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Effects connected with the presence of weakly-damped phonons in a normal liquid are discussed. The 
thermomechanical effect is calculated. The propagation of shear oscillations is investigated. It is 
shown that at large distances the damping of the oscillations has a power-law character. 

THERE are a number of liquids (hydrogen, He\ He4) 

that solidify at temperatures much lower than the 
Debye temperature ®, defined in the usual manner in 
terms of the density and the speed of sound. For such 
liquids there exists a temperature region T << ®, in 
which the wavelength of the phonons with energy on the 
order of the temperature greatly exceeds the inter­
atomic distance, and therefore the phonons constitute 
weakly-damped thermal excitations. The liquid thus 
consists of two weakly-coupled subsystems-phonons 
and the remainder of the liquid. 

We emphasize that when it comes to liquid helium 
the condition T « ® begins to be satisfied, generally 
speaking, at temperatures that are high compared with 
the temperature of the transition to the superfluid state 
(in the case of He 4 ) or with the Fermi-degeneracy 
temperature (in the case of He3). For example, in He4 

at a pressure 25 atm and at T = 3°K, the Debye tem­
perature is equal to approximately 40°K, and in He3 

at 3 atm and T = 2°K the Debye temperature is 
® :;:;, 20°K. With further increase of pressure, the Debye 
temperature becomes even larger, while the tempera­
ture of the quantum degeneracy decreases with in­
creasing pressure. 

We shall assume that the only characteristic parame­
ters of length and frequency in the liquid (if we disre­
gard the phonons) are, respectively, the interatomic 
distance and the Debye frequency. By the same token, 
we exclude, in the case of liquid helium, the tempera­
ture region below the quantum-degeneracy temperature, 
where the mean free path of the rotons (in He4 ) or of 
the Fermi excitations (in He3 ) greatly exceeds the in­
teratomic distance. We exclude, of course, also the 
region near the A point and the critical gas-liquid 
point, where the correlation radius is large. 

Like any thermal excitation, phonons make a 
certain contribution to the specific heat of the liquid. 
This contribution, however, is small compared with the 
total specific heat. In exactly the same way, the con­
tribution of the phonons to the kinetic coefficients 
(viscosity, thermal conductivity, etc.), is small. None­
theless, there are many phenomena that are entirely 
connected with the presence of weakly-damped phonons. 
This is clear from the fact that the usual hydrodynamic 
description of the liquid ceases to be, generally speak­
ing, valid if the characteristic dimension of the problem 
is of the order of or less than the phonon mean free 
path, and not of the interatomic distance. Let us con-

sider, for example, the flow of a liquid through a thin 
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capillary. Since the phonons are diffusely scattered 
from the walls, their average velocity is smaller than 
the average flow velocity of the remainder of the liquid. 
The situation here is analogous to the flow of a super­
fluid liquid, the phonons playing the role of the normal 
part. In both cases there arises a thermomechanical 
effect, described by similar formulas in very thin 
capillaries. 

In ordinary hydrodynamics, the shear (and the tem­
perature) oscillations attenuate exponentially in the 
interior of the liquid. Owing to the presence of the 
phonons, these oscillations also propagate to distances 
greatly exceeding the penetration depth, and at large 
distances the damping has a power-law character. 

We make one more important remark. As will be 
shown below, the main contribution to the thermody­
namic effect in sufficiently broad capillaries and to the 
oscillation amplitude at sufficiently large distances is 
made by phonons with arbitrarily low frequencies. 
Since phonons with sufficiently low frequencies always 
attenuate weakly, the formulas obtained below are 
valid at large distances in any liquid at any tempera­
ture. 

