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A formula is obtained for the spontaneous magnetization ~c( T) in an exactly-solvable two-dimen
sional transformed Ising model containing impurities which are in thermodynamic equilibrium with 
the lattice. It is shown that for I1 < 0 (h is the new exchange integral, I I 1 1 «I) an anomalous de
crease of the spontaneous moment ( dmc / dT > 0) occurs in the limit T - 0, where this decrease 
is associated with the formation of complexes of "reversed" spins. 

1. Kosevich and the author[ll formulated a simple dis- moment of a single site; N is the total number of 
location model of ferromagnetism in nonmagnetic bonds in the lattice, and R == N- r is the number of 
crystals, in which the ferromagnetism is due to the positive bonds which ~oin sites having identical spin 
exchange interaction of electron spins along the dis- directions {just as in 6l, we denote the number of nega-
location lines. Here the two-dimensional Ising model tive bonds by r); m denotes the number of positive 
was used, and it was shown that the investigation of bonds in which both spins are directed opposite to the 
the phase transition and spontaneous magnetization of magnetic field (in what follows we shall denote them 
such a system reduces to a problem first solved by by II). Accordingly, R - m is the number of bonds in 
Onsager[ 2l and YangPl However in contrast to[ 2• 3l, which both spins are directed "along the field" (we 
in[ll certain effective quantities depending on the tern- denote them by tt); g(R, m) is the number of configu-
perature T and on the external magnetic field H play rations of the spins of the lattice with positive bonds, 
the role of the exchange integral I and the magnetic out of which there are m bonds of the type 11. 
moment JJ. of a site, i.e., the model considered in[ll is Let us consider any spin configuration (R, m) and 
a special case of the so-called "transformed" Ising let us arrange s impurities in all possible ways be-
lattice (see, for example,[41 ). Pokrovski1[s] has tween the atoms of the lattice in such a way that there 
pointed out that electrons settled on the dislocations turn out to be p impurities on the positive bonds. The 
may lead to a breaking of the exchange interaction in number of ways of distributing p impurities on R posi-
the corresponding spin chains. In terms of the model tive bonds, where k impurities are distributed on 
discussed in[ll, this means that the effective exchange R - m bonds of the type It and p - k on m bonds of 
integral I is replaced by a new value I1 (in particular, the type 11, is given by ckR cP-k. The introduction of 

-m m 
!1 = 0 for complete breaking of the exchange interac- impurities leads to the replacement of the energy fac-
tion), and the effective magnetic moment JJ. of a site is tors f and t, associated with the presence of the mag-
replaced by a new value /J.1· netic field, by wand l, respectively: w = z-1 

We shall assume that one can qualitatively discuss = exp ( 2 {3JJ. 1H/ q) where JJ.1 is the new magnetic moment. 
the question of the effect of impurities on the spon- Here we note that the negative bonds do not give any 
taneous magnetization in the dislocation model of contribution to the energy associated with the presence 
ferromagnetism, having first considered the following of the magnetic field. 
model problem which has an exact solution in the two- The contribution to the partition function, associ-
dimensional case (for an arbitrary concentration of ated with the presence of the magnetic field, coming 
impurities). There exists a "transformed" (in the from a single spin configuration containing R positive 
sense indicated above) Ising lattice containing impuri- bonds (out of these, there are m bonds of the type 11) 
ties which, by intruding between neighboring sites, on which p impurities are distributed, is given by 
change I to I1 and JJ. to JJ. 1• In order to solve this 
problem we shall use the method and results of 
Lushnikov's work[6l, in which a similar problem was 
solved in the absence of any magnetic field. 

