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The difference between the energies of the nonmagnetic and ferromagnetic states of a metal is calcu­
lated in the Hartree-Fock approximation by using the one-electron functions obtained by using the 
spherical cellular method of Wigner and Seitz. For V, Fe, and Ni the ferromagnetic state was found 
to be favored. For Nb, Ru, and Pd both energies are essentially the same. 

IT is well-known that the fundamental difficulty in ob­
taining a quantitative criterion for ferromagnetism in 
band theory is associated with the need to take correla­
tion effects into consideration, i.e., a result beyond the 
scope of the Hartree- Fock (HF) approximation. How­
ever, the results in the HF approximation apparently 
remain valid if the metal turns out to be nonmag­
netic[!] in this approximation. The question remains 
open if the metal turns out to be magnetic in the HF 
approximation. In the present article three elements 
of the iron group, V, Fe, and Ni, are considered in the 
HF approximation, and also the triplet Nb, Ru, and Pd 
standing under them. 

The calculations were carried out on the basis of 
the energy bands and eigenfunctions obtained by using 
the self-consistent Hartree method in the spherical 
Wigner-Seitz approximationYl The elements V, Fe, 
and Ni satisfy the condition necessary for ferromag­
netism. For metals of the Pd group the energies of 
the ferromagnetic and nonmagnetic states are essen­
tially the same. In order to exclude V or Nb it is ap­
parently necessary to go beyond the framework of the 
Hartree-Fock approximation. The energy difference 
between the magnetic and nonmagnetic states for Fe 
and Ni exceeds the Curie temperature by more than an 
order of magnitude, and obviously does not have any 
relation to it since the state of the metals above the 
Curie temperature is not nonmagnetic but paramag­
netic. 

1. GENERAL EXPRESSION FOR THE ENERGY OF A 
CRYSTAL 

We give here a general expression for the energy of 
the electronic system of a crystal associated with dif­
ferent values of the average magnetic moment 1-L be­
longing to one of its atoms. 

The state with a given value of 1-L is stable if it is 
energetically more favorable compared to the other 
states. Thus, the problem reduces to a computation of 
the curve 

(1.1) 
where E(IJ.) and E(O) denote the crystal's energy in 
the magnetic and nonmagnetic states, respectively. 

For the nonrelativistic case, in the HF approxima­
tion the energy of the electronic system in atomic units 
of energy ( 1 atomic unit of energy = me4/n2 = 27.2 eV) 
is given by[ 3l 

E HF = .L/ s '¥: ( - ! + U) '¥, dr + .E- s '¥;" (- : + U) '¥, dr 

+~ JJp(r)p(r') drdr' _ _!_ Jf IP+(rir') l'+lr-(r!r') I' drdr', 
2 !r-r'l 2 !r-r'l (1.2) 

Here the ~Pi ( r) are the spatial parts of the one­
electron functions, ~± denote sums over the electron 
states with spin + or -, respectively, U( r) denotes 
the potential of the nucleus, and 

P±(r !r')""" L±'¥; (r') 'l',(r), p(r) = P+ (r !r) + P- (r ir). 

• 
Let us represent (1.2) in symbolic form ( Eex de-

notes the last term in (1.2)): 

EHF = EH('l'HF) + E ex ('l'Hp). 

Now it is easy to estimate the error introduced into 
(1.2) by replacing the spatial parts of the Hartree­
Fock one-electron functions if~HF by the Hartree func­
tions if!H. Since the functions if~HF minimize EHF, 
and the functions if~H minimize EH, then 

EH('l'H)- EH('l'HF) < 0, 

EHp('l'H) -EHp('l' HF)= E H('l'H) - EH('l'Hp) + Eex ('I' a)- E ex ('l'HF) >0. 

Therefore 

0 < EHp('l'H)- EHF('l'HF) < Eex ('l'H)- Eex (':I'HF), 

i.e., the error in EHF is smaller than the error intro­
duced into Eex in this connection. Calculations by 
V. G. Podval'nyi (private communication) show that 
if~HF does not differ markedly from if~H, so that the 
error in Eex is small in comparison with Eex· In 
what follows we shall use if~H. 

The energy EH( 1J.) changes relatively little upon a 
change of 1.1., but since EH » Eex formula (1 .1) leads 
to the evaluation of a small difference between large 
quantities .1> In order to by-pass this difficulty we ap­
ply Koopmans' theorem (see, for example,[4 l), having 
modified it in an appropriate way: the change of 
EH(IJ.) associated with the transfer of a portion dN of 
the electrons from the level EF ( 1J.) to the level EF( 1-L) 
is equal to dN( Eic - Ey). 

