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Domain structure is investigated in a uniaxial ferromagnet with small anisotropy. It is shown that the 
90-degree boundary assumed in the model of Landau and Lifshitz cannot be realized. This means that 
the model of Landau and Lifshitz does not guarantee a minimum of the energy. For thin films, a two­
dimensional structure is proposed, with a smaller energy of exit of domains to the surface (aniso­
tropy energy). The meaning of this circumstance is not completely clear, since it is impossible to 
take account of the energy due to formation of domain boundaries inclined to the axis of easy mag­
netization. This difficulty is a matter of principle (the concept of surface tension in general losses 
meaning for inclined boundaries), and therefore the problem of domain structure in thin films (un­
branched domain structure) cannot be posed correctly within the framework of macrotheory. The 
problem of greatest interest is that of branched domain structure in bulk specimens. A plane model 
of such a structure is constructed. At a depth h = 0.117 l ( l is the thickness of the plate), each 
domain splits. Thereafter a further splitting occurs. The process continues until the dimensions of 
the domains that are being formed become comparable with the thickness of the domain wall, o. It 
is shown that the dependence of the domain width a on the plate thickness l has the form 
a~ o113 Z2/ 3, This result is supported by experiment. 

1. INTRODUCTION 

THE basic results of the theory of domain structure 
were obtained in the well-known papers of Landau and 
Lifshitz[ 1• 2J (see also[3J). It was shown that in the case 
of a sufficiently thin ferromagnetic plate (film), the 
domains far inside the specimen are plane-parallel, 
uniform layers. The dimensions of the layers are de­
termined by the condition of minimization of the sum 
of the energy of surface tension on the boundaries of 
separation of the phases and the energy of exit of the 
domains to the surface. The latter arises through dis­
tortion of the structure near the surface of the speci­
men, at distances of the order of the domain width a. 
This energy, calculated for unit surface area of the 
plate, is proportional to the domain width a and is 
independent of the plate thickness l, whereas the 
energy of surface tension is proportional to l/a. 
Therefore the domain width is proportional to If. For 
a ferromagnet with small anisotropy ( Uan 
= Y2{3M2 sin2 9, where () is the angle between the mo­
ment M and the axis of easy magnetization (the z 
axis); {3/41T «1), the structure assumed inPJ was one 
with closed flux (see Fig. 1). 

It was shown in[ 4J that the flux-closure condition is 
only approximate (it is correct only in the limit {3/ 41T 
- 0). Near the surface of the specimen, there appears 
a magnetic field H ~ {3M, which orients the magnetiza­
tion at the surface almost perpendicular to the easy 
axis. This field penetrates even beyond the boundaries 
of the specimen and can be measured. We mention, 
incidentally, that such a field (of order 104 Oe) has 
been repeatedly observed on the surface of mono­
crystals of cobalt[s-?J, for which {3/ 41T ~ }'3, and cannot 
be explained within the framework of a closed-flux 
theory. 

In the same paper, the conditions for coexistence of 
phases in magnets were established: 
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~. = const, B.= const, Ill' (H,, B.) = const, 

lll'(H,,B.) = _ __!_sa BdH +~. 
4n, 4n 

(1) 

The magnetostatic problem of the theory of domain 
structures reduces to the solution of Maxwell's equa­
tions curl H = 0 and div B = 0 with the boundary con­
ditions (1). 

In[4J it was assumed that in the limit {3/41T- 0, the 
domain structure has the Landau-Lifshitz form (see 
Fig. 1). It will be shown below that a 90-degree bound­
ary cannot be realized even in this limitu. This means 
that the Landau-Lifshitz model does not guarantee a 
minimum of the energy (see Sec. 3). For thin films 2>, 
we shall obtain a structure with a smaller exit energy 
(anisotropy energy). The meaning of this circumstance 
is not completely clear to us, since it is impossible to 
take account of the energy due to formation of domain 
boundaries inclined to the axis of easy magnetization. 
This difficulty is a matter of principle (the concept of 
surface tension in general loses meaning for inclined 
boundaries). Furthermore, we were not able to get rid 
completely of 90-degree boundaries, so that our solu­
tion also does not guarantee a minimum of energy. 

