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In the case of intense recombination in a dense plasma of complicated chemical composition, the reso
nant reaction of excitation transfer from the low-lying level of one element to the high-lying levels of 
another element, and also of ionization in transfer of the excitation, lead to an appreciable change in 
the character of the nonequilibrium population of the levels of the first element. 

1. THE difficulties involved in the analysis of relaxa
tion of a low-temperature dense plasma are due not only 
to the large number of characteristics of the state of 
the plasma (the populations of the discrete levels of the 
atoms and ions, the parameters of the distribution of 
the free electrons, the density of the radiation at differ
ent frequencies) and the nonlinearity of the kinetic equa
tions, but also to the lack of sufficient information con
cerning the cross sections of a number of important 
elementary acts. In theoretical estimates of the prob
abilities of nonradiative transitions one frequently uses 
such strong simplifying assumptions that it is not clear 
beforehand whether even the orders of magnitude of the 
results are correct; at the same time there is practi
cally no reliable procedure for their experimental de
termination. This is connected, in particular, with the 
fact that to measure the collision probabilities it is ad
vantageous to use a plasma with a large free-electron 
density. In such a plasma, the populations of the excited 
levels assume equilibrium values within short time in
tervals, in accordance with a law governed by the alge
braic equations of the "stationary sink" [ll J 

dN, I: _ - = K,..N,. + C, = 0, 
dt 

y = 2,3 •... ,n; 

on the other hand, the populationsu of the stationary 
sink follow in a rather unique manner the changes of the 
temperature Te(t) and of the density Ne(t) of the free 
electrons. 

At the same time, studies of the relaxation of a low
temperature dense plasma can find a large number of 
applications, for example: discharge in a strong high
frequency field, the kinetics of plasma-chemical reac
tions, development of flares on the sun, action of a fo
cused laser pulse on matter, the diagnostics of a self
contracting discharge, etc. An urgent question is the 
discussion of the possibilities of creating effective plas
ma lasers in which the amplifying medium is a pulsed 
recombining plasma with a large density of free elec
trons (N e ~ 1013 cm-3 ). There are already published 
mentions of the advantages of such lasers when used at 

1lin this paper, the population of a level 'Y of the atom (ion) Z is 
defined throughout as the concentration of the atoms in the state oy, 
divided by the statistical weight of this state. The concentration of the 
free electrons is divided by two. 

FIG. 1 

high energies and short wavelengths. The urgency for 
analyzing nonequilibrium processes thus points to the 
need of speeding up the development of procedures for 
the corresponding experiments. 

In a plasma with a complex composition of heavy 
particles, one can attempt to change noticeably the pop
ulations of selected discrete levels by means of differ
ent inelastic collisions with heavy particles of other 
types. From this point of view, the most interesting re
actions are resonant excitation transfer (Fig. 1) 

X(y) + Y(11') =X(y') + Y(fl), 

direct ionization with excitation transfer 

X(y) + Y(11') =X(y') + y++e, 

and various chemical reactions 

X(y) + Y(11') + Z = (XY)' + Z. 

(1) 

(2) 

(3) 

Situations in which an important role is played by acts 
wherein atoms X absorb optical quanta emitted by at
oms Y, 

Y( 11) =Y(11') +nw, X(y') +liw=X(y), (4) 

are rarely encountered, for this calls for an energy de
fect o = IE~, - E~~' I of the order of the width of the 
corresponding lines, i.e., o ~ 10-4 eV. For the reac
tion (1) to be resonant it suffices in most cases to have 
o ~ 10-2 eV. In view of the practical absence of infor
mation concerning the effectiveness of reactions of the 
type (3), we shall likewise exclude them from consider
ation, although many of the conclusions that follow are 
applicable to them. 

