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A theory of the oscillations of the inelastic differential cross section near the threshold reduced 
angle To = E~0 is presented for transitions due to pseudointersection of the terms. The theory 
employs the high-energy approximation and the weakness of the coupling between the states. The 
latter requires that the energy E be larger than the value Ema1 at which the cross section is 
maximal. Application of the results in an analysis of the data of 21 on inelastic scattering in the 
He+ -Ne system shows good agreement with experiment. 

AN analysis of the differential cross sections of 
elastic and inelastic scattering of atoms or ions makes 
it possible to obtain extensive information on the elec­
tronic terms of the colliding pair of atoms. A splendid 
example of such an analysis is found in the investiga­
tions[1'2l of elastic and inelastic scattering of He+ by 
the atoms Ne, Ar, and others. An interpretation of the 
anomalies of the differential cross sections points un­
equivocally[l,2J to the existence of term intersection 
that leads to excitation. 

The theoriesr3 • 4J of oscillations of cross sections 
due to intersection of terms attribute them to inter­
ference of contributions from two trajectories calcu­
lated under the assumption that the transition occurs 
at the point of intersection (and not in some finite 
region). Yet such a representation cannot be used to 
describe the first periods of the cross-section oscilla­
tions following the threshold angle. Kotovar 5l used the 
theory of transitions in the Landau- Zener model in its 
quantum variant[ 6J to investigate oscillations due to an 
inelastic process. The analysis given in[ 5J is valid for 
any energy. In this connection, the procedure for ob­
taining quantitative characteristics of the terms from 
the oscillations of the cross sections turns out to be 
quite complicated. One can count on obtaining appreci­
able simplifications of the theory in the high-energy 
limit. For single-channel elastic scattering, the use 
of even the first term of the expansion[7 l of the scat­
tering functions in powers of 1/E turned out to be 
quite useful for a unified reduction of the data of many 
experiments in terms of the reduced angle T = E 8 and 
the reduced cross section p ( T) = 8 sin 8a ( 8, E). 

In the present paper we obtain, in just such a high­
energy limit, an expression for the inelastic differen­
tial cross section near the threshold angles T 0, for 
transitions due to term intersection. We consider the 
case of weak interaction between the states, corre­
sponding to energies E > Emax, where Emax is the 
energy at which the cross section of the inelastic 
process reaches the maximum value. The developed 
theory is applicable further to an analysis of datar2l on 
inelastic scattering in the He+ -Ne system with excita­
tion of an Ne atom in the state 2p53s. 

Let us consider the problem of electronic transi­
tions in the simplest variant of two electronic adiabatic 

974 

states cp 1 and cp 2 • In the well known high-energy ap­
proximation or in the "impact-parameter" approxima­
tion[8•9l, the wave function of the system is written in 
the form (ti = 1): 

1jJ = c, (b,z)rp, exp (ikz- i Lv, (r)dz/u) 

+ c,(b, z)rp, exp ( ikz- i LV,(r)dz/u), (1) 

where b is the impact parameter, r = v'b 2 + z2, 
k = ,j 2mE the relative momentum of the system, 
u = v2E/m is the velocity, and V1 and V2 are the 
corresponding potential energies. 

The coefficients c1( z) satisfy the equation 

idc,(z) 1 ( . s dz ) 
~=--;V,;(r)exp -l-~(V,-V;)-;- c;, 

i=Fj, j, i= 1, 2 

with boundary conditions c 1(- oo) = 1, c 2(- oo) = 0, 
where vl2 = v:l is the matrix element of the interac­
tion between the states. Since we are interested only 

(2) 

in the zeroth term of the expansion of the quasi-classi­
cal phases in terms of VJE, we shall not discuss the 
difficulties that arise in the next-higher orders of the 
expansion as a result of the differences between the 
velocities at each term (see, for example,r 10l), It will 
suffice henceforth to concern ourselves only with the 
representation of the quasiclassical phases in a con­
vergent form, for which purpose it is necessary to put 