FIG. I 

llwe are considering the case of uniaxial ferromagnets. In crystals 
of cubic symmetry, a 90-degree wall is possible [ 2 •8]. The domain 
structure shown in Fig. I has often been observed in iron (see, for ex­
ample, the review [9]). 

2>we apply the term "film" to a plate in which a plane domain 
structure is realized; the dependence of a on I has the form a - yT 



THEORY OF DOMAIN STRUCTURE OF UNIAXIAL FERROMAGNETS 965 

The ambiguity in the surface tension is important 
only when the domain dimensions a cannot be con­
sidered negligibly small in comparison with the plate 
thickness l. At the same time, a domain structure with 
a ~ IT is possible only at sufficiently small dimensions 
l: l < lc and, consequently, a < ac. The ratio of the 
domain-wall thickness 6 to lc, and also the ratio 
ac I lc, are numerically small but independent of f3 in 
the limit (3/47r « 1[21. 

The contribution of inclined boundaries to the total 
energy is of order a/l. It is not so small as to be com­
pletely negligible, and therefore the problem of the 
domain structure of thin films cannot be posed correctly 
within the framework of macrotheory. 

With increase of the plate thickness l, progressive 
branching of domains near the surface becomes 
thermodynamically advantageous. This was first dis­
covered by Landau in investigation of the intermediate 
state of superconductors[loJ. The paper of Lifshitz[ 2 1 

treated the initial stage of branching in ferromagnets. 
In uniaxial ferromagnets, in distinction to super­

conductors, branching of the domains becomes advan­
tageous at quite small dimensions l. Therefore the 
problem of greatest interest is that of the extremely 
branched structure. We shall construct here a plane 
model of such a structure for the case of a uniaxial 
ferromagnet with small anisotropy (Sec. 4). It will be 
shown that the dependence of the layer width a on the 
plate thickness l changes: a~ Z213• This dependence 
was observed for cobalt (see for example,P0l). The 
same dependence was obtained by Landau for super­
conductors [ 101. 

2. THE MAGNETOSTATIC PROBLEM OF THE 
THEORY OF DOMAIN STRUCTURES 

We shall now formulate the magnetostatic problem 
of the exit of domains to the surface. We suppose that 
there is no external magnetic field and that the axis of 
easy magnetization is perpendicular to the plane of the 
ferromagnetic plate. The exit-energy density is 

H' 1 H' 
!D=Uan+-=-~M'sin'B+-. (2) 

8n 2 8n 

In the limit of small anisotropy the second term can 
be neglected, since near the surface H ~ (3M, whereas 
far inside the specimen H - 0. Thus in the first ap­
proximation the field H can be left out of consideration, 
and the equations of magnetostatics reduce to the single 
equation 

divM=O, (IMI =M=const) 

with the boundary condition 

M.=O 
on the surface of the specimen; this guarantees 
closure of the magnetic flux in the specimen and con­
tinuity of it on the boundaries of separation of the 
phases. 

From the mathematical point of view, the problem 
reduces to solution of the eikonal equation 

(3) 

(4) 

( i!A )' ( i!A ' M ox + -az-)=1; M=rotA,. A={O,A(x,z),O}. (5) 

The lines of force are the lines of constant value of 
the vector potential A. 

z 
L-------------a-----------~ 

FIG. 2 

After the magnetization distribution has been found 
in the zeroth approximation with respect to the parame­
ter (3/ 47r « 1, the magnetic field H can be found in the 
following manner. 

The equation of state of the magnet (see[ 3 l) 

~M sin 8 cos 8 = H, cos 8 - H, sin 8 (6) 

is, for given e(x, z), a relation between Hx and Hz 3>, 
A second relation is Maxwell's equation curl H = 0. 

At the boundaries of separation of the phases, there 
are four equations for the four quantities Hx1, Hx2, Hz1, 
Hz2; the relations (6} for 8 = 01 and for e = 02 and the 
conditions Ht = const and ~'(Ht, Bn) = const. Thus, if 
we know, in the zeroth approximation, the position of 
the boundaries of separation and the distribution of the 
magnetization, we can find the magnetic field H on the 
boundaries of separation of the phases, and the equa­
tion curl H = 0 together with the equation of state {6) 
uniquely determines H(x, z) in the whole volume of the 
specimen. In the next approximation there is a small 
(proportional to (3/ 47r) displacement of the separation 
boundaries. 

