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we consider the y decay of excited nuclei in a crystal consisting of the same nuclei but in the ground 
state. The character of the radiation from a thick crystal is determined by using the reciprocity 
theorem for absorbing media and from the previously obtained solutionuJ of the stationary problem 
of the distribution of y quanta in an ideal crystal in the case of resonant nuclear interaction with an 
individual nucleus and in the presence of an external source. It is shown that in certain angle intervals 
the dependence of the decay y quanta on the thickness is not exponential but follows a power law, this 
being due to the suppression of the inelastic channels of the nuclear reactionllJ. The radiation from a 
thick crystal will then be emitted along surfaces of cones with axes along the reciprocal-lattice vector 
and with aperture angle 90° - BB (BB is the Bragg angle). The character of the angular distribution of 
the intensity turns out to vary greatly, depending on whether the radiating nucleus is at a site or in an 
interstice. The possibility of analyzing the position of the radiating nucleus in the unit cell is demon­
strated. 

1. INTRODUCTION 

THE purpose of the present article is to analyze the 
character of the radiation of the y quanta accompanying 
the decay of nuclei inside a crystal. We have in mind an 
ideal crystal containing the same nuclei, but in the 
ground state. We confine ourselves here to nuclei of the 
Mossbauer type, for which the interaction of the y 
quanta with the nuclei of the crystal has a sharply pro­
nounced resonant character, and the ratio of the inelas­
tic (conversion) and elastic channels of the scattering 
has an arbitrary value. At first glance it may seem 
obvious that in the case of strong resonant absorption 
of the y quanta, the radiation of the nuclei situated at a 
sufficiently large depth should attenuate exponentially 
towards the surface, no matter in what direction of 
emergence from the crystal it is measured. Although 
such an assumption is natural, it turns out to be incor­
rect in the general case. This is due to the specific 
features of the motion and interaction of y quanta with 
nuclei in such a crystal. As was shown inu-3 J, in reson­
ant interaction of particles having a wavelength A < a 
(a is the interatomic distance) with an individual nuc­
leus, an interaction accompanied by the formation of a 
long-lived excited state that decays via both the elastic 
and inelastic channels, the coherent character of the 
scattering is fully conserved. This causes, in particu­
lar, the excitation of the nucleus to have a collective 
character smeared out over the crystal l3 J, and this 
changes the picture of the interaction and motion of the 
particles in the crystal. When the y quanta are incident 
on the crystal at the Bragg angle, this leads to the ap­
pearance of the so- called effect of suppression of the 
inelastic channels l1 ' 2 J. The gist of this effect consists 
in a sharp decrease of the amplitude of formation of the 
excited nucleus inside the crystal, by virtue of which 
the yield of the nuclear reaction is partly or completely 
suppressed. As a result, the particles can pass through 
the crystal in a certain angle interval with practically 
no absorption. This effect has by now been observed 
experimentallyH,sJ. 
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It is natural that the suppression effect should ap­
pear also in the case of motion of the y quanta that re­
sult from the decay of nuclei inside the crystal. In fact, 
in the case of decay in an ideal crystal, y quanta will 
appear in a state that is a coherent superposition of two 
plane waves, with wave vectors differing by an amount 
equal to the reciprocal-lattice vector. But it is pre­
cisely for such states, at definite polarization, that the 
amplitude for the production of the excited nucleus is 
small. Such paired states will arise in the case of decay 
in directions that are close to the Bragg condition in the 
case of incidence on the crystal from the outside. As 
will be shown below, this causes the exponential char­
acter of absorption of the y quanta in decay in thick 
crystals to give way to a much weaker power-law 
attenuation with increasing thickness. 

A direct study of the radiation of a y quantum from 
a nucleus inside a crystal, with allowance for the reson­
ant interaction with the surrounding nuclei, encounters 
a number of peculiar difficulties. Such a problem, how­
ever, can be solved consistently by using the previously­
obtained solution of the problem of the motion of ex­
externally-incident y quanta in the interior of a crys­
tal lll, if one uses the reciprocity theorem (see, for 
example, lGJ) generalized to include the case of an 
arbitrarily absorbing system. This is the method used 
in the present paper. 

