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The interaction of conduction electrons with acoustic waves in anisotropic conductors is investigated 
starting from the general principles of quantum mechanics. A microscopic expressi~n for the 
deformation-potential tensor "-ik is obtained. A theory of col.lisionle~s sound absorphon.(of the 
Landau-damping type) in conductors is constructed. Absorphon both m the absenc~ ~nd m the pres.
ence of a magnetic field is investigated. At relatively low frequencies w, the coefficient of absorpbon 
of transverse sound in the absence of a magnetic field increases in proportion to the frequency, 
reaches a maximum, begins to decrease like w-3 , and finally again increases in proportion to w. aft~r 
passing through a minimum. In calculating the absorption coefficient in t~e high-f~e.quency regwn it 
is necessary to take into account the Stewart- Tolman effect. The absorption coefficient of trans
verse sound in a strong magnetic field (when the Larmor radius is smaller than the length of the 
acoustic wave) does not depend on the magnetic field and is proportional tow. I~ is shown that the 
contribution made by inductive effects to the coefficient of collisionless abso~ph~n of so~nd should 
in general be smaller than or of the order of the contribution of the deformation mterachon. 

1. INTRODUCTION 

IN the study of the absorption of sound in conductors 
one can distinguish between two limiting cases. The 
case of frequent collisions of conduction electrons 
( ql << 1, where q is the wave vector of the sound and l 
the mean free path of the electrons) was first consid
ered by AkhiezeruJ. The opposite case of collisionless 
absorption (of the Landau-damping type) was investiga
ted in a number of papersl2-sJ . The purpose of the pres
ent paper is to study the distinguishing features of 
collisionless absorption of transverse sound in conduc
tors both in the absence and in the presence of a con
stant magnetic field H. 

In the absence of a magnetic field, the absorption of 
transverse sound by conduction electrons is due to two 
mechanisms. The first is the interaction of the elec
trons with the periodic field of the crystal lattice, and 
the second is the interaction of the electrons with the 
solenoidal electrical field accompanying the transverse 
sound wave in the conductor. We have investigated the 
frequency dependence of the absorption coefficient. At 
sufficiently low frequencies, the absorption coefficient 
is proportional to the acoustic frequency w, and then, 
after reaching a maximum, it begins to decrease like 
w-3 , finally passing through a minimum and again in
creasing in proportion to w1>. In this latter region, it 
became necessary to take the Stewart- Tolman effect 
into account. 

We then investigated the limiting value to which the 
sound absorption coefficient tends when the potential V0 

of the self- consistent periodic field in which the conduc
tion electrons move tends to zero. The point is that in 
many metals the potential of the periodic field (more 
accurately, its pseudopotential) is small compared with 
the Fermi energy l; 0 , i.e., the conduction electrons are 

I) The first two sections of the frequency dependence were investi
gated earlier (see [2 •3 •6 •16 ] ). 

almost freel71 (see alsol8J); this makes it urgent to in
vestigate the sound absorption coefficient as Yo ...... 0. 

To this end, we had to start with the construction of 
a microscopic theory of sound absorption, starting from 
the basic principles of quantum mechanics, and then 
change over to the classical description. It was possi
ble to trace the transition to the limit as V o - 0 by 
analyzing the corresponding microscopic expressions 
describing the interaction between the electrons and the 
sound. 

In Sees. 4 and 5 we consider collisionless absorption 
of sound in a magnetic field. One of us had previously 
introducedl9 J the concept of two sound-absorption mech
anisms in this case-deformation and inductive. The 
investigation made in Sec. 4 makes it possible to con
clude that the inductive interaction of the electrons with 
the sound can be separated by different means. One of 
them, employed inl9J, corresponds in essence to a 
changeover to a coordinate system that moves together 
with the lattice. In this system, the inductive field is 
given by u x H/ c. It is necessary to add to the interac
tion connected with this field also the interaction propor
tional to the tensor of the deformation potential "-ik 
introduced inu•3 J, and the Stewart- Tolman interaction 
(incidentally, as will become clear in Sec. 5, its role in 
a strong magnetic field is negligibly small). 

Another method is to change over to coordinate sys
tems moving with that additional velocity tJ.v which is 
acquired by the electrons dragged by the lattice. As 
shown by HolsteinlloJ (see alsolllJ), the conduction elec
trons are not completely dragged by the lattice in the 
absence of collisions. If, for example, the lattice exe
cutes periodic motion with velocity u, then in the sim
plest case when the spectrum is isotropic the electrons 
acquire an additional velocity 

~v=(1-m,jm}ti, (1.1) 

where m0 is the mass of the free electron and m is the 
effective mass. In this method, the inductive field is 

914 
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1. ( mo) . c 1--;;;: [uH]. (1.2)* 

It is necessary to add to the interaction connected with 
this field also the deformation interaction, which this 
time is described not by the tensor Aik• but by the ten
sor Lik introduced by formula (2.24) of Sec. 2. This 
method, incidentally, is convenient because it makes it 
possible to trace directly the transition to the limit as 
Vo- 0, for in this case the quantities 1- mo/m and Lik 
also tend to zero (unlike Aik)· 

Finally, if the electron dynamics is described in the 
laboratory frame, no explicit inductive term appears at 
all. 