2. The partition function of a pure lattice in a mag
netic field can obviously be written in the form 

Z = ~ xN-y ~ g(R, mJr-mtm ""'La xN-•y'rgR (-j), 

gR(z) ""'La g(R,m)zm, (1) 

where x = y-1 = exp ( {3I) (for a ferromagnetic sub
stance I > 0 ), f = t-1 = exp ( 2{3JJ.H/ q) where q is the 
number of nearest neighbors, and JJ. is the magnetic 
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~ • •-• 1 rf- a~ r-mtm £..... CR-mCm w•t-•z•-•t•-· = -. 'j' -"-(! + ~w)R-m (t + ~l) m 
k 2ru ~p+t ' 

where the integral is taken around the circumference 
of a circle whose center is at the point i; = 0. Now let 
us calculate the total contribution to the partition func
tion Zs coming from one spin configuration containing 
R positive bonds, also taking the exchange interaction 
into account. The number of ways of distributing the 
remaining s - p impurities on r negative bonds is 
c~-P, and then the desired contribution (for fixed 
values of R and m) is given by 

XN-'y' La c;-•u•v•-•x-•y•-• 2~i p :;. (f + ~W)R-m(t + ~l)m. 
p 
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It is essential that the operation of "averaging" the 
initial partition function over all possible configura
tions Q of the s impurities commutes with the 
"averaging" of the quantity exp{-tJE(Q, [u])} over all 
possible spin configurations [u], i.e., 

Z, = l2,Eexp{-~E(Q,[<J])}= l2l2exp{- ~E(Q,[<J])}. 
Q [•J [•] Q 

Taking this into account, Zs has the form 

Z, = ExN-'y'}2 G.(R,f)C;-•a•v•-•x-•y•-•, (2) 
• p 

where 

G,(R,/)== 2!i~ ~~=• .L, g(R,m)(f+~w) 8-m(t+~l)'" 
f rh d~ R (t+tz) 

= 2ni 'Y ~P+' (f + (;w) gR f + ~w • 

For the following calculations we make the change 
of variable 'wt( 1 + 'wt) = X. Then 

G (R /)= r-•w••+s•·gR[t'(1-'-)+l''-]d'- (3) 
P • 2ni •-•• A'+'(1-A) 8 PH • 

where 0 < a< 1. We note that formula (2) together 
with relation (3) expresses the partition function of a 
lattice containing impurities in an arbitrary magnetic 
field in terms of the corresponding function for an 
ideal lattice. For H = 0 the result of LushnikovreJ is 
obtained in a natural way. The function gR( z) in an 
arbitrary magnetic field H is known only in the one
dimensional case, although formula (3) itself is valid 
for a lattice of any number of dimensions. 

Now let the size of the system increase: N-co, 
s -co, and c = s/N (c denotes the impurity concen
tration). Since the magnetic moment of the system is 
a self-averaging quantity, we have 

lim J!._ = c' 
N,..,.oo R ' 

where c* has a simple physical meaning-it is the 
average (in the thermodynamic sense) value of the 
ratio of the number p of impurities rupturing the posi
tive bonds to the total number R = N- r of positive 
bonds associated with a given temperature. If the 
partition function for the lattice containing impurities 
appearing in the work of LushnikovreJ is written in the 
form 

where 

Z, = .L, KN(r)f(N,s,r), . 
f(N.s,r) 55 .E c;_,c:-• xN-•-•y•-o+•a•v•-• 

• 
1 rf, d.!: = ""2;ti''Y -;.+1(x + zu)N-• (y + zv) ', 

then in the absence of a magnetic field the quantity of 
interest to us is given by 

• 1 ~ ~ P c• ·-• Co =z. ~gN(r) ~~ N-rCT ;cN-r-pyr-•+Pu,I'v•-P. 

• p 

Taking the relation 

into account, it is easy to show that the summation 
over p which appears in the expression for ct is 
identically equal to 

u ~d.!: uf(N -1, s -1, r) = -2 . -;- (x + zuv-•-•(y + zv) '. 
m z 

Then, writing Zs in integral form, and then carrying 
out the change of the integration variable indicated 
in raJ, we obtain the following relations for ct 

~ dz ( y + zv } / ~ dz ( y + zv ) C0'=U -(x+zr£)N-I8N -- -(x-zu)NSN --
z' x + zu z-+' x + zu 

::+s•· t S,.[y'(f- t) + v't]dt ;•+s•· SN[y'(1- t) + v't]dt . 
a-i• t•H ( 1 - t) N •+I a-i• t•+l ( 1 - t) N o+l 

Just as in article raJ, one can evaluate these inte
grals by using the method of steepest descents. In this 
connection the smooth factor t in the integral, standing 
in the numerator of the fraction, is taken outside of 
the integral sign at the saddle point ~. Then the final 
calculation of c* in the case H = 0 leads to a simple 
result: ct = ~. where ~ is related to 11 by the relation 
11 = (1 - 0 y2 + ~v2, and 11 is determined from the 
corresponding equation int6l, Thereby the physical 
meaning of the variable ~ ( 0 < ~ < 1 ), which appears 
in the basic formulas of Lushnikov's workt 6l, is clari
fied. Namely, ~ = ct ( T, c) is the concentration of the 
impurities distributed on the positive bonds. 