We note that in x-ray physics there is a known 
phenomenon, observed by Kossel £?J and consisting of 
the occurrence of a fine structure in the angular depen­
dence of the intensity of the characteristic radiation of 
atoms emitted from a crystal near the Bragg angle. 
Laue(sJ explained this phenomenon for a non- absorbing 
crystal and in the absence of vibration of the atoms, 
using the reciprocity theorem and considering the po­
tential scattering by the electron shells of the atoms. 
The results obtained in the present paper make it possi­
ble, in particular, to find the solution of the problem 
for the Kossel effect in an absorbing crystal, for an 
arbitrary position of the radiating atom in the lattice, 
and with a consistent allowance for the influence of the 
temperature. 
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2. RECIPROCITY THEOREM 

Assume that sources of monochromatic radiation are 
placed at certain points r 1 and r2 in space. The field 
E ~ ( ~ = 1, 2) resulting from the action of one of the 
sources can be determined with the aid of Maxwell's 
equation 

{k2 - :: )E,'(k,w}-k'(kE1(k,oo}}= 4:!00 (1: a."(k,k'} 
k' 

XE,'(k',w}+il'(k,oo) }· (2.1) 

Here j~ is the current corresponding to the source at 
the point r~. Let r1 coincide with the coordinate of the 
radiating nucleus inside the crystal, and let r 2 be a 
point in free space, sufficiently far from the crystal. 
In rietermining the current h, it is necessary to take 
into account the oscillation of the radiating nucleus. 
The currents contained in Maxwell's equation (2.1) are 
averages of the current operator over the quantum­
mechanical state and over the statistical distribution. 

Let us consider the case of a narrow resonant level, 
r « wn (r is the width of the resonant level and wn is 
the characteristic frequency of the phonon spectrum), 
which is typical of Mossbauer-type nuclei. We then ob­
tain directly for the radiation in a frequency interval of 
the order of r: 

j,(k, oo} = j 01 (k, oo)e-••••e-••<kJ'2, 

Z,(k)=-11-I: jkV,(f}) 12 (2n~+ 1}. 
2M,N ~ oo~ 

(2.2) 

Here j 01 is the current of the rigidly secured nucleus, 
V1(f3) is the polarization vector for the radiating nucleus 
in the ,8-th normal vibration, and n is the mean value of 
the occupation numbers. 

Actually exp [- Z1(k)/2] is the probability amplitude 
of radiation of a y quantum in the direction k without 
emission or absorption of phonons. In the case of a 
broad resonance, when r >> wn, this factor is elimina­
ted from (2.2), since emission or absorption of phonons 
leaves the radiation within the limits of the resonant 
width. We shall assume, for simplicity, that his a 
rigidly secured source. 

The first term on the right side of (2.1) describes 
the scattering of the y quanta by the atoms of the crys­
tal. Here ail can be represented in the form 

a."(k,k') =I: Oom"(k,k')e-~•'-kJ'm, (2,3) 
m 

where the summation is over the atoms of the crystal. 
Explicit formulas for the case of electric and magnetic 
dipole or quadrupole resonant interactions of the y 
radiation with the nuclei can be found inllJ (see alsol111 ). 

We emphasize that the nuclear vibrations in a crystal 
which play an important role in the scattering problem 
can be taken into account rigorously within the frame­
work of Maxwell's equations, and, as shown inll' 91 , the 
result of such an account reduces to a corresponding 
redefinition of the quantities a~n' which now depend 
explicitly on the temperature. 

The fact of importance to us is that we are dealing 
with a strong resonant interaction, causing a!Jm to be 
a complex quantity with an arbitrary ratio of real part 
to imaginary part, or, in other words, of scattering to 

absorption. We must obtain a reciprocity theorem for 
precisely this case. . 

