collisions 
(the wave length is greater than or comparable to the 
dimensions of the scatterer) the method of partial 
waves is the most convenient one for the investigation 
and the calculation of scattering by nonspherical sys­
tems. 

In conclusion we thank G. F. Drukarev and L. D. 
Faddeev for discussing this work and for valuable 
comments. 
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