Let us return to the calculation of the function 
Gp(R, f). Evaluating the integral on the right-hand side 
of formula (3) by the method of steepest descent, we 
obtain 

G,(R, /) =fRexp [R{Ing(w)- c'Inx- (1- c') In (1-x)}]. 

Here~x denotes the saddle point, w = (1 - x)e + xl2 , 

and f differs from f = exp( 2 tJiJ.H/ q)· by the replace
ment of iJ. by jj. = iJ. 1c* + iJ. ( 1 - c* ). The saddle point 
x is determined from the equation which has the form: 

c' 1-c• d (4) 
- ro-t'+ l'-ro + droing(ro)=O. 

It is possible to obtain the solution of Eq. (4) in ex
plicit form only in the case of a weak magnetic field 
{iJ.H/kT « 1). Then the root of Eq. (4) which reduces, 
for H = 0, to the partition function calculated by 
LushnikovteJ has the form 

ro = 1- 2f>H [!',co'+ !'(1-co')]+O(H'), 
q 

i.e., in this approximation w does not depend on the 
specific form of the function ln g(w) = R-1 ln gR(w). 
In this connection 

~·Inx + (1- c') In (1- x) =co' In c.· +(1- co') In (1- co') +O(H') . 

Then taking into consideration the obvious relation 

exp[R{-co'ln co'- (1-co') In (1- co')}]= CR• 

and having omitted the terms ~ O(H2 ), we obtain the 
result that Gp(R, f)= c~TRgR, where a tilde above 
the symbol for a function means that in its argument iJ. 
is replaced by 'jL = 11-1~ + iJ. ( 1 - 0. Thus, the problem 
of the calculation of the partition function of a lattice 
containing impurities which change the magnetic mo
ment iJ. of a site to a new value iJ. 1 reduces, in the 
presence of a weak magnetic field 11-H/kT « 1, to a 
calculation of the partition function for a lattice having 
a certain effective magnetic moment per site, jj. = iJ. 1~ 
+ iJ. ( 1 - ~ ), in which the impurities only change the 
value of I to h. 

3. For a problem in which the impurities do not 
change the magnetic moment of a site, by again using 
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the methods of articleC8l we can indicate a solution in 
the case of an arbitrary (and not just for the case of a 
weak) magnetic field, which may apparently be of in
dependent interest. Thus, let us calculate the partition 
function of a lattice containing impurities which change 
I to It (but do not change the magnetic moment) in an 
arbitrary magnetic field. With Eq. (2) taken into ac
count we have 

' . 
=~rf,~(x+zu)NSN( y+zv ,f) 

2m 1' z<+• x + zu ' 

where the function SN(Y2 , f) is defined in terms of the 
partition function for a perfect lattice by the formula 
Z = xNSN(Y 2, f). Evaluation of this integral is carried 
out in the same way as in articleC8l, with only one dif
ference-the position of the saddle point ~ is now also 
determined by the magnitude of the field H: ~ = HH). 

The free energy ~c of a lattice containing impuri
ties in a magnetic field, calculated per bond, is ex
pressed in terms of 

F(y',f)= limlnSN(y',/) 
N-+oo N 

in the following way: 

-pEr.= F(TJ, /)- cln 5- (1- c) In (1- 5) + cpl, + (1- c) pl. (5) 

Here 1J = ( 1 - ~) y2 + ;v2, and the saddle point ~ is 
determined from the condition a({:3Erc)/a; = 0, which 
it is convenient to write in the form 

c 1-c (6) ---+--+F'(TJ)=O. 
TJ-Y' v'-TJ 

by using the variable TJ. 
We note that for H = 0 one can write Eq. (6) for the 

determination of the quantity 1}, that is, the corre
sponding Lushnikov equationC6l, in the form 