1. EQUATIONS OF MOTION 

The phonon distribution function n( r, p, t) satisfies 
the kinetic equation 

~+~ fJH _!!!::_ fJH =1 (1) 
ot f}rf}p fJpfJr' 

where the Hamiltonian is H = € + p • v, v is the velocity 
of the liquid, € = cp is the energy of the phonon in the 
liquid at rest, and c is the speed of sound. The 
"collision integral" I is due in our case mainly to 
absorption and emission of the phonons by the liquid, 
and the processes of collisions between the phonons at 
T « ® are much less probable. We can therefore 
write 

I= -(n- no) /-r:, 

where n0 = { e€/T - 1} -l is the equilibrium distribu­
tion function and T is the relaxation time of the phonons 
with the liquid. Using the well-known expression for 
the sound absorption coefficient (see[ 1l), we find 

,; = ..;., a= pll'c' {(i_'ll + ~) + x (~- ~)}-' , (2) 
C 3 c, Cp 

here p is the density of the liquid, cp and cv are the 
specific heats per unit mass, 1J and l; are the first and 
second viscosity coefficients, and K is the thermal 
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conductivity coefficient. 
The equations of motion of the liquid can readily be 

obtained in the usual manner (see[ 2 l) by starting from 
the conservation laws. We note that at v = 0 the energy 
/!l and the momentum j per unit volume are equal to 

l!l=E(p,S)+Jend-r:, i= Jpnd-r:, 

where dr = d3p/ ( 27T:Ii) 3 and E and S are the energy and 
entropy per unit volume of the liquid ''without the pho­
nons." With the aid of the Galileo transformation 
formulas we obtain, in an arbitrary coordinate system, 

pv' 
f5 = - 2-+ v s pnd-r: + J mdT + E(p, S), 

j = rv+ Jpnd-r:. 

In the case considered by us, the total number of pho­
nons is small, and we can therefore neglect the 
products of two or more integrals with respect to dr 
throughout. Taking this circumstance into account, we 
obtain for the energy and for the momentum 

pu' 
f5 = 2 + J mdT + E(p,S), 

j = pu, 

where we have introduced a new variable 

u = v + + J pndT, 

which obviously plays the role of the "renormalized" 
velocity of the macroscopic motion of the liquid. 

(3) 

We seek the equations of motion in a form that 
ensures satisfaction of the mass and momentum con­
servation laws, and also the law governing the increase 
of the entropy 

ap 
at+ div pu = 0, 

aj, a 
--;- +-;- {pu,u, + ( -E + TS + J.!P) ll,. + n,.} = 0, 

ul ux, 

a9' R 
iit+div(Su+q)=r (R>O). (4) 

Here iJ. is the chemical potential, R is the dissipative 
function, and 9' is the total entropy per unit volume 
with allowance for the entropy of the phonons 

fl'=S+ JsdT, s=(1+n)ln(1+n)-nlnn, 

7Tik and q are the sought quantities due to the presence 
of phonons and to dissipation. 

From (4) there should follow automatically an en­
ergy conservation law, i.e., an equation in the form 

Jf+divQ=O. (5) 

Differentiating the first equation of (3) with respect to 
the time and using (4) and the thermodynamic identity 
dE = TdS + iJ.dp, we obtain 

8 + div { ( ~2 
+ J.!) pu +STu+ u,n" + Tq} 

au a J J = R + Jl;; -' + q V T + - m d-r: - T s dT. ax. at 

Expressing the time derivatives of n with the aid of 
the kinetic equation (1 ), those of € with the aid of the 
identity d€ = dpB€/Bp + dSB€/BS and Eqs. (4) in terms 

of the spatial derivatives, we transform the last equa­
tion, with the required degree of accuracy, into 

fi + div { (~ + ft) pu +STu+ u":r,, + Tq + J m DII dT 
2 1 ~ 

- Tf s aH d<} = R +J d d,- rJ ~I d< 
up dn (6) 

+ Du, {n"- J p, .!!.'!._ n dT- 6" J f p ~ll_ + S !!.":..) n dT} 
i!x, Dph \ up as 

+ V T { q - J <~: d<}. 

Comparing (6) and (5) and taking into account the condi­
tion that R be positive, we obtain the unknown quanti­
ties 