3. DOMAIN STRUCTURE OF THIN FILMS 

In this section we shall show that it is possible to 
construct a solution of the magnetostatic problem with 
an exit energy that is smaller than in the Landau­
Lifshitz model; in it, the length of the boundaries per 
domain increases only by a quantity of order a, which 
is being assumed small in comparison with l. The 
proposed scheme of flux closure is shown in Fig. 2. 

The lines of force begin to curve at a depth equal to 
half the width a of a domain (at z = a/2). For z < a/2 
the lines of force are constructed out of segments of 
straight lines and arcs of circles; that is, we combine 
the simplest solutions of the eikonal equation: A= r· n 
and A = lr - r 0 1. The bold lines show the boundaries 
of separation of the phases ( A01 and 002 ). In the 
region A010 the center of the circles is the point 0; 
in the region 00102, the point 0 1 (x = z = 0 1D = ya/2, 

3> Usually this equation is treated as an equation forM at given H [ 3 ]. 

It is the condition for an extremum of the thermodynamic potential 
- H 2 1 H 

<I>= Uan-MH--= -- JBdH. 
8n 4n 

0 

It must b~entioned that the values of 0 for which the thermodynamic 
potential <I> has a maximum correspond to absolutely unstable states and 
must be rejected. 
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where y = 3 - 2 ,(2 = 0.172). Then D lies on the circle 
with radius OA = a/2. In the regions AH01 and 002GC 
the lines of force are straight lines, respectively 
parallel and perpendicular to the axis of easy magneti­
zation. 

In the region AH01D the lines of force may be con­
sidered coordinate lines TJ =canst in an orthogonal 
system of coordinates TJ~, where the lines ~ = canst 
in the region A01D are segments of radial straight 
lines, and in the region AH01 are continued by straight 
lines parallel to the x axis (for example, the line 
D01H). In these coordinates, the eikonal equation has 
the form 

( aA )' ( aA )' = 1 
a11 + as ' 

and the solution depicted in Fig. 2 corresponds to the 
function A = TJ. Consequently, the distances from a 
point on the boundary of separation A01 to the straight 
line AH and to the arc AD are equal. Therefore the 
line A01 is the parabola 2ax = (z- a/2)2. We con­
struct similarly the boundary 002, the parabola 2yaz 
= (x - ya/2)2. 

The region BHO~ consists of three squares. In 
Fig. 2 they are separated from each other by dotted 
lines. These squares are filled by lines of force in the 
same way as was the original square ABCO. On the 
surface there are formed new squares with side y 2a/2. 
The process continues until the dimensions of the 
squares being formed becomes comparable with the 
domain-wall thickness o. 

The exit energy per unit area of plate surface {with 
allowance for the two sides of the plate) is 

2~M2 •II 
E =--SJ dxdzsin'O(x,z). 

a ' 
(7) 

The ratio of this energy to the energy obtained for the 
Landau-Lifshitz structure (ELL= Y4 tJM2a) is 

E I ELL= 0.858. {8) 

Thus the exit energy is less in our model than in the 
model with closure triangles. The significance of this 
fact is not completely clear to us, for the reasons pre­
sented below. 

A. If the ratio of the domain width a to the plate 
thickness l were small (a/ l « 1 ), then our structure 
would be preferable, since the energy of surface ten­
sion (calculated for one domain) would be the same in 
both models (of equal t:.l) to within terms of order a/Z. 
Actually, even for quite small thicknesses l the domain 
structure begins to branchr 2•3l and ceases to be plane. 
In order to determine the critical values lc and ac at 
which the first branching occurs, it is necessary to 
know, in particular, the initial unbranched structure. 
The ratio ac /1c in the limit of weak anisotropy is 
numerically small but independent of j3[2l, This last 
fact is due to the fact that both the anisotropy energy 
and the energy of surface tension t:. = 2j3oM2 are pro­
portional to fl. Here o is the thickness of a domain 
wall, which in this problem is the only parameter of 
the dimensions of length, so that ac and Zc are pro­
portional to o, and the coefficients of proportionality 
are independent of j3 in the lim it j3/ 411 - 0. 

