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Acoustic flows arising in the propagation of first and second sound in a superfluid liquid are consid
ered with an accuracy to the second approximation. 

THE propagation of a sound wave in an absorbing med
ium is always accompanied by constant flows, inasmuch, 
along with the energy losses, the sound wave loses part 
of its momentum and, as a consequence of the law of 
momentum conservation, this loss is compensated by the 
appearance of a unidirectional movement of the med
ium-acoustic flow. 

In the consideration of acoustic flow, the equations of 
hydrodynamics are usually solved in the second approxi
mation, taking the equations of linear acoustics as the 
first approximation. ll,2J 

As a basis of further discussion, we introduce the set 
of equations proposed by Khalatnikov: 13 J 

op/ot+divj=O, 

a;,+ an,. = _!_ {TJ ( av., + av"" _ ~ lJ,. av.,)} 
ot ax. ax. ax. OX; 3 ax, 

a 
+~{!;,div(j-pv.)+sadivv.}, (1) 

OX; 

v, + V (IJ. + v/1 2) = V {6. div (j- pv.) + ;, divv.}, 
T{s + div(psv. + xVT /T)} = sa[div(j- pv.)+ sz(divv,)' 

1 ( av., av"" 2 av., )' x +26,div(j-pv.)divv.+- --+----6,.-- +-(VT)', 
2 ax. OX; 3 ox, T 

where Vn and v s are the velocities of the normal and 
superfluid components, respectively, j is the current 
density of the liquid, nik the momentum flux tensor' 
71 the coefficient of "first" viscosity, E 1, E 2, E 3 the 
coefficients of "second" viscosity, K the thermal con
ductivity, p the density, and T the temperature of the 
liquid. 

For a solution of the set (1), we use the method of 
successive approximations. The solution of the set (1) 
in first approximation was found in13J. It has the form 

v" =A, cos(wt- k,z)exp(-a,z), 

v,. =A, cos (rot- k,z)exp (-a,z), 
(2) 

where k1 and k2 are respectively equal to w/ c1 and w/ c2, 
A1 and & are the corresponding velocities of these 
waves, «l1 and a2 the absorption coefficients: 

w' { 4 } w' { 4T)p, p, } a,=-2 , - 3 TJ+s• , a,=-2 , -3-+-(6,-2p6,+p'6,) 
pc, pc, p. p. 

(3) 
The values of the quantities A1 and A2 depend on the 
method of sound excitation. For simplicity, we have 
assumed the thermal expansion coefficient ~ = 0 every
where below ( seelll); then, for sound excited by a piston 
executing vibrations in a direction perpendicular to its 
plane (first sound), 

v. = v,, A,= v,, A, = 0. (4) 

In the case in which sound is excited from a surface 
with a periodically changing temperature (second sound) 

v. = -(p,/p.)v,, A,=O, A,=-T's{c,. (4') 

The time average of (2) is zero, which means that, in 
first approximation, there are no acoustic currents in 
the superfluid liquid. 

In second approximation, time-independent terms ap
pear in the expressions for the velocities. We obtain a 
set of equations for these quantities in the usual fashion 
(see, for example, 12l), leaving the terms in (1) of second 
order of smallness and averaging the resultant equations 
in time (the smallness of the acoustic and flow Reynolds 
numbers Rea= v1A./v, Re = ud/v) is assumed here. The 
resultant sets of equations will differ slightly for first 
and second sound. 

For first sound, we obtain 

div (v,,) = 0, div (v,.) = 0, "l)~(v,.) - V (p,) = F, 

rot (v,.) = 0, V (p,) = poSo V (T,), 
(5) 

where (v2s) and (v2n) are the time-constant flow veloci
ties in the second approximation, the index 0 or 1 de
notes the zeroth or first approximation of the corre
sponding quantities. 

For flow velocities arising in the propagation of 
second sound, we obtain the following set of equations: 

div (v,.) = 0, div (v,.) = 0, rot (v,.) = 0, 

7JMv,.)- V(p,)= -(I), V(T,) = (1)/p.s,. (6) 

Both sets of equations are valid for the assumption 

a£~1. (7) 

where L is the maximum dimension of the region in 
which the currents are observed (for example, the length 
of the tank); thus, this condition denotes small sound 
absorption over the wavelength. 