_ 1 soo 1 s· 1 ~ 1 dV, 
1'];-- V,dz=- V,dz=-J---z'dz. 

u 0 u _""' u 0 r dr 

Using the solution of (2) in first order of perturba­
tion theory in terms of the interaction between the 
states V12, we express the amplitude of the inelastic 
scattering through an angle 8 in the form 

-1 1 s~-- s~ dz 
f.,(S)=-----== yl+'/,dl V12 (r)-eiS<'·'·'l, (3) 

mu y2:n;sin6, ~~ u 

where the angular momentum l is connected with the 
impact parameter: l = mub, and the action S is equal 
to 
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1 { so 1 dV. , ~s 1 dV, , S(b,z,'t)=- --z dz+ --z dz 
u rdr rdr 

-~ 0 

' - J LlV(r)dz-2ib't}. 
0 

Here A V = V 1( r) - V 2( r) and T = E 8 is the reduced 
angle. At V1 = V2, the action S = S(b, T) coincides 
with the first term of the expansion in V/E at small 
values of ef 7 l, 

(4) 

We shall carry out the integration in (3), following[ 51, 

first with respect to the impact parameter b (or l), 
assuming that the saddle-point method with respect to 
the variable b is valid for all values of z. Thus, from 
the condition 

oS(bz't) I --- =0 
ab •=b(•.•> 

we obtain for each z and T the saddle-point value of 
b(z, T) satisfying the equation 

The value of the action at b = b(zT) is conveniently 
represented in the form 

(5) 

(6) 

1 • 
S(b(z,;)z) = S(b(zo't}, zo)--;-J Ll V(b(z', 't)z')dz'. (7) 

'• 

The latter can easily be verified by differentiating 
S(b(zT)z) with respect to z with (5) taken into account 

d 1 
-S(b(n)z) = --.1\V(b(z, ,;)z). 
dz u (8) 

Carrying out the indicated integration with respect 
to l (or with respect to b) in (3), we obtain for there­
duced inelastic cross section p( T, E)= 0 sin Bl f12(8) 12 
the expression 

1 - . z 2 

p('t,E)= I'-; J Vu(b(z,,;),z)l'!!(z't')e.xp{ -~J LlV(b(z',,;)z')dz'}l , 
-~ ~ 

(9) 

j'!(z,,;}=,;b(n) db(z't) =~db'(n), 
d,; 2 din,; (10) 

where the function b(z, T) is determined by Eq. (6). 
We have thus reduced the problem to a form analogous 
to the problem of transitions under the influence of a 
small perturbation while moving along the trajectories 
z = ut and r(z) = v'b2(z, T) + z2• 

We shall find it useful to investigate the integral in 
(9) by the saddle-point method. The saddle points Zi( T) 
of the exponential in (9) are determined from the condi­
tion for the vanishing of the derivative (8): 

LlV(b(z,'t},z) I•.<•> = 0. 

Consequently, the points Zi( T) are the points of inter­
section of the curve b = b(z, T) and the circle b2 + z2 
= r~ (r0 is the term-intersection radius). It is obvious 
that when T exceeds a certain T 0 , the circle and b 
b(z, T) will cross each other twice. However, there 
exists a value of To such that the b(z, To) curve is 
tangent to the circle at the point zob0, and the saddle 
point is not valid in the vicinity of this value. Outside 
this vicinity (see formula (26) below) we can use the 

usual saddle-point method for the calculation of (9 ), 
and we obtain 

p(,;,E) =IV j'!(z,,;)2nVu'l u•d'~~:·) ~-• e'"•-'"1' 

1/ I d'S(z) ~-· I' - f j'!(z,,;)2nV1>' u'a/- e••,+<•J• . (11) 

Here Zi = zi(T), p(z, T) is given by formula (10), and 
V12 = V12(ro). The difference between the actions AS 
= s1 - s2 is equal to 

1 •• 
S(b(z, 't),,;}- S(b(z,, 1:), ,;) =--;;-J LlV(b(z, ,;),z}dz, (12) 

,, 

and the phases ±1T/4 correspond to AF = dAV/drlr0 < 0, 
when d2S/dz2 § 0 for zi ~ 0. 