Experiment shows that for cobalt ac /lc = 0,12; 

when l < lc, that is when a/l > ac/Zc, the relation 
a~ -/Tis obeyedr 12l 4 >. This means that the ratio o/ac 
< 0.015, so that one can speak with very good accuracy 
of domains separated by an infinitely thin wall. At the 
same time there is no assurance that the additional 
energy due to the formation of domain boundaries of 
the type A01 and 002 will not exceed the gain of exit 
energy. The length of such boundaries is somewhat 
larger in our model than in the Landau-Lifshitz model 
(the sum of the boundary lengths in the region ABCO 
converges; it is a geometric progression with ratio 
3y = 0.516). 

To calculate the energy of a boundary of type A01 

and 002 is in principle impossible, since the concept 
of surface tension loses meaning for boundaries in­
clined to the easy axis. To explain this, we suppose that 
we know the structure of a domain wall. 

All quantities inside a domain wall change only in 
the direction perpendicular to the separation boundary 
(along the ~ axis). The values of Ht and Bn inside the 
domain wall do not change, whereas the values of Hn 
and Bt change, taking for ~ - ± ao the asymptotic 
values H~ and B[. As has already been indicated 
(see (1)), the values of the thermodynamic potential 
<P' at ~ - ± oo must coincide. This is a condition for 
existence of a solution of the wall problem (see[4 l ). 

The surface tension t:. is the contribution of a do­
main wall to the complete thermodynamic potential 

(i) = J [ U an- MH- H' + __<:._ ( aM, ) '] dV, 
8n 2 ax, 

where the last term in the integrand is the energy of 
nonuniformity, which vanishes far from the wall (in the 
one-dimensional problem). In general it is permissi­
ble to neglect the energy of nonuniformity far from the 
walls if a» o. In the absence of an external field, one 
may calculate instead of the thermodynamic potential 
~ the thermodynamic potential <P: 

- s HB 
(lJ = Cll + Sn dV, 

since the second term in this case vanishes. 
If at the boundaries of separation of phases, in ad­

tion to conditions (1 ), the condition Hm = Hn2 is also 
satisfied-as is always true far inside a specimen of 
ellipsoidal shape in a uniform external field H0 [ 4l 
(inside the wall, Hn may vary as usual)-then from the 
equality <P~ = <P~ it follows that ~1 = ~2 . In this case the 
surface tension can be defined as follows: 

But if Hn1"' Hn2, then likewise ~ 1 "' <1> 2, and the 
quantity t:. cannot be defined in this way. In fact, the 
position of a boundary of separation is determined only 
to within the wall thickness o. Therefore in case 
~ 1 "' ~ 2 it is not possible to separate uniquely from 
the quantity Jd~~(O that part that is due to the forma­
tion of a domain boundary. The indeterminacy in the 

4>In superconductors the situation is much more favorable. The 
ratio acflc is there so small [ 13) that the branched structure assumed 
by Landau [ 10 ) is never observed. Experimentally, all that is realized 
is the unbranched structure also calculated by Landau [ 3 • 14 ). Again, 
there are no literally small parameters in this problem. 
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surface energy is of order 5(~ 1 - ~ 2 ). If this quantity 
is small, then the surface tension can have an approxi­
mate meaning. 

In a uniaxial ferromagnet, the condition ~ 1 = ~ 2 is 
satisfied only for boundaries parallel to the axis of 
easy magnetization[4l: For large angles of inclination, 
the indeterminacy in the surface energy is of the order 
of the surface tension far inside the specimen5>. 

Thus in our problem, the concept of surface tension 
on inclined boundaries has no meaning. The surface 
energy ceases to be local; and in order to determine 
the advantages of various domain structures, it is 
necessary to consider the microscopic problem, that 
is to solve the static equation of Landau and Lifshitz[ 1J 
throughout the whole volume of the specimen. This 
seems to us impossible. 

In the theory of thin magnetic films, there are fre­
quent attempts to calculate the surface tension on in­
clined walls. From our point of view, this has no 
meaning. 

