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Point defects are transformed into quasiparticles (defectons) at low temperatures. The main char­
acteristics of defecton excitations are obtained on the basis of a microscopic model. The scattering 
of defectons by phonons and electrons is considered. The temperature dependence of the defecton 
mean free path is found. Defecton-defecton scattering is considered. 

AT low temperatures, in view of the translational 
symmetry of the crystal lattice, point defects (vacan­
cies, impurities, interstitial atoms) cannot be regarded 
as localized at definite points of the crystal. They are 
transformed into quasiparticles-defectons-with 
quasimomentum p and dispersion E:(p). A semiphe­
nomenological theory of defectons was constructed by 
Andreev and I. Lifshitz(ll. In this article we find the 
main characteristics of defectons within the framework 
of a microscopic model. 

DISPERSION LAW 

We consider a primitive cubic lattice with one point 
defect. If it is assumed that it is localized at the site 
r, then the Hamiltonian of such a system is given in 
the harmonic approximation by 

1 ~ 1 ~ ... • .. • .. 
H, = 2 "'"'m. ua' + 2 "'"' <I>aa•(r) (ua•- Ua •(r)) (ua•- Ua• (r)), 

R RR'.... (1) 

where ui is the o--component of the radius vector of 
the atom numbered R, u,:(r) are the coordinates of 
the equilibr,ium position of the same atom, O" = x, y, 
z, and ~~R'(r) is the elastic-coefficient matrix. 

If we introduce 3N-dimensional vectors x and P 
with components 

.x,""' .xa• = ma''• ua•, P, = ma''• ua•, i = (R, a), (2) 

then (1) assumes the more convenient form 

H, = '/,(P, P) + U, = '/,(x- x•, :do'(r) (x- x0 ) ). 

Here (a, b) denotes the scalar product of the vectors 
a and b, and the matrix elements w2 are connected 
with the elastic constants by the relation 

(~o'(r) );~. = ma-'1• <I>:,;.(r) m;~. 

The eigenfunction of the ground state of the crystal 
can then be written in the form 

(det~o)'l• { 1 A } 

'~>•(.x)= (nli)'NI•exp - 21i(x-x0,w0(r)(x-x•)) 
(3) 

( N is the number of atoms), and the energy of the 
ground state is 

Eo= '/Jt Sp IDo(r). 

The ambiguity in the extraction of the square root of 
the matrix w2 is eliminated by the requirement that 
the quadratic form ( x - x0 , w0 ( r )( x - x0 ) ) be positive 
definite. 
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In view of the identity of the lattice sites, the crystal 
energy does not depend on the location of the defect. 
Consequently, the correct wave function should have, 
in the zeroth approximation, the form of a superposi­
tion 

lTr 1 ~ '"'•h 
-rk = yN "-;e ..... 

We consider further the Schrodinger equation 

'/.li'X'l' +<E- U)'l' = 0, A""'~ fJ'/iJ.x,•. 
(4) 

The potential U in this equation is in general a 
complicated function of the coordinates of all the 
atoms and takes into account the possibility of the 
transition of the defect from one site to another. U 
coincides with Ur in the configuration-space region 
corresponding to "good localization" of the defect at 
the site r. In this region l/Jr differs appreciably from 
zero, and all the l/Jr'(r' ;.o r) are vanishingly small. 
We therefore have there in first approximation 

'/.ft''i.ljl, + (Eo- U)ljl, F 0. (5) 

In the model chosen by us, we shall asswne that U 
coincides at any point of configuration space with one 
of the functions Ur. Therefore, with equal accuracy, 
we can replace -+ in (4) by lJik. We then multiply (4) 
from the left by -+r, and (5) by >J!k, subtract one equa­
tion from the other, and integrate over the volume in 
which l/Jr is defined. We transform the resultant 
expression by means of the Gauss theorem and take 
into account the fact that the particle flux vanishes at 
infinity; we then obtain 

li' ( f) f) 
(E-Eo) fljl.'l'kd.x=-2 ~ f '~>•-'l'k-'l'k-ll>r}d'.x, 

"'"' i'J.x, fJ.x, < B 

(6) 

where dix = dx1 .•. dxi-1 dxi+l .•• dxsN, and S is the 
surface bounding the region of variation of the defect 
coordinates. Recognizing that the contribution to the 
flux is made mostly by the atoms closest to the defects, 
we get 

(7) 

Here 0 runs through the values over the nearest 
places to which the defect can move, and xo is the 
coordinate of the actually moving atom and relates r 
with r + 0. Thus, for example, in the case of an im­
purity this is the coordinate of the defect itself, and in 
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the case of a vacancy it is the coordinate of the atom 
that goes over to its place. 