Then the difference between the Hartree energies is 
given by 

• 
EH(!l)-EH(O)= J[EFo+(!l)-EFo-(!')]Ndll. (1.3) 

0 

1lThe Coulomb interaction energy of the electrons Dint-+ oo as R-+ oo 

since the number N of electrons interacting with a given electron is pro­
portional to the volume,= R 3 , but the interaction energy Uint N/R = R2• 

However, this term is cancelled by the interaction of the electrons with 
the nuclei and of the nuclei among themselves. In the spherical approxi­
mation this cancellation is exact. However, here the intracellular part of 
the Coulomb interaction energy of the electrons is large. 
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Table I 

E;o(f') E:;,o(f') 6Epo(f') + 
E:;,f' (f') 6Epf'(f') 

f' EFf' (f') 

0 -0.1054 -0.1054 0 
z -0.1407 -0.2361 +0.0954 
3 -0.1090 -0.2542 +0.1444 

In the symbol E~ ( J1) the argument J1 reflects the 

dependence of EF oK the state with respect to J1 for 
the given bands E(Jl), and the subscript J1 reflects the 
dependence on the occupation of the very same bands 
E ( J1). The direct calculation by Pod val 'nyi for Fe 
showed that the difference Ep - Ep essentially does 

J1 J1 
not depend on the subscript J1 (see Table I; the values 
of E} are in atomic units of energy). 

Thus, instead of (1.3) we obtain 

• 
EH(f.t)-EH(O) ~ J [E"+(f.t)-EFo-(f.t)]Ndf.t. 

0 

In other words, 

EH(f.t) - EH(O) ~ EJ (f.t) - EJ (0), (1.4) 

where 

and the Ei are the Hartree eigenvalues calculated for 
the nonmagnetic ( J1 = 0) state. Since Eex changes 
markedly upon a change of the occupation, then the 
small relative error in it associated with the replace­
ment of ifJH(Jl) by 1/JH(O) is unimportant. 

2. PRACTICAL CALCULATION OF THE ENERGY 

One can characterize the eigenfunctions of the elec­
trons in a crystal by the values of the quasimomentum 
k and by a band index v which takes a finite number 
of values. Changing to an infinite crystal and referring 
the energy to a single cell, we obtain 

EHF(f.t)- EHp(O) ~ EH{(fl)- EH{(O), Em(= EHF+ + EHF-, 

E± =~ I E",~_.!_lar \dr'IP+(rlr')l', (2.1) 
HF ~ ± wk 2 .1 • 1 r- r' 1 

v Ekv<Ep w oo 

where w is the volume of the cell, Wk = ( 211 )3/ w 
= 47Tk6/ 3 is the volume of the first Brillouin zone, 

' ± 

are the electron densities, where the functions 1/Jkv are 
assumed to already be normalized in the cell w. The 
limiting energies E~ are determined from the condi­
tions 

~ \' ~=1±[1. 
.<::J ~ + w, 2 

v Ekv<E'[i 

(2.2) 

Since expression (2.1) now no longer leads to small 
differences between large quantities in (1.1 ), then in 
the expressions for E' and P± one can retain only the 
terms pertaining to unfilled bands : the remaining terms 
give practically no contribution to (1.1 ). The intercellu­
lar part of the exchange energy in (2 .1) (i.e., the case 
when rand r' lie in different cells) can be estimated, 
for example, as indicated inr 5 l, For the 3d-band of Fe 

-0.10'54 -0,1054 0 
-0,1454 -0.2411 +0.0957 
-0.1070 -0.2506 +0.1435 

it amounts to not more than 6% of the intracellular 
part. In fact, Wohlfarth has conjectured that the corre­
lation effects strongly decrease the intracellular part 
and thereby primarily promote the intercellular part. 