We multiply (2.1) with ~ = 1 by E~(-k, w) and the 
equation with ~ = 2, in which we first make the substi­
tution k --k, by E~(k, w). We sum the two equations 
over k and subtract one from the other. As a result we 
get 

I: [E,'(-k, w}a.''(k, k')E,'(k', oo)-E,'(k, w}a."f-k.k'}E21(k', w}] 
t. ll;t 

=- I:[j,(k,w)E,(-k,ffi}-j,(-k,w)E,(k,w)]. (2.4) 

" 
In the second term on the left side we make the sub­

stitution k' --k', and then k = k' and i ;: l. As a re­
sult, this term takes the form 

- l:E,'(- k, oo)a."(- k',- k)E,'(k', oo}. 
t, k' 

The quantity a~m in (2.3) is none other than the scatter­
ing amplitude (apart from an immaterial factor). But 
for the scattering amplitude there is a general relation 
(see, for example, uoJ ), which in our case takes the form 

a.m"(k, k') = a.m"(-k', -k). (2.5) 

We emphasize that this relation also remains valid 
when the spins of the ground and excited states of the 
nucleus differ from zero, provided only that the levels 
are degenerate. Otherwise the connection between the 
amplitudes or the corresponding a wm has a more com­
plicated character. We assume throughout that there is 
no hyperfine splitting. 

Relation (2.5) leads directly to the vanishing of the 
left-hand side of (2.4). As a result we arrive at the fol­
lowing equation: 

_Ei .. (k. oo)E,(- k.ffi)e-••··e-•·<•>12 = .E j.,(- k. w)E,(k, oo}e'•••, (2.6) 
• • 

which is the reciprocity theorem in the case of interest 
to us. 

By measuring the radiation at large distances from 
the crystal, we separate a plane wave with a certain 
fixed value of k0. This means, in particular, that in the 
left side of (2.6) there is a field E2 produced by a source 
with j 02(- ko, w), and the polarization s of the field E1 
corresponds to the aggregate of the Fourier components 
of the field in the crystal in response to radiation having 
the same polarity s incident on the crystal. 

Let us consider an ideal crystal in which the ampli­
tude of scattering by an individual nucleus is small 
compared with the interatomic distances. If radiation 
with a wave vector -k0 = K 0 is incident from the outside 
on the crystal, this radiation propagates in the interior 
of the crystal only in the same direction. If the Bragg 
condition is satisfied, one more wave is produced, 
propagating in the direction K 1 = Ko + K (K is the 
reciprocal-lattice vector). We shall show that this last 
case is of greatest interest. 

The statement that only one or two waves propagate 
is, strictly speaking, inaccurate. Actually, owing to the 
interaction with the nuclei of the medium, each wave 
gives way to a wave packet. The dimension of the packet 
in momentum space is very small and amounts to 
.6.k ~ 1/Zcoh• where Zcoh is the coherence length, i.e., 
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the length over which the initial wave experiences scat­
tering on the order of unity. Since lcoh »a, the wave 
packets do not overlap, and the sum over k in the left­
hand side of (2. 6) breaks up into independent sums per­
taining to the individual packets. Neglecting the varia­
tion of j 01 (k, w) and of exp [- Z1(k)/2] in the wave-vector 
interval .6.k, we have 

.E jo1 (xa, ro) Ea (r1) e-Z•("al/• e1"a•• = j00 (x0, ro) Ed-- xJ, ro) e-i""'•(a = 0, 1 ). 

a (2.7) 
Here Ea(r1) is the field produced at the point r 1 by the 
wave propagating in the direction IC a (we have omitted 
the index 2). We then have for the intensity of the y 
radiation from the crystal 

l,(ko, ro) = 6 ,Eexp { -(Z,(x~~-Z,(x,)) } E~,'(r,)E~,•·(r,)I~~··, (2.8) 
~. ~ 

(2.9) 

Since we are interested in the total intensity resulting 
from a large number of individual decays, Eq. (2.8) will 
contain a certain average of the product of two transi­
tion currents; this average is in fact a sum over the 
spin states of the ground level and the averaged value 
over the spin state of the excited level. This operation 
is denoted by the superior bar in (2.9). 