___ c_+ 1-c + v(TJ) =O. (7) 
TJ-Y' v'-TJ TJ 

Here the quantity v(T}) =TJF'(1J) has a simple physical 
meaning, namely: for an ideal lattice v(y2) is the 
concentration of negative bonds associated with a given 
temperature T. Actually, the quantity F(y2) is by 
definition related to the free energy per bond of an 
ideal lattice, £r(y2), by the relation - {:3~(y2 ) 
=-(%)ln y2 + F(y2). Let us further take into considera
tion that the energy per bond of a perfect lattice is 
given by it(y2) = d[(:3~(y 2 )]/d(:3. Then one can easily 
show that y2F'(y2) = (0(y2) + I]/21. The numerator of 
the last fraction, namely the quantity it(y 2 ) +I, is the 
energy per bond, measured from the ground state. 
Since the quantity 21 is equal to the change of energy 
associated with the resplacement of one positive bond 
by a negative bond, then this fraction coincides with 
the concentration of negative bonds in the lattice. 

Now let us calculate the magnetic moment of the 
system (per site) 

M,=-oEr, =-(ofT,) ~-(ofT,). (8) 
oH OTJ n8H oH 

One can easily show that with Eq. (6) taken into account 
the first term in (8) vanishes. Then if the magnetic 
moment of a pure lattice in a magnetic field has the 

form M = M(y 2, f), then it is obvious from Eq. (8) that 
the magnetic moment of a lattice containing impurities 
is given by Me = m(TJ, f), i.e., it differs only by the 
replacement of the quantity y2 = e-2 {:31 by TJ( H). Then 
the spontaneous magnetization is given by 

M,'""' lim M(TJ,/) = JLm(TJ), 

where 1J.m(y2) is the spontaneous moment of the lattice 
without any impurities, and 1J is determined from Eq. 
(7). 

4. Let us return to the problem originally formu
lated, concerning the determination of the spontaneous 
magnetization of an Ising lattice containing impurities 
which change the exchange integral I to the new value 
It and change the magnetic moment iJ. of a site to the 
new value IJ.t· Since in order to calculate the spontane
ous magnetization Mg it is sufficient to confine one's 
attention to a vanishingly small magnetic field, then 
one can use the assertion formulated at the end of 
Sec. 2. We recall that this assertion makes it possible 
to formally use the calculation of the magnetic proper
ties for a lattice containing impurities which do not 
change the magnetic moment iJ. of a site. Then the 
spontaneous moment Mg of this system has the follow
ing natural form: 

M.'=[JL•s+JL(1-5)]m(TJ), (9) 

where 1J.m(y2) is the spontaneous moment of an ideal 
lattice, and 1J and ; are determined from Eq. (7). 

We note that the general expression (9) obtained for 
the spontaneous magnetic moment in an arbitrarily 
transformed Ising lattice includes the corresponding 
result which was obtained earlier by Essam and 
GarelickC7l for the case of a model of dilute ferro
magnetism. This model was proposed by Syozi in[aJ 
and then was investigated in detail in the absence of a 
magnetic field by Syozi and Miyazima.C9l Using the 
notation introduced in[ 7l, let us indicate how to pass 
from the quantities I and It introduced by us, and also 
iJ. and IJ.t, to the corresponding quantities inC7 l. 
Namely: I= (2{:3rtln cosh 2K, It= 0, iJ. = 1 
+ ( 7'2)q tanh 2K, and iJ.1 = 1. Thus, the Syozi model is 
a special case of the transformed Ising model con
sidered by us, and in addition it is very specific in the 
sense that the introduction of impurities leads to a 
complete breaking of the exchange interaction between 
the corresponding lattice sites (It = 0). The model 
considered by us makes it possible to also analyze the 
case It¢ 0. 