Expression (11) has the usual formf 3• 4l of a sum of 
two interfering terms, and the actions S1 and S2 corre­
spond to transition to another term at the points where 
the terms z1(T) and z 2(T) intersect: 

J:t:(") 
1 ° 1 dV, ~ 1 dV, 

S,(,;.,E)=-{J--z'dz+J--z'dz- J LlV(r)dz+2b(t}, 
u -~ r dr , r dr 0 

r=l'br+z', b,=b(z,, 't). (13) 

As alwaysf2l, the difference between the two impact 
parameters, which contribute to the interference at 
definite values of T, is 

d 
M=b,-b,= d,;[S,(,;,E)-S,(,;,E)]. (14) 

The second derivative of the action, which enters in 
(10), is, in accordance with (8), 

LlF=~I • dr ,0 

(15) 

and the derivative of b( z, T) with respect to z can be 
connected, on the basis of (6), with the derivative of 
b(z, T) with respect to T: 

ob(z,;) b dllVob(n) 
---;;;:-- = 2r'"d;'---a:;- (16) 

The quantity Bb/BT, which is the reciprocal of dT/db, 
is expressed at a fixed value of z in terms of the 
potentials V 1 and V 2 with the aid of ( 6). 

It is now easy to write down an equation determining 
the point T = To when z1( To) = z2( T 0 ) = Zo, i.e., when the 
curve b(z, T0 ) is tangent to the circle b2 + z2 = rg, 
Since the point z 0 is a multiple zero of the function (8), 
it follows that the second derivative of the action 
S(b(z, T) with respect to z should vanish at this point; 
with allowance for (15) and (16), this is written in the 
form 

d'S(b(z;,;)z} I =- M(~+~ob(z,,;) I ) =O. 
dz ,, u ro 2r0 i),; ,, (17) 

Thus, the values of z 0 and 7 0 should satisfy the 
equations 

_z_o- =- LlF b(Zo't) ob(so't) I 
b(Zo'to) 2ro O't . ,, • 

b'(Zo'to) + z.' = r.'. (18) 
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At T close to the value To, which we shall hence­
forth call the threshold value, expression (11) for the 
cross section does not hold. We shall therefore calcu­
late the integral in (9) in the vicinity of To without us­
ing the saddle-point method. To this end it suffices to 
take the pre-exponential factor in (9) at the point z0 , 

T 0, and to expand the argument of the exponential in (9) 
in a series in az = z - z0 and aT = T - T 0• We repre­
sent the function b( z, T) in the vicinity of ( z 0 , T0 ) in 
the form 

b(z,-r) = b0 + ~{-r --ro)+x(z -zo)+ 2~0 {z -zo)'o (19) 

We have introduced here the notation 

b0 = b(z0,-r0), 

X = ob {no) I Zo 
az I'Q =-To, (20) 

In the expansion (19) we have already taken into account 
the fact that the region az, which contributes to the 
integral, is of the order of ~ ,J (3b 0 a T. Using for a V( r) 
a linear approximation in the vicinity of the point of the 
intersection a V(r) = aF(r - r 0 ), and taking (19) into 
account, we obtain for z and T close to z 0 and To the 
following expression for the exponential in (9): 

S(b(z,-r),z)=So- !!F[~!!-r(z-zo)+_!i_ {z-zo)']o 
u 2r0 2r0 3 (21) 

Here So= S(b 0 , z0 , T0 ) and 

q=1+x'+v (22) 

q is a number of the order of unity. The term quadratic 
in ( z - z0 ) in (21) vanishes when account is taken of 
equations (18), which determine the point T 0 z 0 • 

Substituting (21) in (9), we obtain for p(T) near the 
threshold angle T 0 the expression 

