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The propagation of light in a cholesteric medium is considered. Solutions of Maxwell's equations are 
obtained. It follows from these solutions that there is a region of total reflection of the incident light. 
The conclusions of the paper agree with the available experimental data.[ll 

1. INTRODUCTION 

CHOLESTERIC liquid crystals have highly unique op­
tical properties. [ 1 l First among them is the very strong 
"rotating ability." Whereas in quartz, for example, the 
rotation of the plane of polarization is 24 deg/mm, in 
crystals of this type this value can reach several thou­
sand degrees. In addition, in liquid crystals of the 
cholesteric type there is a region of total reflection of 
circularly polarized light. At the same time, the other 
circularly polarized component of the incident ray is 
transmitted entirely into the medium. The electric vec­
tors of the incident and reflected waves are rotated in 
opposite directions. (We note that in reflection from 
"ordinary" crystals the direction of the circular po­
larization remains unchanged.) 

The group of problems connected with these phenom­
ena was first considered by de Vries. [ 21 He solved 
Maxwell's equations in a cholesteric medium. To this 
end, all of space was broken up into thin layers having 
different orientations of the electric axes. The re­
flected wave was obtained as the resultant of all the 
waves reflected from the individual layers. Although 
the method of breaking up into layers did not enter in 
the final formulas, account was taken in their deriva­
tion of additional (actually nonexistent) waves reflected 
from the boundaries of these hypothetical layers. There­
fore the results obtained in this paper are quantitatively 
incorrect. ConnersrsJ investigated a similar problem, 
but considered only normal incidence of the beam, and 
all the equations were solved only in the total-reflection 
region, when the wavelength of the light was exactly 
equal to the pitch of the cholesteric helix. 

We present here a complete investigation of this 
problem for arbitrary incidence angles. It turns out 
here that in the case of normal incidence (see Sec. 2), 
Maxwell's equations can be solved exactly for arbitrary 
ratios of the parameters of the problem. In Sec. 3 we 
investigate oblique incidence of the light. In this case, 
an exact solution can no longer be obtained. In this sec­
tion, the resonance region (total reflection) and the re­
gions off resonance, where ordinary perturbation theory 
is already valid, are considered separately. All the de­
ductions of the paper are in good agreement with the 
available experimental data. [ 1 l 

2. NORMAL INCIDENCE OF LIGHT 

Maxwell's equations in a medium can be written in 
the following form: 

an. 1 an, 
V•;o------=0 

ox; c at ' 
aE. 1 an, 

V•;o--+---=0. 
ox; c at 

(1) 

In these formulas Yijk denotes a completely antisym­
metrical unit tensor, Di = €ijEj, and the magnetic per­
meability is set equal to unity. As usual, summation 
over repeated indices is implied. 

A feature of a cholesteric medium is the dependence 
of the dielectric tensor €ij on one of the coordinates, 
say, z. This is connected with the helix-like symmetry 
of the medium (the electric axes along the x and y di­
rections rotate relative to each other as functions of 
the coordinate z). We shall assume throughout that the 
z axis is directed along the axis of the cholesteric he­
lix. We refer the dielectric tensor in the z = 0 plane to 
the principal axes 

efi={~l~~} 
0 0 e3 

(2) 

For other values of z, the tensor €ij will already have 
off-diagonal elements. The value of €ij at a certain 
value of z is obtained from €~j by rotating through an 
angle proportional to z: 

e,;(z) = A..Afie.,•, 

where Aij is the rotation matrix 

{
cos9-sin9 0} 

Aij= sin9 cos9 0 , 
0 0 1 

9 = az, 

The value of a depends on the pitch p of the choles­
teric helix, a = 21T/p. From (3) we easily obtain the 
components of the dielectric tensor 

e., =1!(1 +6cos29), 
e .. = 1!(1-11cos29), 
en = e,. = ell sin 29, 
Bss= Sa, 

8u = Bat. = 8!12 = Baa = 0. 

We use here the following notation: € = %(€1 + €2); 

(3) 

(4) 

(5) 

15 = (€ 1 - €2)/(€1 + €2 ) (for concreteness we assume that 
€1 > €2 and 15 > 0). 

Substituting (5) in (1) and eliminating the magnetic 
field in the usual manner, we obtain the following equa­
tions for electromagnetic waves propagating in the z 
direction 

(6) 

1004 



OPTICAL PROPERTIES OF CHOLESTERIC LIQUID CRYSTALS 1005 

(7) 

An important factor in the derivation of these equations 
was the fact that by virtue of the symmetry of the prob­
lem, the waves normally incident (along the z axis) on 
the cholesteric medium had no dependence whatever on 
the coordinates x and y. We now write out explicitly 
the time dependence 

E,(z, t) = F,(z)e'•', E,(z, t) = F,(z)e'"'. 