B. Besides the defect of the theory indicated above, 
in our problem there is also another difficulty, of less 
basic character. As has already been stated, the 
fields H1 and H2 on the boundaries of separation of 
phases must be uniquely determined from the relations 
(6) for e = 81 and e = 82, the Maxwell boundary condi­
tion Ht = const, and the condition for coexistence of 
phases 4>~ = 4>;. The number of equations in this case 
is equal to the number of unknowns, so that the problem 
has been correctly posed. Nevertheless, in our model 
there are on the boundaries sections on which these 
equations do not have solutions corresponding to stable 
states. Thus, for example, at point 0 2 there must be 
realized a so-called 90-degree wall; the angle of in­
clination of the boundary is 1T/ 4, while the direction of 
the magnetization changes by 7T/2. In the Landau­
Lifshitz model there are also such walls near the 
surface. The angles 81 and 82 are equal respectively 
to 1T and to 7T/2. On substituting these angles into Eq. 
(6), we obtain the two relations 

Hxt=H,,=O. 

The condition Hb = Hb in this case has the form 

H:t=Hx2· 

The thermodynamic potential 4>' can be expressed in 
the form 

H' H' 
<D'= U3JI-M,H,--' +-". 

8n Sn 

On taking account of the fact that 

we get 

MH, 
M"H"=--2-, 

MH., 
M,H,=-2-, 

H, =H.,= ~M I 2. 

The state Mx2 = M, Hx2 = FJM/2, Hz2 = 0 corre-

5>In the case 13/47f ::P 1, the indeterminacy in the surface tension is 
small (or order 4m5M2 ) in comparison with 6- of3M2 , if the angle of 
inclination of the boundary is not very close to 7r/2. In this case the 
surface energy has an approximate meaning. In superconductors, this 
difficulty in gener~ is a~ent, since in the separation boundaries Bn = 0 
and consequently <1> 1 = <1> 2 . 

sponds, as is not difficult to show, not to a minimum 
but to a maximum of the thermodynamic potential ~ 
for given H; that is, it is absolutely unstable. This 
means that the 90-degree wall, which was assumed in 
the Landau- Lifshitz model and also plays a part in our 
theory, is impossible 6 >. 

The boundary condition <1>~ =<I>; can be obtained 
from the equations of microtheory[ 4J. In the present 
model, this becomes the static equations of Landau and 
Lifshitz[ 1J, which themselves are derived from the 
condition of minimum thermodynamic potential ~. If 
we obtain a solution that does not satisfy the boundary 
condition <I>~ = <1>;, then that solution does not corre­
spond to a minimum of the energy. This relates both 
to our model and to the Landau-Lifshitz model. In our 
case the situation seems to us more advantageous, 
since there are sections of the inclined walls on which 
the boundary condition 4>{ =<I>; is known to be satisfied. 
Thus, for example, near point A, which the boundary 
A01 approaches with zero inclination, the presence of 
a stable solution is obvious. It is very probable that by 
slightly changing the structure shown in Fig. 2, one can 
obtain a solution that satisfies the boundary conditions. 

Thus the question of the domain structure of thin 
films remains unclear. Furthermore, the very posing 
of the question within the framework of macrotheory 
is unclear, since even if we obtain a solution satisfying 
the boundary conditions, we cannot take account of the 
energy due to the formation of inclined boundaries. 
Because of the fact that the solution of the magneto­
static problem is nonunique, one cannot show which of 
these solutions corresponds to the least energy. The 
difficulty arises from the fact that the problem can be 
formulated as a problem without small parameters 
(the parameter f3/ 41T is only a common multiplier in 
the complete energy and drops out of the equations). In 
this connection it seems to us very important to obtain 
reliable experimental data on the domain structure of 
thin films with small uniaxial anisotropy. At present 
such data are lacking, although the problem is being 
investigated rather intensively. 

4. PLANE MODEL OF A BRANCHED STRUCTURE 

As has already been indicated, for sufficiently large 
values of l the domain structure begins to branch. In 
the limit l/o- oo an infinitely branched structure is 
formed. We shall study here a plane model of such a 
structure, shown in Fig. 3. 