( E )--''• ( !'1-r ( E )-''•) p(-r,E)=r.'A E; Ill' B~ Ji; 0 

Here 4>(x) is the Airy function, and A and B are 
dimensionless parameters independent of T and E, 
with values 

(23) 

A= 2 (4) ( 2nV.,~) (!!Fro' )''• ( ~)''•' (24) 
ro liu,G.F liu, q 

B = (1;-) ( !!Fr.' )''• ( :!:..._' 'I• o (25) 
ro liu, q 

Here 

Po=_!_ db'(z.-r) I ' u, = v 2Em, • 
2 dln -r <=<o 

q is a number of the order of unity, defined by formula 
(22). 

In the reduction of the data it is convenient to put 
E1 = 1 eV, so that E/E1 in (23) is simply the energy E 
expressed in electron volts, and for the He• -Ne pair 
u1 = u1( 1 eV) = 0.346 x 10-2 atomic units. 

At 

( E )''•1 11'1-rl >2-ro - -=c'IT, 
E, B 

(26) 

when the argument x of the function 4>(x) in (23) has a 

modulus larger than 2, a sufficiently good approxima­
tion of 4>(x) can be obtained from the asymptotic 
formulas that give the following expressions for the 
cross section: 

( E l!!-rl )-'t. { ( E )-'I• (!'1,;
0
-r)'''} • p{-r,E)=ro'C --- exp -D - 1:<1:0, 

E, -ro E, 
(27) 

and 

( E 1'1-r )-'t. I { ( E )-'t. ( !'1-r )''• in} 1• p{TE)=ro'C E;"~ 1-exp iD E; -:;.;-- +2 , 

-r>-r.+ll-r, (28) 

where 

C=fioq~ 
2ro'liu,!1F • 

D = _i_ v 2 !!Fro' (4)''• 0 

3 q liu, ro 
(29) 

The asymptotic formula (28) coincides with the expres­
sion (11) obtained by the saddle-point method, provided 
we substitute in the latter in explicit form the values 
of Zi( T) in the vicinity of T ~ T 0, namely 

l/2bo 
z..,(-r)=zo± r-1~1'1-rlo 

q 
(30) 

Formula (30) can easily be obtained from the equation 
b 2( Zi ( T) T) + zf( T) = d when account is taken of the 
function b(z, T) in the vicinity of z0, T 0 • 

Thus, the behavior of the cross section of the in­
elastic process due to the intersection of the terms is 
described near the threshold ( T ~ T 0 ) by formula (23). 

We now turn to the experimental data of[2J on the 
scattering of He• by Ne with excitation of an Ne atom 
in the state 2p53s. A typical plot of p ( T, E) at fixed 
energy consists of an exponential decrease of the cross 
section when T <To~ 103 eV-deg, regular oscillations 
when T > To; the period of the oscillations changes 
from 400 to 800 eV -deg when the energy E changes 
from 70 to 500 eV (for details seer2l). The amplitude, 
positions, and periods of the oscillations reveal a 
methodic modulation due to secondary long-wave 
oscillations. In[2l they are attributed to interference 
in the dissociation region, a process independent of the 
transition in the intersection region. In the present 
reduction of the experimental data ofr2l we shall there­
fore not explain the nature of these slow oscillations. 
We shall show only that the experimental characteris­
tics of the rapid oscillations as functions of the energy 
near the threshold T ~ To are described much better 
by formula (23) than by the classical formulasr 3 • 4 l 
such as (11 ). 