Introducing a new symbol k2 = <Jf€./c2, we obtain in lieu 
of (6} and (7) 

d'F 
--' + k'[F, +llcos2azF, +llsin2azFa]= 0, 
dz' 

rJ.>F, + k'[F, -llcos2azF2 + llsin2azF,] = 0. 
dz' 

(8) 

All the optical properties of cholesteric media for light 
propagating along the z axis are contained in the sys­
tem (8). This system was solved in [SJ only for k =a. 
However, as will be shown later, this equation can also 
be solved exactly in the general case. We note also that 
in real cholesteric materials o is small (o,.., 0.01). 

We introduce the circular components of the field 

F+=F,+iFa, F_=F,-iF,. 

In terms of these components, the equations in (8} are 
written in the form 

d'F+ I dz' + k'[F+ + lle""F-] =0, 
rJ.>F_ I dz' + k'[F_ +·llr""'F+] = 0. 

(9) 

We seek a solution of these equations in the form 

(10) 

From (9} and (10) we obtain a biquadratic equation for 
the determination of {3: 

~'-2(k'+a')~'+ [(k'-a')'-k'll'] =0 

or 
~· = k' +a'± kY4a' + k'{)'. (11) 

The two solutions for {32 mean two circularly­
polarized waves propagating with different velocities in 
the cholesteric medium (and the sign of {3 itself denotes 
the direction of wave propagation along the z axis). 
Substituting (11) in (10), we find the exact solution of 
Maxwell's equations in a cholesteric medium under 
normal propagation of the waves (along the z axis}. 

It is interesting to consider several different partic­
ular cases: 

A. a'(1-ll) < k' < u'(1 +II}, 

~.' = k' + a• + k'll'/4a, ~··= k' +a'- k'll'/4a. (12) 

For the first wave ~/A_= a 2 o2/8k2o "'O. Thus, in the 
first wave we have 

This means (since o << 1) that the first wave is circu­
larly polarized in a counterclockwise direction. 

B. k ~a/ (1-11)''• ~ a(1 + '/,11), (13) 
l~d =k+a+k'II'/Ba(k+a), ~.·= (k-u)'-k'll'/4a. 

Here we must consider two additional cases: 

1) lk-ai>all, 
1~·1= a- k- k'll' /8a(a- k}. 

We then have for the first wave 

A+ I A_= k'll/ 4a(k +a) ~1, 

and for the second wave 

A+ k'll(a-k}4a 
A-= k'll' 

4a(a-k) a-k 1 
k'b ~~>. 

(14) 

This means that the two waves are polarized in oppo­
site directions. In the first wave F_ =A_ 
x exp {i [k + k3 o2 /Sa(k +a)]}, and in the second F+ 
=A+ exp {i[k + k3o2/8a(a- k)]}. Thus there exists a 
phase difference 

k'{j' k'{j' 
Ak=--,---

Ba(k +a) 8a(a- k) 

k'{j' 
(15) 4a(a'- k') 

2) lk-al 5%ao. 
Then A+/ A_"' 1 in the second wave, corresponding 

to an almost plane-polarized wave. If A+ = A(1 +A.) and 
A_ = A(1- A.), where A.<< 1, then 

F, = Ae%1•(cos az + iA.sinaz), 

F.=Ae%1•(sinaz-iA.cosaz). (16) 
C. k;;,;. a I (1 - {j) ''• ~ a( 1 + '/,{j), 

l~d = k +a+ k'()' I Ba(k +a), ~,' = (k-a)'- k'{j'f4a. 

Let again lk- a I >> aO. Then, just as in case B, there 
is a phase difference between the waves (rotation of the 
plane of polarization) 

t.k = -k'.{j'/4a(k'- a'). (17) 

This quantity is shown in the figure as a function of the 
wave number k. The shaded area corresponds to case 
A. 

D. k2 o2 >> 4a 2 or k >> 2a/o. 
This case corresponds to a quasiclassical analysis 

of Eqs. (9) 

~~. = k' + a'± k'll. (18) 

For the first wave we then have 

A+/ A_= -k'll I k'{j = -1, 
p 1+ = At+eill(t+0/2)zeiaz; 

Ft- = At-e"11(t+t~t2)ze-i.:zz, At-= -At+. 

This wave is plane -polarized but is modulated with the 
pitch of the cholesteric helix 

(19} 
E.,= -A,+e"<<+01'l• cos az. 