It is interesting to note that, as follows from (2.7), 
the radiation field at the point r2 is determined not by 
the field produced by the second source at the location 
of the radiating nucleus, but by the product of the field 
amplitude by the amplitude of the "non-excitation" of 
the phonons, i.e., a quantity proportional to the ampli­
tude of formation of the excited nucleus in the case of 
narrow resonance. This is quite an important circum­
stance if we deal with an anisotropic crystal. Indeed, in 
this case Z1(1C) has different values for different direc­
tions IC, and the radiation will be emitted from the crys­
tal even if the total field (more accurately, :E Jo1 • Ea) 

a 
vanishes at the nucleus, and conversely, it may not be 
emitted from the crystal when the field does not vanish 
at the nucleus, but the total amplitude of production of 
the excited nucleus is equal to zero. 

3. RESULTS FOR AN EXTERNAL y-QUANTUM SOURCE 

It is clear from the results of the preceding section 
that to describe the y radiation of nuclei from a crystal 
it suffices to know the field produced by an external 
source at the location of the radiating nucleus. Such a 
problem was solved earlier in connection with an analy­
sis of the effect of suppression of inelastic channels 
in resonant nuclear interaction in ideal crystals. There 
the problem was considered both for the Laue case (the 
reflected and direct waves emerge through the rear 
surface of the crystal), and for the Bragg case (the 
reflected wave emerges through the input surface). For 
concreteness we shall confine ourselves henceforth to 
crystals whose geometry corresponds to the first case. 

We consider a crystal in the form of a flat plate. If a 
plane wave with a wave vector IC0 close to the Bragg 
condition is incident on such a crystal, then the field at 
the point r in the interior of the crystal (the origin is 
on the input surface, the inward normal to which is the 

z axis) is described by a set of two waves (0, 1) having 
the following value (see[l] , and alsor111 ): 

1 (1) 
E0, (r) = e0,fl!'03 (ro) e1...,. [(2e~•>- goo) e 1 .... z/Yo- (2el1>- goo) 

2 (ej•> - el1>) 
• (2) I 

X e'""• ' ""I = e0,E0, (r), 

g;_.p i>q&~l) z/Yo ; .... ~•> z/Yo 
E10 (r) = - e,,fl!'0, (ro) eix,r <•> (l) [e - e I = euEu (r), 

2 (e, - e, ) 
(3.1) 

Here 
e~'· •> = '/,(goo+ pg .. - pa) ±'!.[(goo+ pg .. - Pa) • 

+ 4p(g00a- g00g 11 + g01'g10') ]''•, (3.2) 
....... 

'\'u =cos a~. a~= x..n, p = y./y, a= K(K+ 2x,)/ Xo', 

E0 s(w) is the field on the input surface of the crystal. 
The quantities ga , which are proportional to the 

corresponding amplifudes for scattering by an individual 
atom and which play the principal role in our problem, 
can be represented in the case of simultaneous pres­
ence of resonant and potential electron scattering in the 
form 

g~p 

= ~ '\"'1 ei(><0-xp)P; {e-<Z;(xa)+Z;(><p>l!•T)/' 1 (x X ) -1- e-'f,Z;<"a-"p> f. ( )} 
Xo'Ro "r n •• p , •I Xa, Xp • 

(3.3) 

Here f~j and f~j are the coherent parts of the nuclear 

and electronic amplitudes for scattering by the j-th 
atom in the unit cell: 

1 r 21+1 
/nJ'(x~,x~) =- 2xo w- Wo ~ if/2 21o + 1 p.'(a, p)c;, 

(3.4) 

f./(x~,x~) = -r.F;(Ix..- x~l)p.'(a, P), 

where cj = 1 for the sites of the unit cell containing 
nuclei of the element whose y decay is of interest to us, 
but in the ground state, and cj = 0 for the remaining 
sites; TJ is the concentration of the resonant isotope; 
Wo, r 1 , and r are the energy and elastic and total widths 
of the resonant level; I and Io are the spins of the exci­
ted and ground states of the nucleus; Fj is the atomic 
factor of the j-th atom in the unit cell; r 0 is the class­
ical radius of the electron; pg e( a, f3) are polarization 

' factors. s = 1 stands for a polarization perpendicular 
to the scattering plane (1C0K1), and s = 2 corresponds to 
the case when the polarization lies in the scattering 
plane. 