Assume, for example, that we are interested in the 
populations of the levels y and y' of the atoms X. 
Then, in order to be able to form these populations with 
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the aid of reactions (1) and (2) in some manner, it is 
necessary that the initial levels of the atom Y be suf
ficiently populated. For simplicity we assume hence
forth Y(!J.') to be the ground state of the atom Y(1). The 
results remain valid also in the case when Y(!J.') is a 
strongly populated (say, metastable) state. Let us con
sider a process that consists of two acts-the reaction 
(1) and rapid ionization of the atom Y(!J.) by electron 
impact: 

Y{~-t) + e-+ y+ + e +e. 

In a plasma with large density of the free electrons, the 
sufficiently highly zxcited states of the atoms z (with 
"energy depth" E<IL > smaller than several tenths of an 
electron volt) come into equilibrium with the continuum 
within times comparable with the free path time of the 
electron and are therefore well described by the Saha
Boltzmann formula during the course of the relaxation. 
Such states will be designated by a single symbol Z(g) 
and called quasi-equilibrium. 

Let the relaxation (1) use the state Y( /J.) pertaining 
to the quasiequilibrium spectrum 

X(y) + ¥(1) ~X(y') + Y(g); (5) 

Then it leads practically instantaneously to the result 

X(y) + ¥(1) ~ X(y') + y+ +e. (6) 

Unlike the reaction (2), the process (6) can be re
garded as resonant ionization. The resonant character 
and accordingly the large probability of the reaction (5), 
the high density of the free electrons, and a sufficient 
concentration of the Y atoms in the initial state make 
up the conditions that ensure the effectiveness of such a 
process; we shall call them the ionization-resonance 
conditions. The process (6), as a rule, is more effec
tive than the direct-ionization reaction (2), but we know 
of no reliable results of a calculation of the cross sec
tions of reaction (5). The use of the known formulas for 
excitation transfer in remote collisions [ 2 ' 31 is not jus
tified in the present case. These formulas were de
rived under the assumption that the characteristic di
mensions of the colliding particles are much smaller 
than the distances between them. In our case one of the 
atoms is excited to a very high level and the inverse 
relation is satisfied. As expected, under such conditions 
a formal calculation of the cross section for the trans
fer of excitation from X to an isolated state of Y does 
not agree with the experimental data[ 41 even in order of 
magnitude. As will be shown later, for a rough estimate 
of the cross section of the process (6) one can use in the 
concrete calculations the formula (see [ 31 ) for the reac
tion (2), interpolated with respect to the energy from 
the ionization potential of the atom Y. 

Since the levels of the atoms near the continuum ac
cumulate, and at large Ne the quasiequilibrium spec
trum reaches a depth of 0.2-0.3 eV, the ionization reso
nance in the dense plasma should be encountered in one 
form or another quite frequently, and its possibilities 
for the analysis of relaxation should not be underesti
mated. 

2. Let us discuss briefly the dependence of the cross 
section a for the transfer of excitation (1), (6) on the 
characteristics of the atoms X and Y, and above all on 

the relation between the excitation energy X( y) and the 
ionization potential of the atom Y. We confine ourselves 
to the quasiclassical approximation, putting 

G = 2n J w(a,lL)ada, 
0 

where w is the total probability of the transition (6), (2) 
in collisions with an impact parameter a and a relative 
velocity u. In calculating w, it is necessary to solve 
the Schrodinger equation for the quasimolecule XY, with 
a Hamiltonian that depends explicitly on the time. The 
square of the expansion coefficient for the wave function 
of the corresponding final state of the quasimolecule wil 
yield the sought probability as t- oo, For brevity we 
shall use the density-matrix formalism, although we 
shall be dealing with pure states. 

We write the Hamiltonian in the form H(t) = H0 

+ V(t), where H0 is the Hamiltonian of the non-interact
ing atoms. The equation for the diagonal element (cor
responding to the final state of interest to us) has in the 
interaction representation the form21 

dp 2 ~ 
dt=hd gW(t--r,t)[1-p(t--r)S(t,t--r)]dt.. (7) 

0 

Here 

S(t t') = 1 + g'W'(t.t') 
' gW(t',t) 

g and g' are the statistical weights of the final and ini
tial states, and gW and g'W' are the frequencies of the 
analyzed and inverse transitions. In the cases discussed 
below we have S = 1 when g >> g' and S = 2 when 
g=g'=l. 