According to (23), the relative positions Ti of the 
maxima and minima of the cross section p(T, E) 
( i = 1, 3, .•• number the maxima, starting with i = 1 
for the first one; i = 2, 4, ••• number the minima) are 
given by the formula (E 1 = 1 eV): 

(31) 

where Xi( i = 1, 2, 3, ..• ) give successively the posi­
tions of all the extrema and zeroes of the Airy function. 
We shall need subsequently the values x1 = -1.019, 
x1 - x3 = 2.23, x1 - x2 = 1.32. The experimental values 
of T3 - T1 and T 2 - T1 shown in Fig. 1 were taken by 
us from Fig. 7 ofr2J and are plotted as functions of E113 
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where E is the energy in eV. We see that both functions 
can be approximated by the straight lines (31) with 
slopes 

(32) 

the ratio of which agrees exactly with the predicted 
f13/ft2 = I x1- x31/l X1- x2l = 1.69. We note that the 
deviation of the points from the straight line has a 
perfectly regular character and is undoubtedly due to 
the same mechanism that causes modulation of the 
amplitude. 

From f1 3 (or fd we can find the parameter 
To/B =fijI Xi- Xj 1. To find the threshold value To we 
use the formula 

-r,(E) =To+ ~ E'l•lxd ='to+ f,E'I•. (33') 

Figure 2 shows the experimental values T1 of the posi­
tion of the first maximum as a function of E 113• The 
best straight line (33) with slope f1 = I x1/(x1 
- x3) I f1 3 = 44 eV213-deg, drawn through the point, has 
an intercept To= 930 eV-deg atE= 0. The same 
mean value of T 0 is obtained if one plots 
T1 - ( T3 - T1 )x1/ (x1 - x3) as a function of E. The 
value To= 930 eV-deg is in full agreement with the 
fact that x = 0 (the zero of the argument of the Airy 
function) corresponds to a point on the exponential 
decrease of the first peak, at a level corresponding to 
~ 0.45 of the height of the peak (see, for example, 
Fig. 2 of[2l). The calculated values of fij and To make 
it possible to find the value of B = 21.6 for the dimen­
sionless parameter (24). 

A confirmation of the indicated analysis may be the 
dependence of the function N(T, E), introduced in[2l, 
on the energy and on T. The function N( T, E) assumes 
the integer values 0, 1, 2, .•. at the points T 1, 
T 3, ••• -the maxima-and half-integer values at the 
points of the minima. At large T (N(T) 2: 2}, when 
formula (11) is valid, we have 

1 •s<•l 1 
N(-r,E) = -2 - s ~V(b(z,T),z)dz --, 

:rtU 4 
z1(t) 

so that d[E 112 N(T, E)]/dT does not de~end on the energy. 
Indeed, if the slopes of the curves E12 N(T, E) as func­
tions of T, shown in Fig. 7 of[2l, are determined by 
starting from the points Ti 2: Ts (N 2: 2), then 
d( E1/2 N)/ dT is independent of the energy with a good 
degree of accuracy. Yet the slopes of the El/2N( TE) 
curves as functions of T, obtained in [21 from the first 
points Ti(i = 1, 2, 3), should depend on the energy, in 
accordance with (31) and the definition of N(T, E) in 
the following manner: 

;:_[E'I•N(-r,E)] = E'l•--1 - =1.04-10-'E'1• eV-1/2-deg-1 
d't 1:,--r, 

Figure 3 duplicates the points of Fig. 8 of[ 2l. The 
curve representing the function (33') describes the 
experimental points better than the constant value 
0.026 assumed in[2l. 

The theoretical dependences of the absolute values 
of the cross section on the energy agree with experi­
ment somewhat less closely than the data on the 
periods of the oscillations. It is possible that this is 
connected with the poorer resolution with respect to T 

Ti-Tj, eV-deg 

!~r-r-r-r-r---r-~~ 

§1/1/ 

4111/ 

Zl/1/ 

FIG. 1 FIG. 2 

FIG. 1. Energy dependence of the period of the oscillations near 
the threshold. The points were obtained from the data of [2]. 

FIG. 2. Determination of the threshold value of the angle r 0 from 
the dependence of the position r 1 of the first peak onE 113• The straigltt 
line with slope f1 = 44 eV2 i 3-deg, calculated from formula (33), has an 
intercept at To= 930 eV-deg. The points were taken from [2 ]. 

