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We consider the dynamics of a Heisenberg antiferromagnet containing an isolated point defect, in 
which the noncollinearity of the magnetic moments of the sublattices is produced by an external mag
netic field. We determine the dependence of the resultant impurity oscillations on the applied field H. 
We show that quasilocal oscillations of the s type are revealed experimentally by the splitting of the 
AFMR line. 

IN recent experiments performed by Borovik-Romanov 
and Meshcheryakov, [1 1 a splitting of the antiferromag
netic resonance (AFMR} lines was observed in CoC03 
at a frequency on the order of 46 GHz in a magnetic field 
of approximately 3 kOe. An investigation of the chemi
cal composition of the samples in which this effect was 
observed has shown that they contain iron as an impur
ity, and the magnitude of the splitting increases with 
increasing concentration of the iron atoms, while the 
resonant frequency is practically independent of the 
concentration. The temperature dependence of the reso
nant frequency is the same as the analogous dependence 
of the sublattice magnetization. This might suggest that 
quasilocal states of spin waves were observed in these 
experiments. 

The question of the possible existence of impurity 
magnetic states in ferromagnets and antiferromagnets 
with antiparallel orientation of the magnetic-sublattice 
moments was considered theoretically in [ 2 • 31 , where 
the model of local perturbation, first proposed by I. Lif
shitz,[4-81 was employed. It is precisely the assump
tion that the interaction is local, and not that it is small, 
which is of importance in the investigation of the energy 
spectrum of nonideal crystals. 

In the present paper we consider the question of the 
existence of local and quasilocal magnetic oscillations 
in a noncollinear Heisenberg antiferromagnet containing 
a magnetic impurity of the substitutional type and having 
the symmetry of a body-centered cube. We find the en
ergy spectrum of such a crystal in a wide range of mag
netic fields for ferromagnetic and antiferromagnetic im
purities. We show that the quasilocal oscillations of the 
s type can interact in resonant fashion with the homo
geneous-precession spin wave, and can therefore be re
vealed experimentally by the splitting of the AFMR line. 

1. HAMILTONIAN OF NONIDEAL CRYSTAL 

We consider a Heisenberg antiferromagnet having 
the structure of a body-centered cube (Fig. 1) and con
taining an isolated magnetic substitutional impurity. We 
consider, in addition, only the exchange and Zeeman en
ergies. Such a model can describe sufficiently well an
tiferromagnets with anisotropy of the "easy-plane" type 
(MnC03, NiF2 , CoC03), and also antiferromagnets with 
anisotropy of the "easy-axis" type (0! -Fe20 3, Cr20 3), in 
magnetic fields exceeding the critical field of the "turn
ing over" of the magnetic moments of the sublattices. 
If we confine ourselves only to the interaction between 

• J" I 
I 
I 
I 0U 

FIG. I. Arrangement of the atoms 
closest to the impurity atom. 
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nearest neighbors, then the Hamiltonian of the system 
in question takes the form 

it = J ~ S,n+-'s,.- flogll ~ (Sm' + S2n') 

+~(J'S,,S2o'- JS1,S20)- flH (g' 820' -- gS20 '), 

"' where J and J' are the values of the exchange integrals 
of the matrix and impurity atoms; g, g' and S, S' are 
the corresponding g factors and spins of the ideal and 
impurity atoms; H is the external magnetic field and 1-J. 

the Bohr magneton; the vector n runs through all the 
lattice sites, A is a vector designating the atom closest 
to the given one; 1 and 2 are the indices of the magnetic 
sublattices. 

In a magnetic field H, the sublattice magnetic mo
ments become noncollinear, and it is therefore more 
convenient to change from the coordinate system (x, y, z) 
with the z axis directed along the field H, to a new sys
tem (~, 77, t), by means of the relations 

S.' = -S.• sin e.+ Sn' coso •. 

Here tin is the angle between the direction of the 
equilibrium position of the spin at the site n and the 
field H. 

(2) 

To find the weakly-excited states of the antiferromag
net, we use the Holstein-Primakoff transformation[9 1 

s.·=-iV 8; (a.-a.+), 

after which the Hamiltonian (1) takes the form 

fe = E +if;, + V, 

where the energy of the ground state is 
E = J 8 2 ~·cos (Eitn+t>- 8,n)- ftgll S ~·(cos 810 +cos 82n) 

nLi 

+ J' S' S ~cos (8,,- S,o)- flog' HS' cos 8,0 , 

"' 

(3} 

(4) 

(5) 
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and X0 and V are respectively the Hamiltonian of the 
ideal crystal and the operator of the perturbation intro
duced by the impurity; I:' denotes summation over all 
lattice sites with the exception of the impurity site. The 
equilibrium values of the angles en can be determined 
in principle by minimizing (5) with respect to en. How
ever, the solution of the system of equations obtained 
in this case is very difficult, and we confine ourselves 
to an approximation in which the en differ from the 
corresponding angles of an ideal crystal only at the im
purity site and on the first coordination sphere. Such an 
approximation should be sufficiently good, since the de
viation of en from the angle in the ideal crystal de
creases with increasing distance to the impurity like 
z-k, where z is the number of atoms closest to the 
given one and k is the number of the coordination 
sphere in which the n-th atom is situated. In this case 
the operators fi&0 and V take the form 

ifo = JS ~ [aioalD -t- tzinlZ:!n + cos• 8 (ain+AlZoo + tzinaln+A) 
(6) n!J. 