However, apparently the actual situation is just the 
opposite.rsJ We shall not go into a detailed discussion 
of this question here since it falls outside the scope of 
the HF approximation in which our calculations are 
being done. In what follows we shall confine our atten­
tion to the intracellular part of the exchange energy in 
(2.1) 

E~ = _ _!:,_JJ IP±(rlr') l'drdr', 
2 •• lr-r'l 

(2.3) 

In the spherical approximation the only direction in 
the cell which is singled out is the direction of k. 
Therefore, each eigenfunction corresponds to a definite 
value m for the component of the electron's angular 
momentum along k, and since there is no preferred 
direction of rotation, then degeneracy exists with re­
spect to the sign of m. In particular, in the spherical 
approximation the d-band which we are interested in 
splits up into three sub-bands (instead of five in the 
actual lattice) corresponding to m = 0, ± 1, ± 2. For 
k = 0 they all merge into a single point (instead of 
three sub-bands merging into one point and the other 
two sub-bands merging into a different point, which 
occurs in a lattice having cubic symmetry). Thus, one 
can denote the eigenfunctions 1/Jkv by 1/Jkm (since we 
are only interested in the d-band) and represent them 
in the form 

'¥tm (r) = .E i'A•ImiiRE,(r) :_ Y,~ (r'), 
1;;;.1m1 l'4n 

where E = Ek 1m 1 and Y~~ (r 0
) are the spherical 

harmonics whose polar angle is measured from k. The 
factor iz, as it turns out, makes it possible to assume 
the coefficients Ak: 1 m ll to be real for real REz( r ). 

It is obvious that Ak 1 m IZ and Ek 1 m 1 depend on 
the magnitude of the vector k and on the number m. 
In our calculations the functions R ( r) and Y zm are 
normalized according to the conditions 

(r 0 denotes the radius of the cell in units of the Bohr 
radius). Then from the normalization condition on 1/Jkm 
it follows !] I Ak 1m ll 12 = 1. After integrating over the 

l 
solid angle dk0 , in virtue of the spherical symmetry 
of the problem only the terms with identical values of 
l in 1/Jb(r') and 1/Jkm(r) give a nonvanishing contri­
bution-tO P±( r I r') so that we obtain 

P±(rlr') = .E J ~::.~ A:lmi1RE,(r')RE1(r)P1(r'r"). (2.4) 
m,l;;;.lm! ± 

where Pz is the unnormalized Legendre polynomial. If 
one sets r = r' in (2.4) then, taking into consideration 
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that Pz(1) = 1, we obtain the natural expression for the 
change density: 

~ s 3k'dk ' 
P±(r) = £...J 4:nk, A>imlzR,,'(r). 

m,l~lml ±. 0 

In order to take the degeneracy with respect to the 
sign of m into account, we introduce the coefficient 

m=O 
m=~:o· 

Then instead of (2.4) we finally obtain 

(I ') ~ • P("'") f 3k'dkA, , (2 5) P± r r = £...J um z r r 4nk:' >lmlzR,,(r )R.,,(r). • 
l,m;;>O :::b 

Let us expand the product PzPz' in the expression for 
IP±(r I r') 12 in terms of Legendre polynomials:[7l 

P,(cos 8)P,,(cos 8) = £ (K1~1~0)'PL(cos8); 
L=ll-l'] 

L+l+l'- even LO here the Kzoz'o are the coefficients for the vector ad-

dition of angular momenta. In particular, the most 
important (Coulomb) coefficient for L = 0 is 

(K?8z'o) 2 = Ozz' /(21 + 1). Still keeping in mind the ex­
pansion of 1/ I r - r' I in terms of Legendre polynomi­
als, instead of expression (2.3) we obtain 

k~m kf;m 

E~x =- ~ 6m6m' ~ ~ 3:•:k A~mz ~ 3k~''!"' Ak·m·z· 
m, m•:;;;,a l;;;.m o o o o 

l';;;.m• 
f r~ r 

X f 2L + 1 (KM!·o)2 ~REI (r) RE'l' (r) rdr ~ REI (r') RE'l' (r') r'• ( ~) L dr'. 

0 0 (2.6) 

According tot 2l the 4s band in the Fe group and the 
5s band in the Pd group are filled. Therefore we shall 
not consider the interaction of these bands with the 
d-bands, but we shall confine our attention to an inves­
tigation of the interaction only inside the d-band. In the 
calculation of the energy bands, terms with 0 :::: l :::: 7 
were taken into account; however, the calculation of 
the energy was carried out taking only l = 1, 2, and 3 
into account. As will be seen, the remaining terms are 
small for the d-band. 