El> dN/dx X 10', ev-'h X deg"' 
JZ a~ 

FIG. 3. Energy dependence of the 
function d[EI>N(r, E)]/dr at values of ZG 
T close to the threshold T 0 • Points-
from [ 2], solid curve-theoretical rela- zu 
tion (formula (33')). 

f(JI/ ZflQ JQQ IIQIJ fUll 

FIG. 4. Energy dependence of 
the inelastic-scattering amplitude. 
Points-from [ 2]; the straigltt line 
corresponding to the theoretical 
relation (3 5) is used as an approx­
imation of p( T 1 E) to determine 

E,eV 

the constant A. 1u-tJL..::'...i-..J...LJ.JJ=-:.w....LU.u.w.~...w..J..L.nO 
ro' 

E,ev 

at high energies[2J. According to (23), the cross sec­
tion at the first maximum is equal to 

p'(T,, E) = 0.9 r?AE-•r •. (34} 

Figure 4 shows the experimental plot (Fig. 10 of[ 2l) of 
p( T 1, E) against E in a logarithmic scale. The straight 
line with the slope -%, which represents (34), corre­
sponds to 

( 10 )''• p(1:,,E) = 10-" E [cm2 ]. (35) 

From a comparison of (34) and (35) we find the value 
of A. Thus, the dimensionless parameters (24) and 
(25), which determine the threshold behavior of the 
cross section, are equal to 

A = 0.514, B = 21.6; (36} 

However, the values of A and B depend strongly on 
the three dimensionless parameters 1So/r~, 
~Frgj:liu 1 , and li = 21rV~2 /:Iiu1~F. The number q deter­
mined in (22) is close to unity. Among the three indi­
cated quantities, we can estimate independently the 
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order of magnitude of p0 /r~. Indeed, the lower bound 
of 

_ 1 iib' (zor) \ 
po=----

2 illn 't" <=<o 

is approximately the maximum value of the cross sec­
tion Pmax ~ 10-17 cm 2, attained at Emax = 25 eV[2 l. 
The equality p0 = Pmax corresponds to a unity proba­
bility of the transition at a given T and E (at E = 25 
eV, of course, both the high-energy approximation and 
perturbation theory in V 12 are contradicted). On the 
other hand, one can compare p0 with the elastic cross 
section 

1 dbej (.,;) 
pel =2dl~' 

which equals ~ 3 x 10-17 cm 2 in the region of appear­
ance of the first oscillations of the elastic cross sec­
tion of He •- Ne [lJ. From the picture of the potentials 
of the He• -Ne system, discussed in[ 2l, we can expect 
Po <Pel· Thus, we can assume that 10-17 :s Po < 3 
x 10-17 cm 2 • 

The table lists the characteristics of the t:;. F and 
V 12 terms in the intersection region and the value of 
K = zo/bo = Pot:..F/2roTo, all calculated from (36) at 
three values of p0 • Here q ~ 1. The obtained values 
are close to the estimates t:..F ~ F 1 = -26.2 eV/at.un. 
and V12 ~ 0.3 eV, given in[ 2J. 

Our analysis shows that the high-energy approxima­
tion works well even at energies E 2: 60 eV at poten­
tials Vi(r0 ) ~ 13.3 eV at the intersection point[ 2l. It 
would undoubtedly be of interest, however, to obtain 
the next higher terms of the expansion in V/E, so as 
to determine uniquely the characteristics of the terms. 
The theory must also be extended to include a descrip­
tion of the anomalies, due to the intersection of the 
terms, in the elastic channel. 

1017
- em'' -!J.F, I v,,,ev l·=~z./bo Po ' eV/at. un. 

s7,5Vq o,327q o,34Vq 
1,5 31 .4lfq 0,216q 0,27Jfq 
2 t9.syq- o,t62q o,2ayq-

Here q; I + K 2 + 'Y "' I; 'Y; 
bo a2 b(zro)/dz2 lzo. 
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