For a primitive cubic crystal, the integral in the 
right-hand side of (7) is independent of 6. Thus, 

s(k) == E -Eo= A(cos k.a +cos k.a+cosk,a), 

A= n• H 'i'r B:o 'i'r+6- '¢.r+6 8:o 'i'r) d0z, 

where we have put x0 = x0 and a is the lattice con­
stant. 

(8) 

Expression (8) gives the defecton dispersion law, 
and the width of the defecton band is E: = 6A. At small 
values of the wave vector (ka ~ 1) the dispersion is 
quadratic and the quasiparticle behaves like an ordi­
nary particle with mass m* = -ti.2/Aa2 and velocity 
v = kAa/n. 

We see that the main characteristics of the defecton 
are expressed in simple manner via the probability 
amplitude of the transition of the defect to the neighbor­
ing cell. To calculate this amplitude we choose a co­
ordinate system with origin halfway between the old and 
new positions of the defect, and with the x0 axis 
directed along the straight line joining them. The sub­
scripts plus and minus pertain to the defect location in 
the half-spaces x0 > 0 and x0 < 0, respectively. The 
equilibrium positions of the defect will be designated 
accordingly by Zo and -Z0 • Then 

where 

f (x) = (~ + &oo) l~- 2lo ~ [&;,. (z.- z~)- iilo,.(zn -.x;;)] 
n.-o (10) 

+ ~ [ &;;.n (zm -z+ m)(Zn- z~) + iil;;.n (zm- z;;.}(zn- z;;}l, 
n.-o. m.-o 

lo= afm/2. 

To simplify the notation we put ai~m = ;;,~n with 
m ~ 0 and n ~ 0, and imply summation over repeated 
indices. Expanding f(x) about the minimum point x0, 

we can transform (10) into 

/(x) = /(x0) + 2a,..(Xm- Zm0) (z.- Xn°}, 
(11) 

(12) 

where a = (a+ + a-)/2, an= (xD.- xi))/2Zo are the 
relative displacements of the equilibrium positions of 
the atoms when the defect goes from one cell to the 
other, and f( x0 ) is given by 

f (x0) = 1!2ma2 [iii0o- Ooo +(iii+- ii'nonl\n 
- (&a-1 (a+- a-})andn + (Lla-, a-la+Ll)], 

- &<- + &- - &+- &- -1 &+- &-
(J)=--2-, Q=--2-a --2-. 

Substituting (11) in (9) and integrating, we obtain 

(13) 
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FIG. I. Effective shape of potential 
in which interstitial atom is situated. 

FIG. 2. Effective shape of potential well 
for a single event of ejection of a vacancy 
into the neighboring site. 

We see therefore that the transition probability 
amplitude depends in a very complicated manner on 
the elastic coefficients and on the displacements of the 
equilibrium positions of the atoms. We shall therefore 
consider a simplified model, the form of which is sug­
gested by (8). In this expression, the coordinate along 
which the defect moves is well pronounced. We therefore 
assume that the defect has only one degree of freedom 
and is in a potential well made up of the remaining 
atoms of the crystal. Depending on the character of the 
defect, it can have different forms. Thus, for example, 
in the case of an interstitial atom, it can be repre­
sented in the form of an infinite periodic potential well 
(Fig. 1), whereas in the case of a vacancy it can be 
assumed for each individual transition that the atom 
closest to the vacancy is in a double symmetrical po­
tential well (Fig. 2). The vibrations of the remaining 
lattice atoms will be represented by a single "most 
dangerous" vibration in the direction of the Y axis, 
which is perpendicular to X. 

The potential energy of the system with the vacancy 
then takes the form 

_ { u+ = ro1 (X -l0} 1 + Q'Y' + 2ro,'(X -lo) Y, X> 0, 
U- u- = ro'(X + lo)' + Q'Y'- 2ro,'(X + lo) Y. X< 0 

(Ad::).,)(t- h: ) 
At(t+ 'h)+h.(i- 'h) . 

a= Y2[X1(1 + cp/D) + X2(1- cp/D)], where the eigen­
values X1 and X2 of the matrices w• and &,- are re­
spectively equal to 

[ !J'+oo• D ]''• A, .• = 2 ±2" , D=)'cp'+4ro,•, cp=Q'-oo'. 