The next appreciable simplification of (2.6) is 
achieved by neglecting the dependence of REz(r) on 
the electron's energy in the d-band. From Fig. 1 it is 
clear that for l = 1, 3 the energy dependence of 
REz( r) is weak (the two graphs for a given l corre­
spond to the beginning and end of the energy band), but 
for l = 2 the energy dependence is rather important. 
This is natural since the width of the d-band is exactly 
determined by the energy dependence for l = 2. In our 
calculations, however, for all three values l = 1, 2, 
and 3 the functions REz(r) were taken for an average 
value of the energy in the d-band. 

This approximation was carried out for Fe and V 
where only the main terms corresponding to l = l' = 2 
and L = 0 were taken into consideration in the calcula­
tions. Taking the energy dependence of REz( r) into 
account with the aid of an interpolation formula led to 
a change A.Eex which was smaller than 5% of its initial 
value. It is clear that a displacement of the function 
R El ( r) to the edges of the band can now lead to an ap­
preciable change A.E, which one must keep in mind in 

FIG. 1. The functions R(r). Values ofr are given in units of r0 , and 
ofR in units of(l/r0 ) 312 . The scale fori= 3 is 2.5 times larger than for 
l = 1, 2. 

E, at. en. un. 

-fl,l t;(J) 

-[J.Z 
EF(O) 

Ei(J) 

-8,3 

z,o 2,418 
kr0 

FIG. 2. Graph of the Functions E(kr0 ) for Fe. 

FIG. 3. Qualitative Dependence of b.N/b.E on E. ;/~ 
connection with more accurate calculations. If we as­
sume that REz ( r) does not depend on the energy, then 
(2.6) takes the form 

E;,. =- EN,±(f.L)N,.±(f.L)III', (2.7) 
II• 

where 

~ r ~ 

I,~.== J R,(r)Rz'(r)rdr J R,(r')Rz·(r')r" (-} Ldr'. 
o 0 r 

We present the values of the coefficients: 

Iu = 1 · .,!Iu' -f-..!.._· ~Iu' 
3 5 3 ' 

1 2 1 3 
I,=-· -I,'+-· -In' 3 5 7 5 • 

1 9 z 1 4 I.,=-· -I.,+- ·-I.,' 5 21 9 7 • 

1 0 1 2 z 1 18 I,.= 1 ·-I., +-=- · -I22 +-·-I,.' 
5 ::>7 935' 

1 9 1 1 4 3 1 10 I,=-· -I,+-· -I.,+- ·-I,' 
3 35 7 15 11 21 • 

1 0 1 4 z 1 18 • 1 100 I.,= 1· -I, +-·-I, +-·-I, +-·-I,' 
7 5 21 9 77 13 231 . 

3. RESULTS OF THE CALCULATIONS 

According to the results of article[ 2l the 3-d bands 
have the shape shown in Fig. 2. The structure of the 
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FIG. 4. Dependence of Akml on kr0 for the following cases: a-m= 
0, b-m =±I, and e-m= ±2. 

sub-bands for the remaining metals V, Ni, Nb, Ru, 
and Pd is qualitatively the same. It is clear that the 
4s band in the Fe group and the 5s band in the Pd 
group are always filled so that the number of d-elec­
trons is equal to 3 for V and Nb, it is equal to 6 for 
Fe and Ru, equal to 8 for Ni and Pd, and equal to 9 
for Cu, and the maximum possible magnetic moments 
per atom are equal, respectively, to 3 = 3 - 0, 4 = 5 
- 1, 2 = 5- 3, and 1 =5-4 Bohr magnetons. 

This band structure leads to an energy dependence 
for the density of electron states which is qualitatively 
described by the picture shown in Fig. 3, and which is 
the same for all of the metals under consideration. The 
infinite discontinuities correspond to complete occupa­
tion of the sub-bands with m = ±2, ±1, 0, respectively. 
This is associated with the fact that the curve Em(k) 
has a maximum near the boundary of the corresponding 
sub-band. In the real bands, i.e., corresponding to the 
true crystal lattice, the curve smoothes out, and the 
density of states vanishes at the boundaries of the d­
band. This property may substantially change our re­
sults, especially the saturation value of the magnetic 
moment which is determined in the neighborhood of the 
band boundary. On the other hand, this apparently does 
not touch upon the most interesting question concerning 
the pseudo-magnetism of V, since for nonmagnetic V 
the Fermi surface occurs far away from the band 
boundary. Although the d-band is being considered and 
therefore, for k = 0, only the terms with l = 2, 
Ao 1 m 1 2 = 1 for all m enter into the eigenfunctions, 
this is not so for k '-" 0, and for the sub-band m = 0 
with large values of k the terms with l = 0, 1 give the 
major contribution, that is, the d-states go over into 
s- and p-states. The terms with l = 2 (see Fig. 4) 
always give the major contribution for the values 
m=±1,±2. 