It follows from (2 .8), (2.9), and (3.1) that to find the 
intensity of the radiation from the crystal it is neces­
sary to know the quantity 

(3.5) 

If we use the value of 1~/3 obtained inllJ for the dipole 
and quadrupole transitions, then we obtain for B~/3 
directly 

c• 21 + 1 
B~~· = bt'(a,p), b =-----r, 

4roo 2Io + 1 
(3.6) 

with ts( a, J3) having the following values for transitions 
of different multipolarity: 

E1 M1 E2 
S = 1 1 COS cpall COS cpap cpap = X0 Xp. (3 • 7) 
s = 2 cos cp.p 1 cos 2cp.p 
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We note that p~(a, {3) coincides with ts(a, {3), and that 
p~(a, {3) coincides with ts(a, {3) for the E1 transition. 

Formulas (2.8), (2.9), and (3.6) solve completely, in 
principle, the problem of angular distribution of the in­
tensity of y radiation emerging from an ideal crystal 
after y decay of nuclei inside the crystal. 

4. r RADIATION OF NUCLEI FROM A CRYSTAL 

Let us consider the decay of a nucleus situated at a 
depth l below the surface of the crystal. Far from the 
direction satisfying the Bragg condition a ~ !gaR I, we 
have for E~'2 > the estimates E~1 > RJ % g00 , E:i> RJ-% f3 a. 
Here E 1s ~ g~u/a and the field inside the crystal is de­
termined in fact only by E 0s· Then the intensity of 
radiation from the crystal is 

I,(xo, co)= 6bjB,,I'exp{-Z,(xo)- x,lg.,"(ro)!y,}, (4.1) 

g00" (ro) 5 lmgoo (ro)z o!o cr, (m) ~ e-Z;<~, (4.2) 

' at is the total cross section for absorption by an indi­
Vldual atom. 

The approximate character of (4.2) is due to the fact 
that in an ideal crystal the total cross section should 
actually contain only fart of the scattering cross sec­
tion (for details see£8 ). We shall assume throughout, 
however, that the inelastic scattering by an individual 
atom is large compared with the elastic scattering, 
making it possible to disregard this circumstance (as 
well as the variation of the parameters of the resonant 
nuclear level in the crystal-see£81 ). 

The total intensity in the angle interval dOko and in 
the frequency interval d w will be designated 
ls(k0 , w)dwdOko. Then, taking into account the charac­
ter of the frequency dependence of the radiation emitted 
following the decay, we have 

1 f/2 
sbiBo.(ro)l'=i,(ro); t,(m)= 4n• (m-m,)'+f'/4 i,,, 

S i,~m) dm dQ = 1, (4.3) 

'·· where iso is the total y-quantum radiation intensity. 
Assume that the radiating nuclei are at a sufficiently 

large depth, so that 
Xol 11 --g,. (m)>1. 
Vo 

(4.4) 

In this case, according to (4.1), radiation will in general 
not emerge from the crystal in any arbitrary direction. 
The picture changes radically, however, if ICo = -ko lies 
in a narrow interval near the Bragg angle. For simplic­
ity, we confine ourselves further to the case f3 = 1 and 
assume that 

(4.5) 
in this case 

fu. = loo, fot. 8 =Is .. 

and in accordance with (3.2) 

(1,1) 1 [(2 )±..J '+4 ••] (4.6) e, =4 g,.-a ,a g., . 

We confine ourselves to cases in which we have at least 
for one polarization 

(4.7) 

As shown in£11 for a pure nuclear scattering in the 
case of E1 and M1 transitions, the condition As = 0 is 
strictly satisfied for one of the polarizations upon re­
flection from one family of planes. Only allowance for a 
sufficiently weak absorption by the electrons can lead to 
a certain small value of As. 