Analogously, for the second wave (A+/A_ = 1) 

E., = A,e''<'-01'l• cos az, 

E., = A,e"<'-01'J• sin az. (20) 

By way of an example of the use of the derived for­
mulas, let us solve the problem of the reflection of nor­
mally incident light from a half-space filled with a cho­
lesteric medium (vacuum at z >O). We have here an in­
cident wave 

F, = f, exp ( -iQz), H, = -F,, 

F,= if.exp (-iQz), H,=F. 

and a reflected wave 
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F.' =f.' exp (iQz), H.'= -F.', 

F.'= if.' exp (iQz), H.'= F.'. 

The wave in the medium, on the other hand, will be 
written in the form 

F,"=Aexp(-iyz), F.''=iAfexp(-iyz), (21) 

where the quantities A, f, and y are determined in 
obvious fashion from (9) and (10). f characterizes the 
ellipticity of the wave. 

The magnetic fields in the medium are obtained 
from Maxwell's equations 

The quantities Fx and Fy in the right-hand side are 
obtained from the corresponding values at z = 0 (F~ and 
FTJ) by rotating through an angle az: 

F,(z) = F1 cos az- F. sin az, 

F,(z) =F1sinaz+F.cosaz, 

F~ and FTJ are given by formulas (21). Hence 

at z = 0. Equating the tangential components of F and 
H at z = 0, we obtain 

f, +/.'=A, 

f.+ f.'= Af, 
, ic 

f,-f, =--A(fa+iy), 
(I) 

' ic A( f.-t. =-- a-iy/). 
(I) 

Thus, for example, the "reflection coefficient" for the 
amplitude along the x axis is 

(22) 

Along the y axis 

R,=!!_= f+ic(a-iyf)/w (23) 
/. f-ic(a-iyf)/w 

Formulas (22) and (23) solve our problem. For exam­
ple, in the "resonance" region, i.e., at k =a, if left­
polarized light with amplitude IAzl and wavelength in 
vacuum "-o (Q = 21T/~) is incident on a cholesteric me­
dium, then it is easy to obtain from (22), (23), and (12) 
the amplitude of the reflected left-polarized light I A'zl : 

(24) 

and the amplitude of the reflected right-polarized light 

A I I Q Q -· 1--i- =( k-t)h-+t) . (25) 

In the derivation of (24) and (25) we have omitted terms 
of order 0 and higher throughout. It follows from these 
expressions that I At I Azl ~ 0.96, I AZ./ Azl = 0.04. Thus 
we see that actually in practically all of the left-polari­
zation is reflected. 

Let us summarize briefly the optical properties un­
der normal incidence. 

1) At I k- a I s a0/2 we have resonance (total re­
flection). 

2) At lk-al >> a0/2 we have rotation of the plane of 
polarization, given by the formula ~k = k"/4a(a 2 - k2 ). 

3) At lk- al :::: a0/2 we have a standing wave 

E, = cos (J)t sin az, E.= cos wt cos az. 

4) At k202 >> a 2 there are two plane-polarized wave 
waves, but the polarization vector rotates with a pitch 
O!Z, 

3. OBLIQUE INCIDENCE OF LIGHT 

In the case of oblique incidence of light it is neces­
sary to take into account the dependence of the fields on 
the transverse coordinates x and y, and also the field 
components along the z axis. By virtue of the symme­
try we can effect a Fourier transformation with re­
spect to the transverse coordinates: 

E,(x, y,z) = J E,(z)e'<•.•+•,¥ldq,dq., 

E,(x,y,z)= JE.(z)e'<•.•+•,•Jdq,dq •. 

In addition, we choose the y axis such as to make it 
parallel to the vector q. Then Eqs. (1) take the form 

d'F,I dz' + k'[ (1- q' I k')F, + F,ll cos 2az + F,/1 sin 2az] = 0, 
(26) 

d'F, I dz' + k'(1- q' I k,')[F,-F,6cos2az +F,6sin2az] =0. 

Here k~ == c-2€aw2 • 

The quantity q characterizes the angle of incidence. 
At q = O, the light is normally incident and Eqs. (26) 
naturally go over into (8). In all cholesteric media, €a 

is equal to one of the transverse components of the di­
electric tensor. Let, for example, €a = €1' Then k~ 
= (1 + O)k2, and Eqs. (26) take the form (the choice of 
qllX or €a = € 2 is equivalent to a rotation of the axis 
and reduces to the substitution F1 - F2): 

d'F,I dz' + k12F1 + k 1'6 (F, cos 2az + F, sin 2az) = 0, 

d'F, / dz' + k,'F, + k,II(F, sin2az -F,cos 2az) = 0. (27) 

Here 

k,'=k'-q'/(1-6), k,'p=k'-q'. (28) 

The system (27) can no longer be solved exactly. It 
can be investigated in the resonant region, however, by 
the methods developed in the theory of parametric res­
onance,£4l and off resonance by perturbation theory. It 
should be noted here that there are now two resonant 
regions (when k1 or k2 is close to a), unlike the nor­
mal incidence. 
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A. Resonant region (k2 - a 2). We seek solutions of 
(27) in the form 