t sin• 8 (alo+!J.a2n + ainaio+A) I' 

V = ~ [v1a20 +a20 + v,a:Aal!J. + v3 (aiAa20 + a20 +a1A) 
!J. (7) 

where the values of vi are given by 

v, = 1/sJ.tH(g'cos0,0 -gcos8)+ [lcos28-l'cos (8,.,. -- 8,.)]S, 

v, = J.tgll(cos8u-cos8}+ IS cos28 -l'S' cos (8,.,.- 8,.), 

v,= 1M''/S'S. [1+cos(8,.,.- o,.)]-/Scos'8, (8) 

v, = '/,1'-yS'S. [1 - cos(O,.- 8,.)] -IS sin' e. 

In formulas (8), e is the angle between the equilibrium 
position of the spin of the first sublattice and the direc
tion of the magnetic field in the ideal crystal, and is de
termined by the well-known relation 

cos 8 = J.tgH /161S. (9) 

The dependence of the angles e20 and e 1~ on the field 
H is shown in Fig. 2 for the following values of the im
purity parameters: J'/ J = -0.5, 0, 0.5, and g'/g 
= 0.606. 

FIG. 2. Dependence of the 
angles IJ (curve I}, IJ 20 (2, 4, 6), 
and IJ 16 (3, 5, 7) on the magnetic 
field. The ratio J' /J is equal to 
0.5 (2, 3), 0 (4, 5), and -0.5 
(6, 7), g' /g = 0.606, S' /S = I. 

2. SPECTRUM OF IMPURITY OSCILLATIONS 

The dynamic properties of a nonideal system are 
conveniently described with the aid of a Green's func
tion defined by the equation 1 ) 

G.a~(w)= lim (n,a I , 1 , .I m,fl ). 
•-+o W - ~o - V- lS 

(10) 

where a, {3 = 1, 2, 3, 4 and the wave functions 
determine the following states of the system: 

In, a) 

In, 1) = a,.+IO), In, 2) = a,.IO), 
(11) 

ln,3)=a,.+IO), ln,4)=a,.IO); 

I 0) is the wave function corresponding to the absence of 
elementary excitations in the antiferromagnet. From 
(10) we easily obtain the Dyson equation relating the 
Green's function G(w) with the Green's function of an 
ideal crystal G0 (w ): 

G(w)= G0 (w)+ G•(w)V(1- G0 (w)V]-'G'(w), (12) 

from which we see that the poles of G(w), which deter
mine the energy spectrum of the impurity crystal, can 
be found from the equation 

D(w) = Re Det [1- G0 (w) V] = 0. (13) 

By virtue of the local character of the perturbation, 
the rank of the matrix (13) is finite (R = 36). However, 
since we take into account only the interaction between 
the different magnetic sublattices, the rank of the ma
trix is decreased by a factor of two. 

The Green's junction of an ideal crystal is obtained 
from (10) with V = 0: 

Here 

c::: ( w) = - c::: (- w) = c::.: ("') = - c:!' (- w) 

= ~ .E {(w- SIS) (w +SIS)'+ 641'S'[ (w +SIS) sin' 8 
k 

- ( w- SIS) cos' 8]<p•'} [ ( w'- w,.') ( w'- w,.') ]-'e'<•-•-m), 

G~:,: (w) =- G!~ (w} = c::: (w} =- c:!' (w} 

= 256/'S'sin' 28 .E cp.' e'(k,n-m) 
N • ( w'- w,.') ( w'- w,.') ' 

c:~'(w) = c:: (w} =- c:: (- w} =-c:!'(- w) 

SIS cos' 8 ~ ( w +SIS)'- 641'8' cos 28cp.' . • 
= ~ z z z z rpket( ,n-•>, 

N • (w -w,.) (w -w,.) 

G!~ (w} =- G!~ (w} =- G!~ (w} = G!!.: (w) 

(14a) 

(14b) 

(14c) 

= SISsin'8 ~ w'-,641'S'~1 +,cp.'cos,28} !Jl•e'(k,n-m). (14d) 
N ~ (w-w,.)(w-w,.) 

1"1;1. ak ak ak 
!Jl• = 8 LJ e•k" = cos-t- cos --t- cos :t

~~ 

(a is the period of the unit cell); w1k and w2k are the 
frequencies of the spin-wave excitations in an ideal 
crystal: 

w,t' = 641'S'(1 + 2cp. cos' 8 + cp.' cos 28), 

w,.' = 641'S'(1- 2cp. cos' 8 + <p.' cos 28). (15) 

It is seen from (15) that the second branch of the spin 
waves is nonactivational, and the first branch is activa-

llwe use throughout a system of units in which h = I. 
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tional, and in addition, when H > HE/-13 (HE = r.J/Js, 
= 16 JS/JJ.g) the dispersion of the first branch changes z.o 
from normal to anomalous. 