The most important fact in the collisionless case is 
that, generally speaking, it is meaningless to consider 
inductive absorption in itself, separately from the 
deformation absorption, since the induction effects can 
only be either smaller than the deformation effects or 
of the same order of magnitude2 >. This is verified both 
by a general analysis based on the kinetic equation 
(Sec. 4) and by concrete calculations for an isotropic 
electron spectrum (Sec. 5). 

2. DERIVATION OF KINETIC EQUATION FOR THE 
ELECTRONS IN THE FIELD OF AN ACOUSTIC 
WAVE 

Let us consider a conduction electron moving in the 
self- consistent field of the other electrons and ions of 
the lattice. Let the lattice-displacement vector u de
pend on the coordinates and on the time. We assume 
the deformation to be small, so that 

lou./ Br.l < 1. (2.1) 

The Hamiltonian of the electron is 
pz 

~ =-2 + V,(r-u)+ V'(r-u)+ V(r-u). (2.2) 
m, 

Here V0(r) is the periodic potential of the undeformed 
lattice, V(r) the potential of the impurity atoms, and 
v' (r) the change of the periodic potential as a result of 
the deformation. The latter, obviously, is of the form 

V'(r) = Va.'u,., (2.3) 

where uik is the deformation tensor. 
We shall find it convenient to carry out a canonical 

transformation corresponding to a transition to a coor
dinate frame moving together with the lattice. Let us 
consider this transformation first for the simplest 
case when the displacement u is independent of the 
coordinates and is a function of the time only. We 
choose the canonical- transformation operator in the 
form 

- ( B) ( i -) T=exp -uBr =exp -hup . 
(2.4) 

2>strictly speaking, we obtained the corresponding proof for the 
case when the contribution of the solenoidal fields accompanying the 
acoustic wave to the absorption coefficient can be neglected. But if 
these fields are appreciable, then we have the special case of helicon
acoustic resonance wherein, as shown by Skobov and Kaner [ 12], the 
inductive interaction predominates. 

*[uH] =u X H. 

The transformed energy operator is 

t -. 
3C' = 'l'-1 3Cf + in'l'-1 ~t = im. + V0 (r) + V(r)- up. (2.5) 

The coordinate is simultaneously transformed in the 
following manner: r- r + u. Expression (2.5), apart 
from a constant term, coincides with the Hamiltonian of 
an electron moving in an electric field with a vector 
potential 

A"T = (c/e)mou, (2.6) 

where e is the electron charge. This means that in the 
co-moving system the electron behaves as if it were 
moving in an external stewart- Tolman electric field 
equal to 

1 oA8T mo .. 
E"T=----=--u. 

c Bt e 
(2.7) 

From this we obtain in the approximation linear in the 
field EST the following expression for the current den
sity: 

(2.8) 

where aik(w) is the electric-conductivity tensor. 
In the general case, when the displacement vector u 

depends on the coordinates (say, for a monochromatic 
acoustic wave), the canonical- transformation operator 
is conveniently chosen in the form 

t = exp [- 2~ (up + pii) J . 
Using the condition (2.1) and putting 

hq<p, 

(2.9) 

(2.10) 

where p is the characteristic value of the electron 
quasimomentum3>, we obtain the following expression 
for the transformed operator: 

' p' ' 1 - - . - ( 2.11) 3C = -2 + Vo(r)+ V (r) + V(r)- mUiJiiPk- up. m0 o 

Let us consider the equation for the single-particle 
electron density matrix with the energy operator (2.11). 
When conditions (2.1) and (2.10) are satisfied, it is easy 
to verify that the equation for the density-matrix ele
ments that are diagonal in the band index reduces to an 
equation for the classical distribution function 

BF' Be' BF' Be' BF' -
--+-------+S'F'=O. 