Table II 

~IN,+ N,+ 

0 0.1020 2.7840 0.0857 0.1020 2.7840 0.0857 5.9434 
I 0,1622 3.2075 0.0951 0.0679 2.3376 0,0731 5.9434 
2 0.2000 3.661(3 0.0979 0.0527 1.8727 0.0600 5,9446 
3 0.2466 4.1075 0.1005 0.0367 1.4100 0.0449 5.9462 
4 0.4822 4.2650 0.1177 0.0211 0.9474 0.0278 5.8612 

Table III 

LlEex (Fe) 

f' 
1~0,!,2,3 1~2 

3 -0.3454 -0.3331 
3.5 -0,3901 -0.3606 
4 -0.3914 -0.3395 

Table IV 

Element IJ. AE,. LlEex /J.E 

v I +0.0122 -o.0274 -o.OI52 
2 +o.o5o5 -o .1105 -o.o5oo 
3 +0.1225 -o.2419 -o.ll94 

Fe I +o.OI86 -o.0240 -o.0054 
2 +o.o585 -o.l408 -o.0823 
3 +0.1129 -0,3331 -0.2202 
4 +o.2156 -o.3395 -o.l239 

Ni 0,5 +0.0010 -o.OI79 -0.0169 
1,0 +o.o059 -o.0320 -o.0261 
1,5 +0.0258 +0.0065 +o.0323 
2,0 +o.o58o +0.0864 +o.l444 

Nb I +0.0146 -Q,OI84 -0.0038 
2 +o.o5gg -o.0740 -o.0141 
3 +o.l462 -Q,I427 -o,0065 

Ru I +o.o267 -O,Q223 +0.0044 
2 +o.I004 -0.0354 +o.OI50 
3 +o.l928 -0.1828 +o.OIOO 
4 +o.3442 -0.1285 +0.2157 

Pd 0,4 +o.ooo3 -0.0077 -0.0074 
0,8 +0.0038 -0,0041 -0.0003 
1,0 +o.OI03 +0.0125 +0.0228 
1,4 +o.0410 +0.0539 +o.0949 
2,0 +0.0951 +0,1438 +o.2389 

The coefficients Akml lead to the effective numbers 
Nf of electrons for Fe cited in Table II. The differ­
ence between the values of N and 6 corresponds to the 
contributions from l = 0 and l 2: 4. 

The total widths of the d-bands are given by the 
following: 

Element: 
Width: 

v 
0,3259 

Fe Ni 
0.3392 0,2894 

Nb 
0,3515 

Ru Pd 
0,4457 0.3576 

The exchange integrals (see Eq. (2.6) for Fe are 
given by 

/uo In" h·i Ius []JJ~ [134. 1?.2° h.22 
0,2184 0.1364 0.0383 0.0361 0,1477 0.1203 0.4102 0,1871 

I'n• [,.}- r,.• [,.} f31JO ["'' I .. • ha' 
0,1157 0.0407 0.0271 0.0202 0,2318 0.1806 0.1480 0.1254 

The values obtained for I22 are cited below: 

Element: 
I,.: 

v 
0.0714 

Fe 
0.0993 

Ni 
0,1136 

Nb Ru Pd 
0,0535 0.0708 0.0723 

It is clear that by virtue of the smallness of the 
number of electrons for l '-" 2 and by virtue of the 
insignificant nature of the exchange integrals connect­
ing the states l = 0, 1, 3 with the states l = 2, one 
can restrict attention to l = 2. In particular, the data 
cited in Table III was obtained for Fe. 
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The results of calculations taking into account only 
states with l = 2 are cited in Table IV. 

On account of the transition of d-states into s- and 
p-states near the band boundaries, the effective num­
ber of electrons N; associated with the transition from 
JJ. = 3 to JJ. = 4 increases slightly, which leads to a 
loss in energy. Therefore, the saturation value of the 
magnetic moment for Fe is found to be JJ. ""' 3 (the 
experimental value is JJ. "" 2.2). This difference may 
be associated, for example, with the spherical approxi­
mation. For Ni one obtains JJ. "=' 0.8 instead of the 
experimental value JJ. "=' 0.6, and Cu turns out to be 
nonmagnetic in general. 
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