The condition for radiation of a plane wave: 

(kr,)' ;il> 1, (8) 

where r1 is the characteristic dimension of the radiator. 
Further, 

(9) 

It is also assumed that the product of second- order 
quantities by the dissipation coefficients or the thermal 
conductivity has a higher order of smallness. 

As an example, we now consider currents that arise 
in the propagation of plane sound beam produced by a 
circular radiator of radius r 1 in a cylindrical pipe of 
radius ro, the ends of which are closed by films that are 
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sound-transparent. We shall be interested in the flow in 
the central part of the pipe, neglecting the effects of its 
ends; we shall also assume that the radius of the beam 
is equal to the radius of the radiator (the vibrational 
velocity outside the beam is equal to zero). 

Let us consider the propagation of first sound in the 
pipe. We must solve the system (5) with boundary condi
tions that require the vanishing of the tangential com
ponents of normal flow. We introduce a cylindrical set 
of coordinates with the z axis directed along the axis of 
the pipe. This boundary condition means that 

v,.,(ro) = 00 (10) 

In addition, the condition of conservation of mass over 
the cross section of the pipe must be satisfied: 

J (p.(v,.)+ p,(v2,))rdr = 00 (11) 
0 

We now consider the current in the central part of the 
pipe and neglect the change in the quantities of interest 
to us along the z axis. We take the curl of the third 
equation of the set (5). After integration of this equa
tion, use of the boundary conditions (10), the condition 
of the finiteness of the velocity for r = 0 and the match
ing of the solution and its derivative at the point r = r 1 , 

we determine four of the five integration constants for 
the quantity Unz = (v2nz>· Here it must be taken into 
account that the quantity F in the system (5) has a dis
continuity and is equal to 

F = { a,poA.'/2 = F, + F,, 0 :s:;; r < r,, 
0, r1 <r=s:;;r0, (12) 

F, = a 1po.A 1'/2, F, = a 1p0,A,'/2o 

We determine the last integration constant from the 
following considerations. It is evident that the quantity 
(v2s) can only be a constant in order to satisfy the 
corresponding equations of the system (5), and for Ps 
= 0 (i.e., above the A point) (v2s) ;= 0 and F2 = 0. Using 
this circumstance and the condition (11), we determine 
the missing constant in the expression for unz· Further, 
from the condition (11) we determine the quantity (v2s) 
= const below the A point; we get 

(v,.,) = F2r12 
( 1 - ~} = a,A.'r,2 

( 1 _ ~} 
0 

Po• 2ro 2 2ro 

However, this value of (v2sz> does not vanish for Po= 0 
and the solution of the set (5) will not be identical with 
the solution determining the acoustic current in an 

ordinary liquid for Ps = 0. l 21 It is evident that (v2s) 
can only be equal to zero. 

Thus we have, finally, 

(v,.,) = (v,.,) = (v,.,) = 0, 

j Fr 2 
[ 1 ( x' } ( y' } ] u., = ~ 2 1-if - 1-2- (1- x') -ln y , 

Fr' [( y'} ] ---;- 1-2 (1-x')+lnx , 

(13) 

x = T /To, y = r./ Too 

It can be shown that for propagation of second sound 
in the pipe, (v2nr> = (v2sr> = 0 and V(p2) = 0. The solu
tion for the velocity (v2nz> is then found by simple inte
gration of the fourth equation of the set (6); with account 
of the boundary conditions it has the form 

l-<1>-'-( r...,.--T.'_,_) + _<I>T_,' ln ~ 

< )- 4TJ 2TJ To ' 
Vzn:c - (Jl 2 

~ln.!:... 
21J To ' 

0 :s:;; T < T,. 

The velocity (v2sz> is found from the condition (11): 

p, <l>T.' ( 2 T 12 } (v,.,)=--4 , To --2 o 

p. ro 1J 

The quantity cJ> in (14) and (15) is equal to 

{ 
- ~ p,p,,A,' 

<ll= 2 P•• • 
0, 

O=s:;;T<T., 

We note that in this case, when the radius of the 
source in equal to the radius of the pipe, we get 

(v,.,) = Ill (r - T.') /4TJ, 

i.e., the Poiseuille solution results. 

(14) 

(15) 
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