Bt iip' Br' iir' iip' 
(2.12) 

We shall not present here the derivation of the classical 
kinetic equation from the quantum-mechanical equation 
for the density matrix, since the procedure for such a 
derivation is described inc13J. In (2.12) we have primed 
the symbols for the classtcal coordinate r', for the 
momentum p' canonically conjugate to it (which in this 
case coincides with the electron quasimomentum), and 
the other quantities, emphasizing thereby that they per
tain to the co-moving coordinate system. The quantity 
t.' in (2.12) is the classical Hamiltonian of the electron 

3>we call attention to the difference in the notation for the momen
tum operator p = -il'W/ilr and for the electron quasimomentum p. 
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and is obtained by averaging (2.11) (after subtracting 
the impurity potential) and is equal to4 ' 

e' (p', r') = e0 (p') + A,.(p') u,.- m,u,v,, (2.13) 

where E0(p') is the unperturbed value of the electron 
energy and 

{ '> < 'I h' o' 'I ') A•• p = np --0--+ v,. np m, r,or. (2.14) 

is a diagonal matrix element on the Bloch wave func
tions of the electron with band index n (corresponding in 
this case to the conduction band) and quasimomentum 
p'. When p' = 0, expression (2.14) goes over into that 
obtained earlier infl4 J. 

The collisional term S'F' is obtained by the standard 
method (see, e.g., usl) and has, in the Born approxima
tion, the usual form 
~ 2:t \"1 
S'F' = h ~I v.,.,, I'[F'(p', r') -F'(p,',r') ]6[e'(p', r')- e'(p,',r')], 

.,, (2.15) 

i.e., it is made to vanish by the equilibrium function 
F0(c::'), where F0 is the Fermi function. 

In the derivation of the kinetic equation (2.12) we 
have set the macroscopic electric fields E equal to 
zero. In the presence of these fields, there appears in 
the left-hand side of (2.12) an additional term 

eEoF' / iJp'. (2.16) 

What is the role of the density-matrix elements that 
are not diagonal in the band number? It is easy to verify 
that they make no contribution to the sound absorption. 
This statement is valid so long as 

hro<iiii; e1, (2.17) 

where w is the frequency of the ultrasound and Eg is 
the width of the forbidden band. At the same time, con
tributions to the macroscopic current density j' in the 
co-moving system of coordinates are made by both the 
diagonal density-matrix elements and those not diagonal 
in the band number. Their summary contribution can be 
represented in the following classical form5 ' 

., JF'( ' ') 8e' d J = e p , r op' t.,, 
2d3p' 

dt,, = (2:th)'. (2.18) 

Thus, with respect to perturbations satisfying the con
ditions (2.1), (2.10) and (2.17), the conduction electrons 
behave like classical particles with a dispersion law 
(2.13). 

We now calculate with the aid of (2.12) the coefficient 
of transverse- sound absorption in a metal for the limit
ing case w ~ v ( v is the frequency of the electron 
collisions). We confine ourselves in this section to an 
analysis of the simplest case, when the electric fields 
produced upon propagation of the sound can be neglec
ted. We seek a solution of (2.12) in the form 

F' (p', r') = F,(e') + f{p', r'). (2.19) 

4>we note that expression (2.13) appeared in the papers of Akhiezer 
et a!. [3] and of Kontorovich [ 16]. 

5>we do not present the derivation of this expression. The idea of 
such a derivation is described in detail in [ 13]. 

As shown in Appendix 1, the absorption coefficient 
describing the spatial damping of the sound intensity in 
the metal is expressed in terms of the function f' as 
follows: r = 2;u, ReJ e,.f dt.,, (2.20) 

where Us = p lul 2/2 is the energy density of the sound 
wave, p the crystal density, and w the speed of sound. 
Substituting (2.19) in (2.12), we obtain the following 
equation for f': 

oF 
{- iro + iqv + v) f' = - p.,.zi,.- m,u,ii,)-;-. 

oe 
(2.21) 

Substituting the solution of this equation in (2.20), we ob
tain as v- 0 

n J I . .. I' oF, f=--2 U A,.u,.-m,u,u, -,-6{ro-qv)dt,,. 
w • 08 

(2.22) 

Since the integrand contains o(w- q · v), we can replace 
-moviiii by movivkujk• thus obtaining 

where 

:t J . • oF, f=--- IL,.u,.l -,6{ro-qv)dt,,, 
2wU, 08 

(2.23) 

(2.24) 

As can be seen from the microscopic expression (2.14), 
the quantity 4k vanishes when V0 - 0; and with it the 
absorption coefficient (2.23) also tends to zero. As 
shown inu3 J, the physical meaning of the tensor Lik(P) 
is that when multiplied by the deformation tensor uik it 
describes the average energy increment of an electron 
with quasimomentum p in the case when the crystal is 
uniformly deformed. 

We see, however, that in the case of transverse 
sound it is necessary to take into account the Stewart
Tolman effect for such a limiting transition, whereas 
the Stewart- Tolman effect plays no role in the absorp
tion of longitudinal sound in metals (see Appendix 2). 