If (4.4) and (4.7) are satisfied, then only the waves 
corresponding to one of the roots of (4.6) are retained 
in E0s(r), and the field has a noticeable value only if 
a < lgool. Taking this into account and expanding E~1 • 2 > 
in a series, we get 

<••> a 1 1 a• (48) 
e,. = -4+-z(B"oo±lot')± 16 ,... • • 

We then have for the intensity of y- quantum emission 
from the crystal in the considered interval of angles 
a, with allowance for (2.8), (3.1), (3.7), and (4.3), and 
for a polarization for which ts(a, {3) = 1, 

1 { x.ZA a•g " }~I a • 1,=-t,(m)exp -Z,(xo)---·-~ 1---, -e-•j . 
4 V• Slg .. I 2g., 

(4.9) 
We see directly from (4.9) that y quanta emerge from a 
thick crystal only in a narrow angle interval along the 
surfaces of cones whose axes are along the reciprocal­
lattice vector K, with an aperture angle x = ~K = 90° 
- 8}3 (OB is the Bragg angle). Assume that the radiating 
nucleus is located at a lattice site, and then 

1 { x,l& a' } a• (4 10) 1,=16 t,(ro)exp -Z,(~eo)---• --.- 8"""1• • 
Vo aetf jgotl 

where 
• llot'l' 

a. .. = g .. •" x,l/Svo • ( 4.11) 

Recognizing that sin xdx = (% sin8B)da, we get for 
the integral intensity corresponding to each individual 
cone 

l,(m) = 1281~ e i,(m)exp {- Z,(x,)- x.ll\, }·I a.~l'lltp, (4.12) 
sm • Vo g .. 

where ocp is the interval of the azimuthal angle cp 
around the axis of the cone corresponding to the re­
ceiver geometry. 

Let As = 0 or, in any case, KolAs/ro < 1. It then 
follows from (4.12) that the integral intensity decreases 
with thickness not exponentially but only in a power-law 
fashion: 

(4.13) 

This is a direct consequence of the effect of suppression 
of the inelastic channels£11 • The scale of the angular 
distribution is determined, under the condition (4.4), by 
the value of aeff. 

In the case of purely nuclear interaction we have 

a!tt = 16n'l'Yo 21 + 1 _!l. Z(~. 
(D~~eo")(xol) 210 + 1 r e- ' 

(4.11') 

we call attention to the fact that in this case aeff does 
not depend on the frequency at all. 

It is interesting that when a = 0 it turns out that Is 
= 0. This is due to the vanishing of the field at the 
nucleus when a = 0, and leads, in accordance with the 
reciprocity theorem (2. 7), to vanishing of the decay in­
tensity in this direction, in spite of the fact that the y 
quanta propagate along this direction without absorp­
tion. It should be noted in this connection that this re-
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FIG. 1 

sult takes place also in the absence of a complete sup­
pression effect, i.e., that ~s cF- 0. It is necessary here, 
however, to satisfy the condition (4.4), for otherwise it 
would be necessary to take into account all four waves 
in (3.1), and this would lead to Is cF- 0 at a= 0. 

2. If the radiating nucleus is situated in an inter­
stice, the picture is greatly changed. Indeed, in this 
case we have exp(iK · r 1) cF- 1, and recognizing that O!eff 
« lgoll under the condition (4.4), we obtain 

I.(x0)~}i.(ro)exp{-Z1 (x0)- x~~·- :::}lf-eiKr,J•. (4.14) 

Although the character of the decrease in the inten­
sity at noticeable values of a remains the same as in 
the case of (4.10), the radiation intensity at a= 0 now 
has a maximum. Moreover, if ~s = 0, then there is no 
absorption of the decay y quanta at all when a = 0, a 
fact also connected with the effect of suppression of the 
inelastic channels. 