We shall estimate the solution by assuming that the 
terms of the quasimolecules are superpositions of the 
terms of the colliding atoms. Then Eqs. (7) contain two 
types of characteristic times: the times ("" T = a/u) of 
variation of the matrix elements of the interaction po
tential, and the times (""'IT/ w mn) characterizing the 
energy gaps between the states of the quasimolecule. 
From the formulas 

[1-p(t')]gW(t',t}= L, Vm•n[R(t}]Vnm[R(t')]Pmm•(t'} 
n,m,m' 

X exp {iwmn[R(t)] (t- t')}. 

p(t')g'W'(t,t')= L, V.m[R(t)]Vm •. [R(t')]p •.• (t) 
m,n,n' 

X exp {iwmn[R(t)](t-t')}, 

(8) 

in which the indices m and m' pertain to the initial 
states of the quasimolecule and n and n' to the final 
ones, it follows that the main contribution to the inte
gral in the right side of (7) is made by energy intervals 
for which limn = 'ITawmn/u ~ 1. 

In the case of resonant energy transfer from a non
degenerate level of the atom X to a nondegenerate level 
of the atom Y, we obtain the equation 

d 2 ' ~: =li' V(t) LV(t') [1-p((t')]dt'. 

2> For details see [ 5 I . 
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Its solution determined by the condition Pr(- oo ) = 0 

1 ' 2 

Pr (t) = {sin [ h LV(t')dt']} (9) 

coincides with the known solution (see, for example, [ 2 l ). 

In the other particular case, when the atom Y is ionized 
by an excited atom X (Auger effect of the quasimole
cule), we write, assuming the initial state to be isolated, 

-
gW(t',t)=h[V,.(t')V.,(t)]•=•o J exp[iro(t-t')]dro, 

1 (X) (Z) 
Wo ==-(E., -E, -/y), 

fl. 

where E<?> and E~Y> are the initial and final energies 
of the atom X, Jy 'is the ionization energy of the atom 
Y. If c50 = naw0/u >> 1, we can replace here(- w0 ) by 
(- oo ). Recognizing that g >> 1, we then have 

d~; = ~{w .. rn<t>ll';;}.=·y-pi<t>l. (10) 

from which we get for Pi (- oo ) = 0 

pi:(t)=1-exp{- ~11 J[ JV,.(t')J' :;L=•odt'}· (11) 

In the problem of ionization by a slow atom in the 
dipole-dipole approximation one usually starts out from 
formulas analogous to (10) and (11) (see, for example, 
[3 l), 

An estimate of the probability w(a, u) = p(oo) is sim
plified if the main contribution to the cross section is 
made by long-range paths and we can write 

(12) 

where QX and Q} are the operators of the corre

sponding multipole moments of the atoms X and Y. 
Neglecting the bending of the nuclear trajectories, we 
obtain3> for the cross section of the reaction (9) 

IJ·r= n(QxQY)'1<•+><'Ju-"<•+•'Jlr('X + x' + 1), (13) 

and for the cross section of the reaction (11) 

ai =n(Qz"Qy•'g,u-')'1<•+•'+'WJi(x+x'+1). (14) 

Here Q~ and Q~ are the matrix elements of the cor
responding multipole moments and are averaged in ac
cordance with (8), ge is the statistical weight of the 
emitted electron, 

h(n) = (2na2.) '1<•-•J,Jf ( ~: =-~); a.= }';tr ( 11 -; 1 ) j r ( ~), 

{ 
n/2 for n = 3, 

1' (n) = (~) '<·-2>1<•-•> a'1<•-•>r( n- 3) sin(..::.,~) for n > 3. 
2 n-1 2n-1 

a depends differently on u in (9) and (11). The ioni
zation cross section is connected with the width of the 
resonant region Aw by the relation ai "" (A w) 
X exp f 1/(K + K')] U exp [ -2/(K + K')], Since AW 