6lin the literature it is often assumed that the formation of a locally 
unstable state is necessary for attainment of a minimum of the complete 
thermodynamic potential q; of the body (see, for example, [8•9 ] ). Allu­
sion is made to the fact that Maxwell's equations make the problem non­
local. It can be shown, however, that from the condition of minimization 
of the complete thermodynamic potential 4> of the body there follows a 
local condition of minimization of the density of the thermodynamic po­
tential <1>, considered as a function ofM for a given local value of H. To 
demonstrate the instability of triangular closure domains, it is sufficient 
to consider infinitely small perturbations of the form 

oH = 0, oM= 1/47r rot OA, OA = {OA(x), 0, 0}, 

where oA(x) is an arbitrary function of three variables (oMz =I= 0), lo­
calized inside the triangular domains; the x axis is chosen along the di­
rection of M in the triangles. Such a perturbation decreases the anisot­
ropy energy without disturbing the equations curl H = 0 and div B = 0. 
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At a depth h, which will be calculated below, each 
domain splits. With approach to the surface, the width 
of the new domains increases, until it becomes equal 
to a/3. At this point a new splitting occurs. The pro­
cess continues until the dimensions of the domains that 
are forming becomes comparable with the thickness o 
of a domain wall. 

The concentration of the opposite phase in the 
original domain (of width a) after the n-th splitting is 
determined by the recurrence relation 

that is, 

c.='/,+ 'f, + ... + 1 I 3". 

For n - oo, we get c00 = %. This signifies closure of 
the magnetic flux in the specimen; that is, vanishing of 
the component of the magnetization normal to the sur­
face (averaged over distances of order o). 

Possible splitting schemes are shown in Fig. 4. The 
thin solid lines represent the lines of force. The bold 
lines show the boundaries of separation of the phases. 
We consider first a more general scheme, depicted in 
Fig. 4a. In the region ACO, the lines of force are arcs 
of circles whose centers are at the point 0. In the 
region BCGH, the center of the circles is the point o'. 
In the central domain, the lines of force are parallel 
to the axis of easy magnetization. The magnetization 
M is parallel (or antiparallel) to the axis of easy mag­
netization everywhere on the lines OA and O'H; that 
is, at the beginning and the end of each stage of split­
ting. 

It follows from the condition of conservation of flux 
that a point on the separation boundary ACB must be 
equidistant from the straight line AD and from the 
line AFE that is the continuation of this straight line in 
its role as a line of force (in the latter case, we mean 

the distance along a radial straight line; for example, 
CF for point C). In particular, DB= BE = an/6. 
Therefore 

~=DE =O'E-R.'= 00'-(R.+R.')=(R.+R.') (-1--1). 
3 cos a. 

We have, furthermore, 

h.= (R. + R.') tg a •. 

It will be shown below that the angles 9n are small 
(of order ( o/an)J./ 2 ). Therefore 

where 

R. +R.'=2a./3a.', 

h. = 2a. I 3a., 

(9) 

(10) 

(11) 

The parameter Rn, R~, hn, and 9n are determined 
by the condition of minimization of the total energy due 
to the splitting. 

We note that in polar coordinates with centers at the 
points 0 and 0', the equations of the lines AC and 
BC have the form 

(12) 

(12') 

Therefore the anisotropy energy of a section of height 
hn is 

• n P2 p, 

ij(•) = ~M' s sin' ada [ Jrdr+ J r' dr']. (13) 
0 P1 P3 

where 
R.-a.l2 R. 

P• = cosO ' P• = cos'a/2 • 
R.' + a.l6 R.' + a.l2 

P• = cos' 8/2 ' P• = cos a 

On allowing for the fact that en « 1 and neglecting 
terms of order a~ e~, we get 

U<·>= 112~M'[I/s8.'a.(R. + 'I.R.') + '/ .. O.'(R."- R.') ]. (14) 

By use of the relation (9), this expression can be 
transformed into the form 

U<•> = '! .. ~M' ['J,a.'a.- '/ .. (R.- R.')a.a.']. (15) 

Since the sum Rn + R~ for given 9n is constant, the 
smallest value of u<D> is attained when 

R.' = 0, R. = 2a. I 38 •. 