Figure 1 shows plots of N against a: 
T'f') 

N(a)= Jr.(x.) (ro-ooo')'+r'/4 doo, (4.15) 

corresponding to registration of the radiation by a tuned 
receiver with w~ = w0 , for several values of l and for 
cases when the radiating nucleus is located at a site (a) 
or in an interstice (b). Here and henceforth we use in 
the calculations parameters close to the case of Fe57 in 
metallic iron (but in the absence of hyperfine splitting): 
a= 2.8 A., 11 = 100%, Ey = 14.4 keV, r1/r = 0.1, 
e- Z(K) = 0.9. We took into account here the exact ex­
pression (3.1) for the field and assumed that the proba­
bility of the Mossbauer effect is the same for atoms at 
the sites and in the interstices. The curves given for 
several thicknesses leff = l/yo demonstrate clearly the 
character of the angular dependence in both cases. 

If we change over from (4.14) to the integrated inten­
sity, then we obtain for an individual cone 

/,(ro) = ~n i,(co)exp{-Z,(x,)- x,lll,}a.uJ1-e'l<r•l'·. 
16sm6s Yo (4.16) 

Again, when ~s = 0 we have a power-law rather than an 
exponential dependence on l: 

/,(co)= (l/y,)-'1•. (4.17) 

Comparing this result with ( 4.13), we see that in the 

FIG. 2 

case of an interstitial atom, the intensity of the outgoing 
radiation decreases with increasing l much more slowly 
than in the case when the decaying atoms are at the 
lattice sites (this is seen directly from a comparison 
of the curves for different thicknesses, Figs. 1a and b), 
and at leff = 10 1J. the difference already amounts to two 
orders of magnitude. 

The strong difference between the angular distribu­
tions and the thickness dependences of the intensity un­
covers an interesting possibility of analyzing the position 
of the radiating atom in the unit cell. The change of 
phase K · r 1 on going from one cone to the other makes 
it possible in this case even to determine the exact posi­
tion of the atom in the interstice. It is interesting that 
if the position of the interstitial atom is sufficiently 
symmetrical, then one of the cones can correspond to 
the condition exp(iK · r 1) = 1, which immediately trans­
forms case b into case a. 

3. Let us analyze now the frequency dependence of 
the radiation emerging from the crystal. We consider 
first a frequency interval in which the nuclear interac­
tion is known to prevail and where Eq. (4.4) re:tpains in 
force. From (4.14) and (4.11') we can draw in this case 
the interesting conclusion that the frequency spectrum 
of the radiation of an interstitial atom remains prac­
tically unchanged on passing through the crystal. If the 
radiating atom is located at a lattice site, then accord­
ing to (4.10) and (4.12), a peculiar rearrangement of the 
frequency spectrum takes place and cancels out the 
initial distribution of is(w) (see (4.3)). As a result, the 
radiation emerging from the crystal is independent of 
the frequency. 

If the condition (4.4) is violated, then the radiation 
from the crystal will be determined by all four waves in 
(3.1). The universal character of the frequency depen­
dence of the radiation is then lost. This transition can 
be traced in Fig. 2, which shows a plot of N(a) for dif­
ferent shifts of the line centers in the crystal and in the 
tuned receiver v = 2(w0 - w~)/r, at a fixed depth leff 
= 10 IJ.. At small 01, in case (a) the intensity of the 
radiation actually depends weakly on v. With increasing 
a, the strongly-absorbing pair of waves comes into play 
and the curves become dependent on v. At the same 
time, a sharp asymmetry of the angular distribution 
sets in, and also oscillation of the intensity with chang-
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ing Cl' at noticeable values of v. (The substitution v- -v 
corresponds to the same distribution with the substitu­
tion Cl' --QI. 

In the case of an interstitial atom, the dependence on 
v is quite different. It is interesting to note that in this 
case the intensity decreases sharply with increasing v, 
whereas in case (a), at least for limited values of v, the 
total intensity increases. This is connected with the 
already noted difference in the character of the fre­
quency dependence. 

If the frequency interval is increased, an ever­
increasing role is assumed by scattering and absorption 
by the electrons. The frequency dependence of the ra 
radiation is then significantly altered. In particular, 
interference between the nuclear- resonance and elec­
tron-resonance scattering appears, due primarily to 
the character of the behavior of g~~ (see, for example, 
(4.11) and (3.3)). 