Rl u/~ it follows that ai"" u exp [ -1/(K + K' + lfa)]. 
On the other hand, in the case of resonant excitation 
transfer, the oscillator strengths are concentrated at 
the nondegenerate levels, so that the dependence on the 

3lin this section we shall henceforth use atomic units m = h = e = I. 

velocity is stronger: ar"" u exp [- 2/(K + K')]. We see 
from the foregoing that besides depending on u, a also 
depends strongly on the total oscillator strength in the 
resonance band. 

The transfer of excitation from X* to the pre
continuum region of the bound states of the atom Y is 
the limiting case of (9) and (11). In this region, the 
terms of the atoms are hydrogen-like. When c5n, n + 1 
= 1Ta/un3 < 1 (n is the principal quantum number), we 
can estimate a from formula (14). Putting a =..filii, 
a = 10-14 cm2 , we can write for the minimum value 
nmin = (u-1.Vro")l/3 Rl 20 and accordingly Emin 
"" (2nfuin)-1 """ 3.4 ·10-2 eV. Thus, formula (14) can be 
interpolated with respect to energy below the ionization 
potential of the atom Y, to a depth of at least several 
hundredths of an eV. On going over to smaller n, the 
distances between the groups of levels increase and the 
cross sections oscillate about an average value, drop
ping by several orders of magnitude with increasing 
energy defect. The averaged value, on the other hand, 
increases towards smaller n in accordance with the 
growth of the oscillators. One can therefore speak of a 
resonance with a group of levels. The cross section for 
the resonant exitation transfer to a group of levels is 
accordingly, as a rule, much larger than the cross sec
tion for direct ionization from the higher excited state 
X*. 

3. We shall henceforth consider the reactions (6) and 
(2) jointly. In the case of collision transfer of excitation 
(1), the populations of the levels y and y' of the atom X 
will be influenced by the entire kinetics of the popula
tions of the atom Y; to analyze the functions N~ >(t) 
and NVP(t), it is necessary to solve the equations for 
for the relaxation of the atoms X and Y simultaneously 
with allowance for the reaction (1). In the case of reac
tions (2) and (6), the details of the picture of the relaxa
tion of the atoms Y are not reflected in the populations 
Nj>(t) and N1.;l(t), and the quantities N e(t), T e(t) and 

N'1Y>(t) have a relatively simple time dependence. 
Some conclusions concerning the influence of the re

actions in question on the populations of the levels of the 
atom X can be deduced from qualitative considerations. 
Let us consider two very simple particular cases of 
pulsed recombination of a plasma: a) when the final 
state of the atom X(y') is the ground state (y' = 1), 
b) when X( y) is one of the states of the quasiequilib
rium spectrum, y e g. 

Let us consider the case a). In this case (Fig. 2) we 
have 

X,(y) + Y,(1) +>:X,(1) + Y,+ +e. (6') 
Under conditions of pulsed recombination, the tempera
ture of the free electrons is much lower than the equi
librium value (for the given concentration), and for a 

Continuous 
--........_ spectrum 

A",(T)==--~ Y,{j) 

x,(l}------ Y,(l) 

FIG. 2 
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number of relatively low levels of the atom X we can 
neglect the collision transitions from even lower (with 
respect to energy) states. Let iJ. be such a level, and 
let us assume also that the transitions from the states 
X(iJ.) to levels with higher energy have low probability. 
The stationary-sink equations for the population :N/f>, 
written without allowance for the reactions (6'), are 

The first term here is proportional to the probability 
of triple recombination (the quasiequilibrium spectrum 
of the atom X(g) is unified in this case with the contin
uum) into the state X(J3), and the sum over v is propor
tional to the probabilities of the collision and spontane
ous transitions to this state from the higher discrete 
levels: the right-hand side is proportional to the prob
ability of the departures (collisional and spontaneous) 
from the state X(/3) to all others. 