(27') 

Upon substitution of (28) in (27) we neglect all the 
"nonresonant exponentials." As a result of the calcula­
tions we have the following algebraic system for the de­
termination of s: 

[k.'- (u + s) ']!~+ + k,'6f,_ I 2 - ik,'6j,_ I 2 = 0, 
[k,'- (a- s)']f,_ + k.'6f,+ I 2 + ik,'6f>+ I 2 = 0, 

(29) 
[k,'- (a+ s) 'l/2+- k'6f,_ I 2- ik'6f,_ I 2 = 0, 
[k,'- ('a- s)']f,_- k'6f>+ I 2 + ik'6ft+ I 2 = 0. 

Equating the determinant of this system to zero, we ob­
tain an equation of the eighth degree for s. This equa­
tion reduces to two biquadratic equations and can easily 
be solved. In the general case the resultant formu­
las are quite cumbersome and difficult to interpret, and 
will therefore not be given here. At kr = a 2, for exam­
ple, these roots are 

s,' = 0, s,' = 4a', ss' = 4a', s,' =-{o6- q'6i3 I 2a + q6l'S I 2) '. 

If a left-polarized light in this region is incident from 
vacuum at an angle q, then the fraction of the left-hand 
polarization in the reflected light will be 

I ~I = ___!!2___( Q + 1)--2' 
A, '/k'- q' l'k'- q' 

and the fraction of the right-hand polarization 

I A/ I [ Q Q _, 
~ = ---1 +1 
A, '/k'- q' ][ '/k'- q' ] 

(The incident light was only left-polarized.) 
B) Perturbation-theory region. Here it is more con­

venient to use the circular components of the fields. 
The equations for them can readily be obtained from 
(27) 

d;:,+ + li'F + + 6x'e""'F _- 6a'e-""'F +- 6a'F _ = 0, 

~:,- + Tc'F- + 6x'e-""'F+- 6a'e''"'F_- 6a'F+ = 0. 

We have introduced here the notation 

li'=k'-.:L 2-6 
2 1-6 ' 

x' = k' 
q' 

2(1-ll)' 
a'= q' x'=k'-a', 

2(1-6)' 

(30) 

As the zeroth solutions we choose F+o =A exp (ikz) and 
F _0 = B exp (ikz). Then in first order of perturbation 
theory in o we have 

F + = Ae,., + Ce'<•+••>• + De'<•-••>•, 

F _ = Be,.'+ Ee'<•+••>• + Ge'<•-••>•, 

where, as follows from (30), 

(31) 

C = B---il_x' __ 
(k+2a)'-k'' 

D = - A --;-;--::-6-,-a':---,­
(k-2a)'-k' ' 

ila' 6x' 
E = - B G = A --;-;-:--::--:-::---::-:--

(k+2a)'-k'' (k-2a)'-k' · 

(32) 

In turn, substituting (31) and (32) in (30), we obtain a 
homogeneous system for the determination of A and B: 

A { li' - k' {)'x' } { ' + (k-2a)'-k' +B - 6a-
6'a'x' } 

(k+2a)'-k' =O, 

{ 6'a'x' } { A - 6a' - . + B li'- k' + 
(k- 2a)'- k' 

6'x' } 
(k+2a)'-k' =O. 

Its determinant, as can readily be verified, is equal to 
zero. The quantity A/B characterizes the ellipticity of 
the wave 

F+ A 2a' 
~=B= 6x'(D--D+)±[6'x'(D++D-)'+4a'J'I'' (33) 

x1 x' 
D+= D-

(k+2a)'-k' (k-2a)'-k' • 

The two signs mean that there are two waves. We note 
here also that all the formulas of perturbation theory 
are valid when the denominators (k ± 2a )2 - k2 are not 
small, i.e., far from resonance. 

Since o << 1, we get from (33) F+/F_ =±1, i.e., 
there are two plane-polarized waves in this region. 

The formulas for the reflection coefficient can be 
obtained in this region in analogy with the preceding. 
We present the answer only for the reflection coeffi­
cient of the "amplitude" along the X axis: 

R,= l.st I .Iii, 

d=A+{1- k: }+c+{1-(k+2a) :}+D+'{1-(k-2a) :J. 
.li=A+{i+ ~ }+c+{1+(k+2a) :}+D+'{1+(k-2a) :J. 
where 

A+= '/,(A+ iB), C+ = '/,(C + iE), D+' = 'I,(D + iG). 

In conclusion, the author is deeply grateful to I. E. 
Dzyaloshinskii for suggesting the problem and for help 
in its solution. 
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