The fact that U is positive definite, 0 2 w2 > wi, en­
sures that X1 and Xa are real. Then 

1 ).,)., 

f(x"} = ma ).,(1 + cp/D}+ ).,(1- cpfD)" 

If the energy of the interaction between the oscilla­
tors is low, i.e., 2w~ ~ I cp I or 2w~ » I cp I, but w~ 
<< wO, then we obtain the obvious result 
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f(x') ~ mroa' / 2. 

If, however, the interaction energy is of the order of 
the energy of the oscillators themselves, i.e., w~ 
~ wn, then the transition probability increases 
greatly with increasing w~: 

f(x') ~ ma'l'(l)Q- (1) 12• 

SCATTERING OF PHONONS AND ELECTRONS BY A 
DEFECTON 

At zero temperature, the defecton moves through 
the crystal without dissipation. In view of its low 
velocity compared with that of sound, the "gas" of 
zero phonons present in the crystal has time to adapt 
itself to the defecton, which moves together with an 
adiabatically adapted phonon "cloud" that strongly 
influences the defecton mass; in the case of a vacancion, 
this cloud determines the mass completely. With rising 
temperature, scattering of thermal phonons by the de­
fecton sets in. Since the defecton mass is large and its 
lifetime much longer than the relaxation time of the 
phonon gas, the scattering is the same as by a force 
center. Therefore the cross section for scattering by 
a defecton can be replaced by the cross section for 
scattering by an immobile defect. 

If the elastic-coefficient matrix ~~~' is written in 
the form of the sum of the matrix of the ideal crystal 

(](J' ' 
LR-R' and the perturbation matrix A~R' then, as is 
well known[ 2l, the wave function of the scattered phonon 
is given by 

where 

"+ \"1 a A a,a - "(k) ika Ta .i...J 'Ta2 2 1"R,R - q; e , 
a ,a, (14) 

!Ia~ = ~ \"1 _!_ J dx 
(2n)'"-.. m J.~<(X)-ro'-iO 

' 

V is the volume of the unit cell, J..q( K) is the disper­
sion law of the i-th oscillation mode, and qi(k) are 
the polarization vectors. 

Let us consider the case of greatest interest, when 
the phonon wavelength is large compared with the in­
homogeneity dimensions. As is well known, the 
elastic-coefficient matrix ~~~' has the important 

property 
\"1 ... "-..! «Daa' = 0, (15) 
a• 

which follows from the definite behavior of the forces 
acting on each atom when the crystal is transported as 
a whole. This condition is also satisfied by each of the 
matrices L~~~' and A~~,. Then the quantities 

{3~2~ are small, and their sum is equal to zero: 

~~=~a<;;; 1. E ~~=::. = o. 
a, 

Consequently, we can neglect the sum in (14). As a 
result, 

Arx = ~ q;"' (x) e-lxR,A~~it,eikR,q;"' (k)· 
RtRtOtOs 

(16) 

Since in primitive lattices each atom is a sym­
metry or inversion center, this expression can be re­
written in the form 

whence, taking (15) into account, we obtain for small 
k and K 

.. \"1 • • R A"'"' kR " - • (0) At,/' = ~ qi 1q; 2X 1 R 1R 2 2, qi = qJ ' kr,<;;; 1, 
.lC 1 n.~u,o2 

r 0 is the dimension of the inhomogeneity. The function 
of the scattered long-wave phonon can then be written 
in the form 

"(R)- \"1 "• • "• V 1 J dx \"1 kR A"'"' R ,,a 
X;• - "-.!q; q,q, me,' (2n)' k(-x'+iO "-..! ' a,a,x ,e ' 

10102 R 1R,1 

where account is taken of the fact that J..Li( K) = ci K 2 , 

at long wavelengths, and the notation kfci = w2 is in­
troduced ( Ci is the velocity of the phonon of the i-th 
mode; i = 1, 2, 3). Retaining only terms proportional 
to 1/R, we obtain the asymptotic form of this function 
at large distances: 

V \"1 1 \"1 e••,R 
XJ>."(R) = 4; "-..! q."qt•q,•• mel"-..! kR,A;;~,k,'R,R (k,'""' k,R/R). 