Figure 3 shows the same series of curves as Fig. 2, 
but with allowance for the interaction with electrons. 
In the calculation we assumed for the zero-angle scat­
tering amplitude f~ = 0.1 f~ (w = w0) and f~ = 0.01 f~ 
(w = w0). We see that allowance for the interaction with 
the electrons greatly changes the angular distribution, 
particularly at noticeable values of lvl, at which the 
resonant nuclear interaction decreases appreciably. 

4. Let us discuss briefly the character of the tem­
perature dependence of the radiation emerging from a 
thick crystal. If the approximation that leads to (4.9) is 
valid, then the main effect connected with the oscilla­
tions of the nuclei consist in the narrowing of the angu­
lar distribution of the decay y quanta, which is deter­
mined by the dependence of Cl'eff (4.11') on the probabil­
ity of the Mossbauer effect 

(-4.18) 

Here ..:lCl' is the effective width of the angula:t- distribu­
tion, and Z(Ko) is the argument of the exponential in the 
probability of the Mossbauer effect (see (2.2)). 

It is of interest to note the different temperature de­
pendences of the intensity for atoms at the sites and in 
the interstices. In the former case the intensity at the 
maximum does not change at all with temperature (see 
(4.10), (4.11'), and (3.3)) if the interaction is pre­
dominantly nuclear and the condition (4.4) is satisfied. 

b 
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In the latter, the intensity at the maximum decreases 
with increasing temperature simply like the Mossbauer­
effect probability. 

The integrated radiation intensity from the crystal 
decreases in both cases, quite slowly if the radiating 
nucleus is at a site (exp [- Z(Ko)/2]) and much faster 
(exp [- 3Z(K0)/2]) for a radiating nucleus at an inter­
stice. 

There is also a peculiar dependence on the concen­
tration of the resonant isotope. In the case of purely 
nuclear interaction, the width of the angular distribution 
within each cone decreases with decreasing 71 like 71 112 
(see (4.11')). If the radiating nucleus is in the inter­
stice, then a similar dependence on the concentration 
takes place for the integral intensity, whereas for a 
nucleus at a site, at fixed l, an increase of the integra­
ted intensity should be observed with decreasing 71 
( ~ 71-112). 

5. SOME EXPERIMENTAL ASPECTS 

An important question for the observation of the y 
decay of nuclei of an ideal crystal is the arrangement 
of the active nuclei inside the crystal. The simplest 
solution, which retains all the above-described aspects 
of the problem, is to introduce the active nuclei into a 
narrow layer near one of the surfaces of a crystalline 
plate. 

The effect can also be observed if the radiating atoms 
are uniformly distributed through the crystal thickness. 
The curves corresponding to cases (a) and (b) are shown 
in Fig. 4. The ordinates represent the quantity N( Cl') 

00 

= J Nz( Cl')dl in arbitrary units. We used the same param-
o 

eters in the calculation as in the preceding figures, and 
the ratio of the nuclear to electronic scattering ampli­
tudes is the same as in Fig. 3. 

So far we have considered only the case with a 
resonant analyzer of the radiation. Naturally, it is 
much simpler to measure the intensity of the y radia­
tion without a frequency analysis. In this case, at large 
values of Cl', a noticeable role is assumed by the wings 
of the energy distribution in the radiation of y quanta 
from the nuclei, and consequently the nonresonant inter­
action with the electrons becomes significant. At a limi­
ted thickness, all four waves then begin to play a role. 
This leads, for example, to oscillations of the intensity 
with change in the angle Cl', and also to an increase of 
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the total intensity as compared with the tuned receiver. 
Figure 5 shows curves demonstrating the angular 

distribution of the radiation emitted from the crystal 
(near an individual cone). The ordinates represent the 
quantity (compare with (4.15)) L(a) = Jis(Ko)dw, and the 
parameters are the same as in the preceding figures 
(the interaction with the electrons is the same as in 
Fig. 3). One can see clearly the anomalous angular dis­
tribution, although on the whole it is less pronounced 
than the case of a tuned receiver. Thus, an investiga­
tion of the angular distribution of y quanta from an ideal 

crystal is possible, in principle, also in a very simple 
formulation without a tuned receiver. 
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