( u' ) s DH s DH Q = z + ft pu +STu+ u,n., + Tq + mapdt- T sapdt, 

n,. = J p, .!!.'!._ n a, + .s .. J ( p !!.":.. + S ase ) n dt 
Dp, Dp D 

( au, au. 2 au, ) au, 
-T) -+---6 .. - -~6 .. -, 

ax, ax, 3 ax, iJx, (7) 

q =fsaHd-r:-xVT 
Dp T '· 

R=TSds ldt-Jddt+x(VT)' +2!_(iJu, + au._2_.s .. !!!!::.)' 
dn T 2 iJx, ax, 3 iJx, 

+ ~ ( ::.· )'. 
The phonon part of the dissipative function is positive, 
since the difference 

ds n-n,( 1+no 1+n) T-I-el=T-- ln---ln--
dn 1: n, n 

is positive for all positive n and n0 • 

Formulas (1) and (4) constitute the complete system 
of equations of motion of the liquid with allowance for 
the phonons. We shall need a corresponding linearized 
system. Putting n = n0 + xan0 /B€ and calculating the 
integrals with respect to dr of the equilibrium distri­
bution function, we can write the linear system, after 
simple transformations, in the form 

p + pdivu=O, 

pu, = -~+TJ<iu,+ (~+_!__) _!_divu ox, 3 ax, 
p ( De ) J e' de do iJn, ox J e' de iJo iJn, ox 

---;; flP a (2nlie)'&; iJx,- (2nlic)'Den,n, iJx, ' (8) 

where n = p and do is the solid-angle element in the 
direction of n. Equation (8) contains the renormaiized 
entropy per unit mass of the liquid, a, equal to 

S 2n' T' 
a = p + 45 pli'c' ' 

and the renormalized pressure 

( S ) n' T' n' T' p ( iJe ) 
P(p,a)=Po p,p +90 (lie)'+ 30 (lie)'-;;- ap .' 

where P 0 = -E + TS + iJ.P is the pressure without al­
lowance for the contribution of the phonons, so that the 
deviation from the equations of ordinary hydrodynamics 
lies only in the presence of terms connected with the 
non-equilibrium character of the phonon gas. 
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2. THERMOMECHANICAL EFFECT 

Let us consider the flow of a liquid between two 
parallel planes separated by a distance a. If we neglect 
the phonons, then the usual Poiseuille flow takes place: 

1 aP [ , ( a ) '] u;;u,(z)=-- z- -
2T) ax 2 • 

aT 
-(z) = const, 
ax 

(9) 

We have chosen a coordinate system such that the 
boundaries of the liquid correspond to z = ±a/2. The 
rate of flow and the temperature gradient are directed 
along the x axis. 

The non-equilibrium part of the phonon distribution 
function satisfies the equation 

ax :X: e au e nx aT 
-+-=-n,-+--­
az n.c1: c az T n, ax ' 

(10) 

and the velocity and temperature in the right-hand side 
can be set equal to the quantities (9) since, as already 
noted, the contribution of the phonons to all phenomena 
is small. 

The general solution of (10) is 
e1: ap e aT ( ) :x: = --n,n.(z -n,c't)+-n,c't-+F(p)e-'1",", 11 
TJ ax T ax 

where F(p) is an arbitrary function determined by the 
law of reflection of the phonons from the walls. We 
shall assume the reflection to be diffuse, and then the 
following conditions should be satisfied 1> 

:X: I •=•t• (n, < 0) = 0, '1; i•=-•12 (n, > 0) = 0, 

whence we obtain 

F (n, < 0) = - eu•i'"•" { n~, :: ( ; - n,c't) + ;c ~~ } , 

{ n,n, ap ( a ) n,c aT} 
F(n, > 0) =- eu-•1'"•" ----- - + n.c,; + -T - . 

T) ax 2 ax 

Substituting now the obtained funotion x in the 
second equation of (8) and integrating, we get 

1 aP z' 2n aT s~ e' de an, 
u(z)=---+c,z+cz+-- -----

TJ ax 2 T) ax 0 (2nlic) 3 ae 

c't' (z) x T J dn,n.' ( 1 - n,') ch -- e-•1'"•'\ 
(} nzct 

(12) 

where we have neglected the small corrections to the 
term proportional to apjax; c1 and c2 are integration 
constants. They should be determined from the condition 
that the velocity v vanish on the boundaries. It is easy 
to verify, however, that one can use the conditions 
u(±a/2) = 0 accurate to terms of order of the ratio of 
the phonon wavelength to the width a of the gap (inclu­
sion of such terms would be an exaggeration of the ac­
curacy, since we assume the phonon motion to be 
quasiclassical). 