5. Now let us apply the results obtained in Sec. 2 
and 3 to a planar square lattice in which the impurities 
change I to I1o but they do not change the value of the 
magnetic moment iJ. of a site, and in addition for sim
plicity we set iJ. = 1. Then the spontaneous moment 
M~ for such a lattice is calculated according to the 
formula Mg = m(T}), where m(z) is the well-known 
expression obtained by YangC 3l for the spontaneous 
magnetization of a planar square Ising lattice (per 
spin) below the temperature T>.. of the phase transition: 

m(z) _ (1 + z') '1•(1- 6z' + z') ''• z = e-''', (10) 
- (1-z')'" ' 

and 1}, as already indicated, is determined from Eq. 
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(7). Using the results of article[sJ, let us present for
mulas for the spontaneous magnetization in the neigh
borhood of the phase transition point in the case of a 
total breaking of the bonds ( I1 = 0) and a small con
centration of impurities, c << 1. In the vicinity of Ti\. 
the spontaneous magnetization per spin has the form 

m('l']) =Ab'1•, (11) 

where A = ( 8 + 4 {2) 112 and o is the deviation of 1J 
from its value 7Jo at the critical point (71 = 1Jo- o). 
According torsJ, 

abo 
6 ~ a+ clnc- clnlliol · (12) 

Here a = 1T( /2 + 1 W 2, and o0 is the deviation of the 
quantity y2 from y~ = exp{ -2I/kTi\.}(y 2 = y~ + Oo, 00 

« 1). In order to see the dependence on the tempera
ture T in Eq. (11), it is necessary to take into con
sideration that 

lio = (1- Y2)2h: ITa, T = (1',.- T) ITa. 

It is also of interest to discuss the behavior of the 
spontaneous magnetization in the limit T - 0. As we 
shall see below, depending on the sign of the new ex
change integral Ih lim Mg( T) exhibits a qualitatively 

T-0 
different dependence on the impurity concentration, 
where as before we shall regard the concentration as 
small ( c « 1 ). 

Thus, let us consider the solution of Eq. (7) as 
T - 0 in the case I hI « J. Using the expression for 
the energy of a square lattice (see, for example,C 10l), 
one can easily show that for 1J << 1 the expansion 
11(71) ~ 27] 4 + 0(7] 6 ) is valid. In the case of

2
a co~plete 

breakmg of the bonds (I1 = 0 and v = 1) y = e pi - 0 
as T - 0, and for T = 0 Eq. (7) degenerates into the 
relation c = 1J + ( 1 - 1J) 11( 1J ). Having substituted here 
the expansion of 11( 1J) for 1J « 1 and inverting the 
resulting power series in 1J, we find that 1J = c 
+ O(c 4) for T = 0. Having this solution of Eq. (7) to the 
zero order approximation with respect to the tempera
ture, one can easily obtain the temperature dependence 
of 1J by assuming y2 << 1 to be a very small parameter 
for the problem. It turns out that 1J = c + ye-2 f3I, where 
y ~ 1. 

Taking into consideration what has been said above, 
one can easily show that the low-temperature expan
sion of the relative change of the magnetic moment, 
~m = [mc(T)- m(O) ]/m(O), (calculated per spin) will 
be given by 

~m = -211' = -2c'(1 + 4ve'~I/c). 
We note that the decrease of the magnetic moment is 
proportional to the fourth power of the concentration. 
One can give an intuitive physical interpretation to this 
result. In fact, the magnetic moment of the lattice for 
T = 0 may decrease in comparison with the normal 
value only at the expense of the isolation of a group of 
sites, bounded by closed contours, along which occurs 
the simultaneous breaking of the bonds with the re
maining part of the lattice. The smallest group of 
such a type is an individual spin, all four of whose 
bonds with the nearest neighbors are broken. For 
small concentrations, formation of precisely such 

Schematic graph showing the depend
ence of the spontaneous magnetic mo
ment on temperature for a square lattice 
in the case of a small impurity concentra
tion, c <!!!:I, and II 1 i <!!!:I. For curve I, I 1 

> 0; for curve 2, I 1 = 0; for curve 3, I 1 

< 0; and for curve 4, I 1 = I. 
QL-~T~.--------~~-T 

groups is most probable. It is obvious that the number 
of such individual reversed spins is proportional to c4. 