1(110'2 RIR2 

We see that a phonon with polarization a belonging 
to the j-th oscillation mode forms, after scattering, 
three diverging waves corresponding to the three 
vibration modes in the lattice. The cross section for 
the scattering of the phonon of the j-th mode, as are­
sult of which the phonon of the i-th mode is obtained, 
is given by the expression 

where dO' = 21T sin ad a, and a is the angle between 
the directions of the incoming and scattered phonons. 
Averaging (17) over the modes and over the polariza­
tions of the incident phonons, and summing over the 
modes and polarizations of the scattered phonons, we 
obtain a general formula for the cross section for the 
scattering of a phonon by a local defect in a primitive 
lattice of any symmetry: 

oo..- = 3(4:e')'E { E kR,A=:lk'R, }' dQ'. 
ap2 R 1R 2 

In the case of a cubic lattice this yields 

3 2 }' 
da..- = ( 4name' ) L { E kR,A~~i, k'R, dQ', 

a, a~, 

and if the interaction between the displacements of the 
atoms in perpendicular directions can be neglected, 
then 

da ... = ( 41!::,) 2 
{ E kR,Aa,a,k'R, PQ'. (18) 

a 1R 2 

For concreteness, let us consider the case when the 
defect is a vacancy, and confine ourselves to the inter­
action between the nearest atoms. Then 
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f.t(k) = -2(L, I m) (3- cos k,a- cos k,a- cos k,a), 

from which we see that L 1 is connected with the speed 
of sound by the relation 

c' =-(a' I m)L,. 

On the other hand, the condition (15) enables us to 
express all the elements of the matrix ARR' in terms 
of a single element. Recognizing also that in the case 
of a vacancy Aoo = -L0, we obtain 

mc2 mc2 

A.o=--6--;.-, Aoo=-;;z=-A.o. 

Substituting in (18) and summing, we obtain the phonon­
vacancy scattering cross section 

~ k ~ 
dcrn•= (2n)'(ka)'(nn')'dQ', n=T• n'=T· (19) 

If the defect is a substitutional atom, then this quantity 
must also be multiplied by the "intensity" of the per­
turbation A 2 = (A 00/L00) 2 • In view of the complete for­
mal similarity of the expressions for the functions of 
the scattered phonon and electron[ 3l, formula (19) also 
gives the cross section for the scattering of long-wave 
electrons by a val-ancion in the plane-wave approxima­
tion. 

We note also that if the unit cell contains more than 
one atom, then condition (15) is replaced by 

(20) 
R's' 

( s is the number of the atom in the cell), and in lieu of 
(16) we get the matrix 

~. = ~ q;•a (1') e-i•R•A;;':i':eikR,qj'0 ' (k), (21) 
RtR:tSs'oo' 

whose elements, generally speaking, do not vanish as 
k- 0. If, however, at least one of th~.indices i and j 
pertains to the acoustic mode, then A~~ = 0. This fol­
lows directly from (20) and (21 ), if it is recognized 
that the polarization vectors for the acoustic modes do 
not depend on the number of the atom in the cell. Thus, 
the optical and acoustic vibrations become separated. 
The expansion of the scattering cross section in powers 
of the wave vector begins with a constant for the opti­
cal phonons and with k4 for the acoustic ones. At low 
temperatures, however, the number of optical phonons 
is exponentially small and they can exert no significant 
influence on the defecton motion. 

MEAN FREE PATH 

We start from the energy and momentum conserva­
tion laws. Let p and m* be the wave vector and the 
mass of the defecton, and k the wave vector of the 
phonon. The same quantities after collision will be 
marked by primes. Thus, we have 

p+k=p'+k', 

ft'p' ft'p" --+ hw. = --+ ftw •• 
2m' 2m' · 

Recognizing that for long waves Wk = ck and the de­
fecton velocities are small compared with the speed of 
sound, and also recognizing that the phonon momentum 
is small, tik << m* c, we obtain 

k'kk' k' - =-(pn -pn)--(1-nn'), 
Po Po 

This is the change in the magnitude of the phonon wave 
vector as a result of one collision. Obviously, the total 
change of the wave vector of the phonon gas per second 
is given by the integral 

q = 2
3c, J n(k) (k- k')dcr ... dk, 

( n) 

where n(k) = (eliwk/T- 1)-1 is the distribution func­
tion of the bosons, and the factor 3 takes into account 
the three possible phonon polarizations. After integrat­
ing over the angles we obtain 