Thus the splitting scheme that is realized is that 
shown in Fig. 4b, and the anisotropy energy um> is 

u<•> = 'f.,~M'a.'a •. 
The energy of surface tension, Em>, is 71 

Ef"l=3h.~. 

(16) 

(17) 

where 1::. = 2 {3oM2 , o being the thickness of the domain 
wall; that is, 

E<"> = 4~1\M'a. I a •. (18) 

7)In the preceding section it was shown that the concept of surface 
tension, strictly speaking, loses meaning for boundaries inclined to the 
axis of easy magnetization, since the surface energy is determined only 
to within an accuracy 6(~ 1 -4'>2 ). For boundaries parallel to the easy 
axis, ~ 1 = ~2 [ 4 ]. In the case under consideration, the inclination of 
the boundaries is small (of order On), and the indeterminacy in the sur­
face energy is small in comparision with f:J.. 



THEORY OF DOMAIN STRUCTURE OF UNIAXIAL FERROMAGNETS 969 

The angle Bn is determined by the condition of mini­
mization of the value of u<n> + 2j3 E<n>, 

The second term includes only the energy of the 
boundaries of the central domain. Thus in the given 
stage, we shall minimize the energy that is due to the 
splitting. 

After simple calculations we get 

(19) 

The total energy of a region of width an and height hn 
is 

ClJ(•> = U<•> + E<•> = 2Y~p.M'a:1' 6'1•. 
313 

On using the fact that 

we get 

\""1 3•-t ClJ(•) ~ A.,pM'a'loll'l• 
.i..J 2 ' 
n 

1: 
1 a'1• 

h= h.=-Az-, 
4 11'1• 

8 
"-·= =1.15 

3"J'10(l'3-1) ' 

8 
'-·= 0.60. 

l'10(3y3- 1) 

The total energy of the specimen, per domain of 
width a, is 

(20) 

(21) 

(22) 

Cll = 21:3•-•ClJ<•> + 2PIIM'(l- 2h) = 2pM'a (2Ail'l•ll'l• + ~) • 

A= '/,(51.,- A.,)= 1.29 (23) 

where l is the thickness of the plate. 
It is still necessary to minimize the energy per 

unit area of the surface of the plate, that is CJ>/a. This 
gives 

a=ll'~•l'1•/A.'t., (24) 

(25) 

h=!::l=0.117l h,=h(1-~\ 
41. ' 3-.'3 ' 

h.= h, (26) 
(3"f3)•-• ' 

e.= 3•1'fffi(6/t.Z) ''•. (27) 

It is easily shown that 

h- r:h,., = (3-.'~·. 
n'=i 

If this quantity is of order of magnitude o, that is if 
( 3 -r3)n~ l/8o, then an~ o, whereas Bn ~ 1. Thus the 
total number of splittings is 

n,..,.- '/,In (l/ II). 

Figure 2 corresponds to the case l/o ~ 2 x 103, It is 
seen that the number of splittings is already quite 
small. With increase of l, the ratio a/l decreases, 
that is the angles of inclination of the boundaries de­
crease, while the number of splittings increases. 

It is easy to find the field H that turns the magneti­
zation M out of the easy axis. The corresponding prob­
lem was stated in general form in Section 2. To the 
first order in the angle of inclination e, we have 

B.=::b'PM6, B, = 0, (28) 
which agrees with the relation (6). A similar result 
was obtained by Lifshitz[ 2l. 

If we take into account that 

it is easy to see that (28) does not contradict the condi­
tion curl H = 0 and the Maxwell boundary condition Hh 
= Hb· The condition for coexistence of phases, CJ>~ 
= CJ>~, for small angles of inclination of the boundaries 
has the form[ 4l 

B., +B,,=O, 

which is also satisfied. The condition Bn = const is 
satisfied in the zeroth approximation (to within Hx1 

- Hx2 ~ {3M8n""" {3M(o/l)113 ). In the next approximation, 
it is necessary to allow for displacement of the bound­
aries of separation of phases. We shall not write down 
the formulas for the field H to the second order in e. 
The energy of the magnetic field, I dVH 2/8w, as has 
already been pointed out, is small in comparison with 
the anisotropy energy, and we shall not allow for it. 
Outside the specimen, the field H decreases rapidly 
over distances of order o. 