Now let I1 « I where I1 > 0. In this case it is obvi
ous that for an arbitrary concentration of impurities 
(even for 7'2 :s c :s 1) there is a temperature kT* ~ I1 
below which the lattice is essentially completely 
polarized (for T = 0 the spontaneous moment in this 
case is equal to the nominal value). Solving Eq. (7) in 
this case, one can easily show that 1J = ce-2 f3I, i.e., 
1J vanishes at T = 0. 

Now let us consider the low-temperature behavior 
of the magnetic moment for I1 < 0 and I I1 I « I. In 
this case for T = 0 the quantity 1/v2 = 0 and, as be
fore, y 2 = 0. Then Eq. (7) degenerates into the relation 
c = 11(1]). Assuming c << 1, one can easily obtain 
1J = ( c/ 2)114{ 1 - 0( /C)}. Then the temperature depend
ence is given by the formula 1J = ( c/ 2)1/4 - 1 Bl e-!31 I1l 
where b is a constant which only depends on c, and 
the corresponding decrease of the magnetic moment 
(in comparison with the nominal value) is given by 

/l.m = -c[1- 41 b I (2 1 c) 'l•e-2W,I]. 

Thus, in contrast to the case of complete breaking 
of the bonds ~m turns out to be proportional to the 
first power of the concentration. Such a result in the 
case I1 < 0 is associated with the completely different 
structure of the ground state of the system ( T = 0) in 
comparison with the previous two cases, I1 = 0 and 
I1 > 0. Namely, for I1 < 0 the state having the small
est energy for T = 0 is the one such that all impuri
ties "sit" on negative bonds. It is easy to figure out 
that the most favorable clusters are those which, 
being arranged along a closed contour, change the 
sign of the exchange interaction on all of the bonds 
belonging to such a contour. In this connection all of 
the spins inside the contour have the same direction, 
opposite to the nominal direction. It is natural that the 
complexes in which all four bonds of a single reversed 
spin have new exchange integrals I1 < 0 are most 
probable. Since the formation of such complexes calls 
for favorable energy relations, their number is pro
portional to c if c « 1. 

We further note that for I1 < 0 the case of not too 
small values of c ( c S %) requires (even qualitatively) 
special consideration. Formally this is already clear 
from the fact that Eq. (7), which determines the depend
ence of the critical temperature Ti\. on the impurity 
concentration c for 1J = 1J 0 = /2 - 1, has a solution 
Ti\. = 0 for c = Co = ( 2 - {2)/ 4 independently of the 
value of the exchange integral I h 1. 

It is helpful to represent the results of the analysis 
of the behavior of the magnetic moment for a tempera
ture near 0°K in the case c << 1 and I I1 I << 1 in the 
form of a schematic graph (see the accompanying 
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figure), where for purposes of comparison the curve of 
the spontaneous magnetization of an ideal lattice is 
also shown. 

In conclusion I wish to take this opportunity to ex
press my gratitude to A. M. Kosevich for interest in 
the work and for valuable advice, and I also thankS. A. 
Gredeskul, M. A. Mikulinski1, and A. A. Slutskin for 
helpful discussions. 

1 A.M. Kosevich and V. A. Shklovski'l, Zh. Eksp. 
Teor. Fiz. 55, 1131 (1968) LSov. Phys.-JETP 28, 590 
(1969)]. 

2 Lars Onsager, Phys. Rev. 65, 117 (1944). 
3 C. N. Yang, Phys. Rev. 85, 808 (1952). 
4 M. Fischer, The Nature of the Critical State, 

(Russ. Transl.), Mir, 1968. 
5 V. L. Pokrovski'l, ZhETF Pis. Red. 11, 233 (1970) 

[JETP Lett. 11, 146 (1970)]. 
6 A. A. Lushnikov, Zh. Eksp. Teor. Fiz. 56, 215 

(1969) (Sov. Phys.-JETP 29, 120 (1969)]. 
7 J. W. Essam and H. Garelick, Proc. Phys. Soc. 

(London) 92, 136 (1967). 
8 Itiro Syozi, Progr. Theor. Phys. 34, 189 (1965). 
9 !tiro Syozi and Sasuke Miyazima, Progr. Theor. 

Phys. 36, 1083 (1966). 
1°Kerson Huang, Statistical Mechanics, John Wiley 

and Sons, 1963. 

Translated by H. H. Nickle 
204 