Taking the reactions (6') into account, we have for 
the series of levels for which the previously-made as
sumptions are valid 

B!"1N}"1(N,)' + .E (V!:> N, + A.,)N~z> 
•>• 

+ q.,N}r> N,N1z>=[('0,ZW, +A,<:rl)+ q,,N,<r>]N,r.r>. (16) 

Here qy1 = (ay1 u), where ay1 are the cross sections 
of the reactions (6') and u is the relative velocity of the 
colliding particles; in addition, in accordance with the 
detailed balancing principle, 

q,. _ ( mT, )''• ( I'!E,) %= 2nli' exp T. ' (17) 

(18) 

We introduce the concept of the effective ionization 
temperature T<Z> of the element Z and of the equilib

rium population Nkz;(T) of the level y, with the aid of 

the relations 
N,<z> 2nli' '1• ( lz ) 

N N<•> ""' ( mT<•> ) exp T<•> ' 
• + 

N<z>(T)=N<z> (E,-Iz) 
E, - , exp T . 

(19) 

(20) 

Obviously, the effective ionization temperature corre
sponds to the equilibrium temperature at which the de
gree of ionization of the element Z is equal to the ac
tual one; N~Y(T) corresponds to the equilibrium popu-

lation at a given temperature T and to the concentra
tion of the ground state NtZ >. 

From (17), (19), and (20) we obtain 

q,VN~Y) N,N~X) 

q,1NiY) N~x> 

In the recombination regime Te <TtY>. In the regime 

of intense recombination we have N~; << N~X>, and 

therefore the third term in the left side of (16) can be 
neglected. 

The reactions (6') exert a strong influence on those 
levels for which the coefficients proportional to NlY> 
are sufficiently large, namely 

(22) 
a,= V<-">N +A<">. . . . 

At the same time, the value of ay for higher levels is, 
as a rule, smaller than for the lower ones. This is 
mainly connected with the rapid increase of vt> on go-
ing over to the upper levels. Thus, with increasing 
N~Y> the populations N<J"> decrease not in a uniform 
manner, but, as it were, in an upward sequence. If at 
a given N1y > the process (6') is already important for 
the level y, but exerts no noticeable influence on the 
population of the higher levels, then we obtain, using 
(15), 

N, = N,/ (1 +a,). (23) 

The foregoing can also be useful for the measurement 
of the probabilities of nonradiative transitions. 

Frequently, inversion may occur at sufficiently large 
concentrations Ni Y >. Let us consider the ratio of the 
populations of the levels y2 (upper) and y1 (lower). We 
assume for simplicity that there are no other levels be
tween them. We denote by jy2 the rate of arrival of 
electrons at the level y2 from all the levels lying above 
y2, and by jh the rate of arrival of electrons from the 
same levels at the level yl' Then, using (16), we have 

N.,_ 1+(a,,)-'q,,,_ (· + ;,, V,,,,N,+A,,,,)_, (24) 
N,, - 1 + (a,,) ' q,,/•• Jv, a,, V,JV, +A,, . 