Let us write down the expression obtained in this 
manner for the total mass flow through the gap 

•I' p ap a' p aT ( ) l=ps udz=----+--A, 13 
-•" TJ ax 12 1JT ax 

1>We have neglected the absorption of the phonons at the walls. The 
corresponding relaxation time is of the order of (a/c),./0/e and is large 
compared with T, provided the thickness is a~ cr..je/0. We shall show 
below that interest attaches to the values a- cr, so that the absorption 
at the wall can actually be neglected. 

where 

~ e' de an, ' { ( a ) 
A= 2nc' J (2nlic)'---;);'t2J dn,n.'(1-n.') n,ct--z 

- (n ct + ~) e-•t•,"} = S ~ <D (~} . 
' 2 ph 12 aT' 

Here Sph is the phonon entropy per unit volume of the 
liquid, equal to ( 27r2/ 45 )( T/tic )3, and 

13" ~ 1 

<D(x)= 2 ;:,' x'J dt[(e'-1)(1-e-')]-'1J n.'(1-n.')dn, 
n o o 

{ ( 1 n,x} ( 1 n,x) _,,,. , } 
X 2 -f + -z+t' e , . 

Let us calculate also the non-equilibrium part of the 
entropy flux 

q'=J ds an,:x:aH dt-""VT, 
dn ae ap T 

Substituting here (11) and neglecting the contribution 
of the phonons to the flux, which is proportional to the 
temperature gradient, we get 

, "" aT 2nc aP s~ e' de an, { 2 
q, (z)= ---+-- -----1: --c,; 

T ax T1J ax 0 (2nlic)' ae 15 

+ { ( 1- n.') n, dn, ch ( n~cJ e-•1'•," ( ~ + n,c,;)}. 

The heat flux through the gap is equal to 

•t• aT 1 aP 
Q=T J q,'dz=-a%-+--A. 

-a/2 ax 1] ax 
(14) 

Thus, the presence of weakly-damped phonons in the 
liquid gives rise to a term proportional to the tempera­
ture gradient in the expression for the mass flux (the 
thermomechanical effect), and to a term proportional 
to the pressure gradient in the expression for the heat 
flux (the mechanocaloric effect). Formulas (13) and 
(14) are in full agreement with the principle of the 
symmetry of the kinetic coefficients. 

As seen from (13), in order for mass transport to 
be absent, the pressure difference .C.P and the tem­
perature difference .C. T at the ends of the gap should 
be connected by the relation 

to.P = s w(~) 
!:iT pn aT' . 

For a « c a/ T2, using the limiting value <I? ( ao) = 1, we 
obtain 

to.P 1 t:>.T =• sph· 

The last formula differs from the known formula for a 
superfluid liquid only in that the entropy is replaced by 
the phonon entropy. This is perfectly natural, for in 
the case of a superfluid liquid, the normal part carry­
ing the total entropy does not flow in practice through 
a narrow gap, and in our case the transport of phonons, 
and consequently of the phonon entropy, through a gap 
that is thin compared with the phonon free path is ex­
ceedingly difficult. 

In the opposite limitinft case a>> ca/T2, noting that 
<I? ( x - 0) = ( 2/ 7r 2)( x/ 1T )3 2 , we get 

!>.P 4{ na [4 ( 1 1 }]}_,,, 
-=-- -1J+s+x ---

I'J.T 45 pc 3 C, Cp 

(15) 
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It is important to note that in the last case of large 
thicknesses a, the main contribution to A is made by 
phonons with a mean free path on the order of a. The 
energy of such phonons is small compared with the 
temperature. In order for formula (15) to be valid it is 
therefore not necessary to satisfy the inequality 
T « ®. All that is needed is that relation (2) be ap­
plicable to phonons with energy of the order of 
(ca/a)112• For this reason, formula (15) describes the 
thermomechanical effect in any liquid at any tempera­
ture, provided the thickness a is large compared with 
ca/(liw0) 2, where w0 is the frequency above which an 
appreciable dispersion of sound begins. It must be 
borne in mind, incidentally, that when a increases the 
wavelengths of the phonons that determine the effect 
increase, and the reflection of the phonons from the 
walls ultimately ceases to be diffuse. 