The cubic symmetry of the crystal in question makes 
it possible to simplify (13) appreciably. To this end we 
introduce the unitary-transformation matrix 

-·vs 0 0 0 0 0 0 0 0 

0 1 1 1 1 1 1 1 1 
0 1 -1 1 -1 1 -1 1 -1 
0 1 -1 -1 1 -1 -1 1 1 

1 
u= rs 0 1 1 -1 -1 -1 1 1 -1 (16) 

0 1 -1 -1 1 1 1 -1 -1 
0 1 1 -1 -1 1 -1 -1 1 

0 1 1 1 1 -1 -1 -1 -1 

0 1 -1 1 -1 -1 1 -1 1 

which enables us to change from the basis of the vec
tors In, a) to a new wave-function basis that breaks 
up the 18-dimensional space into eight orthogonal sub
spaces, each of which is transformed in accordance with 
one of the irreducible representations of the point group 
~. We shall designate them arbitrarily as s, p, d, f. 
The determinant (13) breaks up in the new basis into the 
following product: 

D(<o) =D,(w)D.'(w)D."(w)D1(w), (17) 

from which we see that the p and d levels are triply 
degenerate, with Ds, Dp, Dd, and Df taking the form 

[

1- 8 (v1G8~1 + v3G~1 - v,G8~2) 8 (v1G~" + v3Ggr- v4G~) 
- 8 (v,c:• + v3G8f"- v,Gg~•) 1 + 8 (v,c:• + vaG8t"- v,G~) 

D. = ,r- ... u •• ,r- ... •• u 
- y 8 (8v1G01 + v3A. - v,A. ) y 8 (8v1G01 + v3A, - v4A, ) 
- f8 (8v1G~ + v3A:'- v,A:') VB (8v1G~' + u,A~"- v4A:1 ) 

- fS(v2G~1 + vaG::021 - v,c:•> VB (v,Ggt' + v3G:"- v4G8:'> (18) 
- yB(v2G8~1 + v3G~1 - v,G~2 ) VB(v,G~ + v3G~2 - v4G~')j 

1 - (v2A!1 + 8v3G8~- 8v,G8~') (v2A!' + 8v8G8~4 - 8v,G8~3 ) ' 

- (v,A:' + 8v3G~- Sv,G8~') 1 + (v,A:• + 8v3G~- 8v4G~) 

[
1- v2A~1 

D1 (w) = A" 
- v~ i 

where 

• ' . d v A" ] 
1 , A"" , z = p, , /, 

T !12 i 

(19) 

A,= G,,• + 3G.,' + 3G,' + G17', A.= G.,'- G.,'- G,' +G.,', 

A.= G.,'+ G.,'- G,'- Gn', At =·Goo'- 3G,,' + 3G.,' -Gn•. (20) 

Using a computer, we calculated the Green's func
tions of an ideal crystal Gg0 , G~2, ~3 , and G~7 , and we 
also determined the solutions of the equations Di(w) =0 
for cos 9 varying from 0 to 1 in steps of 0.1. The solu
tion of the equation Ds(w) = 0 as a function of the mag
netic fi'eld H is shown in Fig. 3 for the following values 
of the impurity parameters: J'/J = -0.5; -0.1; 0; 0.1; 
g'/g = 0.606; S' /S = 1. Figure 4 shows the dependence 
of the d and f levels on the magnetic field at J'/ J = 0; 
g'/g = 0,606; S'/S = 1. 

The greatest interest attaches to local oscillations 
of the s type since, as shown by the analysis, they are 
the only ones contributing to the high-frequency mag
netic susceptibility x (w). Figure 3 shows, in addition to 
the s levels, also a plot (dashed) of the frequency of the 
homogeneous AFMR as a function of the magnetic field, 

4 
I 

FIG. 3. Dependence of s levels on 
J the magnetic field: the ratio J '/J is 
1 equal to --o.l (curve 1), 0.5 (2), 0 (3), 

--o.S(4),g'/g=0.606,S'/S= l. 
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FIG. 4. Dependence off levels 
(solid line) and d levels (dashed) on 
the magnetic field: J'/J = 0, g'/g = 
0.606, S'/S = l. 

from which we see that in certain magnetic fields 
(points of intersection of the AFMR line with the s lev
els) there can occur resonant excitation of the local im
purity oscillations by a homogeneous high-frequency 
field. This should become manifest experimentally in a 
splitting of the AFMR line, the value of the splitting be
ing proportional to rc, where c is the concentration of 
the magnetic impurities. On the other hand, the levels 
of the p, d, and f types can be observed by investi
gating the inelastic single-quantum cross section for 
the scattering of slow neutrons by impurity antiferro
magnets. 

The authors are grateful to Corresponding Member 
of the U.S.S.R. Academy of Sciences A. S. Borovik
Romanov and to V. F. Meshcheryakov for useful discus
sion of the work. 
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