4ca' J k' 
q = (2n) 'Po dk e~'•tr- 1 • 

At low temperatures ( T « tic) the main contribu­
tion to the integral is made by small ka « 1. Conse­
quently, the integration region can be extended to in­
finity. We obtain ultimately 

q= 4ft r(9)~(9) (..!._)':::::::04-ft-(~ )' (22) 
m'a' (2n)' ftc ' m'a' Tv ' 

where TD is the Debye temperature. 
Since the collisions with the phonons were assumed 

to be elastic, it follows that (22) also gives the change 
of the magnitude of the defecton wave vector. Let us 
define the free path time T as the time during which 
the defecton momentum changes by an amount equal to 
the momentum itself. Then 

p m'a' (Tv)' 't'=-:::::::25--p-
q 'ft 8T' 

and the transport mean free path is equiv.alent to the 
distance traversed during the time T: 

ftp ( T )' l='t'-;;.-=a·2.5(pa)' 8; . (23) 

If the defectons obey the Bose- Einstein statistics, 
then at a temperature T the wave vector of the defecton 
is p ~ (2m *T/ti 2 ) 112• Substituting in (23 ), we obtain 

_z_:=::: 06 m'Tva'(Tv)' 
a ' ft' ST . 

We see that the mean free path depends strongly on 
the temperature. At low temperatures ( T « TD/8) it 
is large compared with the interatomic distances, and 
the defecton behaves like a quasiparticle with wave 
vector p. If T >> TD/8, then the defecton is localized 
and its further motion is determined by the diffusion 
jumps to neighboring cells. 

A similar analysis can be carried out for the scat­
tering of electrons by a defecton. The main difference 
is that the electrons have a quadratic dispersion and 
obey Fermi-Dirac statistics. Therefore the wave­
vector loss in the collision is given by 

2a' J q= (2n)' dkF(k)(i-F(k))(k-k')v.dcr ••• , 

where F(k) = [ exp{ti~2/2MT} + 1r1 is the fermion 
distribution function, Ve = tik/M is the velocity of an 
electron with momentum tik and mass M, and 

k- k' = 1/2f.t{pn- pn') + flk(1- nn'), fl = M I m' «;; 1. 

At low temperatures T << ti 2/2Ma2, the main con­
tribution to the integral is made by small ka « 1, and 
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the integration region can be extended to infinity, after 
which the integral can be evaluated. Thus, 

2/i ( 9 ) ( 7 ) ( T )'!. li ( T )"' q=--(2''•-1)f- ~- - ~ 1,5--- • 
3n'm'a' 2 2 Tc m*a' Tc 

and consequently the lifetime is 

2 m'a' ( T )'" li' 
't" ~ Spa-li- Tc ' Tc = Ma'' 

and the mean free path is l ~ %a(pa)2(Tc/Tt12 • 

In view of the large value of Tc, all the tempera­
tures at which the crystal does not melt are "low" 
and the mean free path is very large. Therefore colli­
sions with electrons exert no influence on the defecton 
motion. 

We note also that the foregoing analysis is meaning­
ful at not too large defect concentrations. Otherwise 
the scattering of defectons by defectons is most im­
portant. The small width of the defecton band leads to 
a large cross section of this process. This is particu­
larly easy to see in the case of an elastically-isotropic 
crystal, when the defects are interstitial atoms. As is 
well knownE 4J, their interaction energy at large dis­
tances is given by 

V(R) = V,(al R)", 

where Vo ~ mc 2• Then the effective scattering cross 
section is given in the quasiclassical approximation 
by the expression 

a=2na sm-·f - - ---2 • 3n ( 3) ( 3n)"'[ V,m•a• A. ]''• 
10 5 8 li' a ' 

(24) 

the condition for the validity of which is the inequality 

(A. I a)'~ V,m'a' I li'. 

Substituting in (24) Vo ~ mc 2 and m*a2/6Ii 2 = 1/E, we 
obtain 

( me' A. )"' u ~ 2na' 6 - 8--;; . 

In view of the small width of the defecton band 
E << mc 2 , the scattering cross section may turn out 
to be quite large. 

In the other limiting case, when 

(ka)'~ V,m'a' I li', 

we have 

( V,m'a') •;, ( 6mc') •;, 
u ~ 2na' -h-' - ~ 2na' -.,- . 

The author thanks I. M. Lifshitz for valuable hints 
and for repeated discussions of the work. 
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