3. PROPAGATION OF SHEAR OSCILLATIONS 

Let the liquid be in contact with a flat solid surface 
executing tangential oscillations with frequency w. If 
we neglect the phonons, then, as is well known, the 
shear oscillations that arise in the liquid (the viscous 
wave) attenuate exponentially at distances on the order 
of the depth of penetration 15 ~ a 0 ( ®/liw )112, where a 0 

is the interatomic distance. When phonons are taken 
into account, motion occurs in the liquid at distances 
that are large compared with 15. 

Let the solid surface be the xy plane, let the oscil­
lation direction be the x axis, and let the liquid occupy 
the region z > 0. We are interested only in values 
z » 15. The function x then satisfies the homogeneous 
equation 

from which it follows immediately that 

{ z iwz} x=F(p)exp ---+- , 
nzC't cnl 

where F( p) is an arbitrary function. From the re­
quired finiteness as z-oo, we obtain the equality 
F(nz < 0) = 0. For phonons with nz > 0 the distribution 
function at z = 0 should correspond to motion of the 
gas of phonons as a unit, with the velocity of the sur­
face V, i.e., it should equal n0(€- PxV). It follows 
therefore that F(nz > 0) = -PxV. Substituting now the 
function x in the second equation of (8) and taking into 
account the fact that when z » 15 the liquid can be re­
garded as ideal (17 = 0), we obtain the velocity of 
motion 

1 s 8 3 de do ano ax 
u = iwp (2nhc)'a;n.n. ax. 

=-i~J~~ ano (~-iffi) s' dn,(1-n,') 
pc'ro 0 (2nhc)' ae 't 0 

X exp {- zjn,c,; + iwz/ en,}. 

If z « ca/T2, then exp( -z/nzcr) can be replaced by 
unity, and after integrating over the energies we obtain 

2n'i T' ( 7i ffia) s' u =-V--- 1----- dn,(1-n.')e'"'''"•· 
21 ph'c'aw 20n' T' , 

From this we have for z << c/ w 

u=~V___!:__ (1-_3_!:_.!!:!!:.) 
63 ph'c'affi 20n' T' • 

(17) 

and for z » c/w 
4n'i ( T'" )'( 7i ffia) e'"'1' u= ~--V -- 1---- ,.---. 
21 hcffi 20n' T' apz' 

(18) 

In the opposite limiting case z » ca/T2 , the main 
contribution is made by phonons with energies that are 
small compared with the temperature. We can there­
fore put an0 /8€ = -T/€ 2, after which we can readily 
integrate with respect to the energies. As a result we 
get 

u = 3i v .2:.. (_::_· )''• (cz)-'1• s' n.'1'(1- n.')dn.( 1-~) e'"'''"•. 
64 pffi nh' 0 3cn, 

The last formula goes over into 

3i T ( a )''• u =--V- - (cz)-'1• 
616 Pffi nh' 

(19) 

when z « c/ w and into 

V Tc' ( a )''• u = --- - (cz)-'1•e .. '1' 
16 pro' nh' 

(20) 

when z » c/w. 
Since 15 is always small compared with c/ w, there 

exist three frequency regions: 
1) w » T 2/ a. In this region, u is first independent 

of z with increasing z ( 15 « z « c/ w, formula (17)), 
after which it decreases like z-2 (formula (18)) and 
then like z-712 (formula (20 )). 

2) 15 « ca/T2 « c/ w. Here the velocity is first 
independent of z, then varies like z-512 , and later like 
z-112. 

3) 15 » ca/T2• The velocity decreases first like 
z-5/ 2 and then like z-7/ 2• 

One can make the same remarks with respect to 
formulas (19) and (20) as were made in the preceding 
section with respect to formula (15). Their applicabil­
ity is not limited by the condition T « ®, since the 
phonons that matter are those for which cr ~ z. 

In conclusion we note that perfectly analogous ef­
fects should also be observed when temperature waves 
propagate in a liquid. In general, it can be stated that 
whenever ordinary hydrodynamics leads to an exponen­
tial damping of the perturbations, the influence of the 
phonons always causes the appearance of power-law 
"tails." In particular, such power-law "tails" should 
be observed on the trailing edge of a shock wave in a 
liquid. 
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