We shall now briefly discuss the proposed model. 
At each stage of the splitting, we introduced two vari­
ational parameters (R~ and 6n). The parameters 
an.1/an were not varied. The assumption that an+l/an 
= }/3 seems natural to us, but we are not able to prove 
it. The fact is that in the mathematical literature prob­
lems with boundaries not fixed have not been studied 
at all, and it is not clear by how many independent 
parameters the general solution is determined. We can 
assert rigorously only that the energy of the branched 
structure is not larger than what we have obtained. 

It is tempting to estimate the critical dimensions 
lc and ac at which the unbranched structure ceases to 
be stable. As an unbranched structure we take the 
structure of Landau and Lifshitz, for which CJ>/a 
= {3M2(2ol)112• Then lc = 36 ·2 3 A4o and ac = 33 ·23A2o; 
that is ac /lc = 0.022, whereas experiment shows that 
for cobalt, ac/lc R~ 0.12[ 121 • Our result, however, must 
not be taken too seriously; for, first, in order to deter­
mine ac and lc it is necessary to investigate the sta­
bility of the unbranched structure with respect to 
infinitely small perturbationsr2l, and, second, the very 
question of the domain structure of thin films with 
small uniaxial anisotropy is unclear. The Landau­
Lifshitz structure does not guarantee a minimum of 
the energy, although it evidently gives for the energy 
a value that is close to the correct one. 

The results obtained are valid also for ferromag­
nets of cubic symmetry. In this case also the aniso­
tropy energy, for small inclinations from the easy axis, 
can be written in the form Uan = Y2 {3M2 e 2• The energy 
of surface tension t::. can be represented in the form 
t::. = 2 {3oM2, where o is a coefficient of proportionality 
that does not coincide with the thickness of a domain 
wall. In cubic ferromagnets, the critical dimensions 
lc and ac are appreciably larger because of the fact 
that the energy of the unbranched structure is very 
small[ 2l. For that very reason, cubic ferromagnets are 
especially suitable for observation of a simple domain 
structure with closure triangles. 

The author is grateful to E. M. Lifshitz, S. V. 
Vonsovski1, and M. Ya. Azbel' for discussion of the 
results obtained. 



970 I. A. PRIVOROTSKII 

1 L. Landau and E. Lifshitz, Physik. Z. Sowjetunion 
8, 153 (1935). 

2 E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 15, 97 (1945) 
(J. Phys. USSR 8, 337 (1944)). 

3 L. D. Landau and E. M. Lifshitz, Elektrodinamika 
sploshnykh sred (Electrodynamics of Continuous Media), 
GITTL, M. 1957 (Translation: Addison-Wesley, 1960}. 

4 I. A. Privorotskil, Zh. Eksp. Teor. Fiz. 56, 2129 
(1969) (Soviet-Phys.-JETP 29, 1145 (1969)). 

5 L. H. Germer, Phys. Rev. 62, 295A (1942). 
6 M. Blackman and E. Griinbaum, Proc. Roy. Soc. 

(London) 241A, 508 (1957); 245A, 408 (1958). 
7 B. P. Bilenskii, in the collection Fizika magnitnykh 

plenok, Materialy mezhdunarodnogo simpoziuma 
(Physics of Magnetic Films, Data of an International 

Symposium), Irkutsk, 1968, p. 145. 
8 L, Neel, Cahiers de Phys. 25, 1 (1944}; J. Phys. 

Radium 5, 241 (1944). 
9 C. Kittel, Rev. Mod. Phys. 21, 541 (1949). 

10 L, Landau, Zh. Eksp. Teor. Fiz. 13, 377 (1943}. 
11J. Kaczer, Zh. Eksp. Teor. Fiz. 46, 1787 (1964) 

(Sov. Phys.-JETP 19, 1204 (1964)). 
12 B. Wyslocki and W. J. Zietek, Phys. Lett. 29A, 114 

(1969 ). 
13 E. M. Lifshitz and Yu. V. Sharvin, Dokl. Akad. 

Nauk SSSR 79, 783 (1951). 
14 L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 371 (1937). 

Translated by W. F. Brown, Jr. 
201 