At sufficiently large ay1 and ay2 we have 

(25) 

Frequently j Y2>> jy1 , and the right-hand side of (25) is 

then larger than unity. 
We present two other simplified variants of the for

mula (24). The first pertains to the case when the so
called single-quantum approximation[ 6 l is valid, where
in the transitions occur only between the close levels: 

N., = (i +a,,) V,,N, +A,, ' 
N,, V,,,,N, +A,,,, 

When ah >> 1 we have 

N,, 
N,, V,,,,N, +A,,,, 

(26) 

(26') 

In the other case, when the reaction (6') can be neg
lected for the levels above Yu we have 

N,,_N,,(i+ ) 
N,, - N.,, av •• 

Continuous spectrum 

Xz(J) _. Yz(g) 

Xz{r'J------ Yz(T) 

Xz(T)--

FIG. 3 

(27) 
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It follows from (26), in particular, that inversion (in the 
single-quantum approximation) can be attained even 
when a.y1 < ay2• 

So far we have dealt with atoms, but nothing has pre
vented us from regarding the particles X or Y as ions. 
However, in the case when the particles Y are ions, the 
effectiveness of the reactions (6') is strongly limited: 
ay< qy/V~X>; then the limiting value of ay ceases to 
be dependent on N~ Y >. 

Let us consider the case b). In this case (Fig. 3) the 
reaction discussed here has the form 

X,(g) + Y,(i) +'= Xz(y') + Y,+ +e. (6") 

For simplicity let us consider only the case of ioniza
tion resonance, and assume that the reactions analyzed 
in case (a) can be neglected. Under the same assump
tions as were made in writing down formula (16), we 
have for the resonant level y' : 

(V/'>+N, +A,~z))N,~z) + q,.,N:z>Nt•> 

= [ (V~:">N, +A~~~)+ q,,,N,N\Y)]N::">. (28) 

Here, as before, :Nf,> is the population of the level y' 

in the course of the stationary-sink obtained without al
lowance for the reaction (6" ), and No/-1 is the same pop-
ulation with (6") taken into account. From (28) it follows 
that 

N)x>_N,\x>= a/[N,<z>exp (-..!..=..' -N,\z>exp (-~)] 
TC"· T<Y • (29) 

a/""' q..,,NlYl /(V,\z>N, +A,,). 

It is natural to assume that N1X> >> N~J}> , and that 
Jx/T<X> and Jy/T<Y> differ little from each other; 
then 

N/Z)= N,,<Xl+ a,!N:;">. 

i.e., in this case the ionization resonance leads to a 
certain increase of the population of the resonating 
level. 

By way of illustration we present the results of the 
calculation in C7l, where the element X was hydrogen 
and Y was mercury or xenon. Such a choice was due 
primarily to the fact that the kinetics of the populations 
of the discrete levels of recombining atomic hydrogen 
has been analyzed by now most fully (see, for example, 
[ 1 l). This analysis can be regarded as sufficiently re
liable: the probabilities of the significant elementary 
acts are known here with good accuracy, and many con-

sequences have already been quantitatively confirmed 
in experiments. The estimates have shown that in a 
dense plasma (N e ~ 1014 em -3 ) at an effective ionization 
temperature of each of the mixtures (hydrogen-xenon 
or hydrogen-mercury) exceeding 0.7 eV, and at an elec
tron temperature Te ,$ 2.2 eV, an appreciable inver
sion is realized, making it possible to amplify effective
ly radiation such as produced by the atomic-hydrogen 
lines (of the Paschen and Balmer series, respectively). 
It is shown that the rather large theoretical values of 
the unsaturated gain obtained in this case (K ~ 1 cm-1 

and K ~ 100 cm-1 in the hydrogen-xenon and hydrogen
mercury pulsed-recombining plasmas, respectively) 
are limited not by the rate of depletion of the lower 
working level, but by the technical possibilities of ob
taining the required parameters Ne and Te. Similar 
estimates show that amplification can be obtained on a 
number of lines of the Balmer series by using, say, sul
fur, phosphorus, iodine, or lithium in place of mercury. 

In conclusion we emphasize once more that the ques
tions considered here are of interest not only from the 
point of view of developing procedures for the measure
ment of probabilities of nonradiative transitions, and of 
developing plasma lasers or selective absorbers. The 
reactions in question must be taken into account in the 
most general problems on plasma relaxation. 

The authors are grateful to L. P. Presnyakov for a 
discussion. 
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