Let us obtain an explicit expression for the absorp
tion coefficient of transverse sound in the case of an 
isotropic electron spectrum, when 

P•P• p' L,.=C(p)-+C,(p)-6,.. 
m m (2.25) 

Integrating (2.23), we obtain 

r- 3:t C'( )n,mro -4 p, --;;;;-· (2.26) 

where no is the concentration of the conduction elec
trons; PF and vF are the momentum and the Fermi 
velocity. This expression turns out to be smaller than 
the absorption coefficient of longitudinal sound, calcu
lation inlHJ, by a factor (w/vF) 2• 

In concluding this section we note that (at least in 
the case of closed Fermi surfaces) it is possible to 
change over from the classical variables p' and r', in 
terms of which the kinetic equation (2.12) has been 
written, to other variables corresponding to the labora
tory frame by using a canonical transformation6 ' with a 
generating function 

lll{r', p, t) = p(r' + u). (2.27) 

6>The idea of such a transformation was advanced by L. D. Landau. 
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This transformation takes the form 

I iJID au. iJID I + 
P• =-1 =P•+P•-1 , r,=-=r, u.; iJr, or, op; (2.28) 

olD au. 
e(p,r) = 81 (p1,r1)+-= Bo(P)+(p- m,v)u+("-a+v.p.)-0 . 

fit T; (2.29) 

For free electrons p = m0v, and the second and third 
terms in the right-hand side of (2.29) vanish, as they 
should. The kinetic equation for the function F(p, r) 
= F 1(p 1 , r') in the laboratory frame is of the form 

(We have included here the term with the electric field.) 
This equation is contained in this form in the paper of 
Kontorovichu6 J. The electron current density je satis
fies the equation 

(2.31) 

We note that the functions F 1 (p1
, r 1

) and F(p', r'), 
with identical arguments, are connected by the simple 
relation 

Fl( I I> -F( I I> I au, oF. p,r - p,r -p, ----. 
ar.1 op.' (2.32) 

This means that by substituting (2.32) in (2.12) and in 
the expression 

j• = n.eu+ j 1 (2.33) 

for the density of the electron current in the laboratory 
frame we can change over to (2.30) and (2.31), as can 
be readily verified directly. 

Finally, we note one more canonical transformation, 
which makes it possible to write the kinetic equation in 
a form where the quantity Lik = Aik + movivk appears 
explicitly. We choose the generating function of the 
canonical transformation in the form 

if>=pr1 + movu. 

we have 
I a«D - 0U> P• =-=p,+m,v.-, 

Or/ Or/ 

-- aiD - au. 
e(p, r) = s1 (p1,r1 ) +-= Bo(P) +(A.,.+ m,v,v.)-0_ . at r, 

(2.34) 

(2.35) 

(2.36) 

Such a transformation effects the transition to a coor
dinate system moving with a velocity 

(2.37) 

which in the general case d~ends on p. We obtain for 
the distribution function F(p, r) = F 1 (p1

' r 1
) the equation 

aP a6 a'P a6 a'P 2n ~ - --+-=-=--=---=- +T """IV--I! (F--F-) 
~ ~ • • - ~ ·~ p ~ 

x 6(8;-m0vu- 8p; +mo'Vu)=O, (2.38) 

and the current density in the laboratory frame is 

From (2.12) and (2.33) we can go over directly to (2.38) 
and (2.39) with the aid of the transformation 

F l( I I> F( I I> OU; iJF, p,r = p,r -mov,----. 
or,.' op.1 (2.40) 

3. CALCULATION OF THE ABSORPTION COEFFICIENT 
OF TRANSVERSE SOUND WITH ALLOWANCE FOR 
THE SOLENOIDAL FIELDS 

The propagation of transverse sound in a conductor 
is accompanied by transverse electric currents j. These 
currents, in turn, induce transverse electric fields. In 
the preceding section we disregarded the contribution of 
these fields to the sound absorption. In the present sec
tion we shall take this contribution into account for the 
case of an isotropic conduction- electron dispersion. 
The electric field E is determined from Maxwell's 
equations 7 > 

4n 
rotH=-j. 

c 

Since j ~ exp(iq · r- iwt), we therefore have 
4ltiro . 

q'E=~J· 

(3.1) 

(3.2) 

To determine the current density, we use the kinetic 
equation (2.30). In the case of an isotropic dispersion, 
its solution is best sought in the form 

• [ ( mo )] iJF, 
F(p,r)=Fo(s)-pu C+ 1--;;- a;-+f., (3.3) 

where m-1 = (B 2£/Bp2)PF' and we obtain for the function 
f1 as v - 0 the following equation: 

a F. 
(-iro + iqv+v)f, +eEeff __ = 0, ap 

where the effective electric field Eeff is 
m .. 

E•ff =E-C-u. 
e 

(3.4) 

(3.5) 

The total current density j, which is equal to the sum 
of the electron current je calculated from (2.31) and 
the lattice current -noeu, is 

(3.6) 

Let the sound propagate along the ~ axis, and let it 
be polarized along the ~ axis. Then a in (3.6) is the 
component a~~ (w, q), equal to 

(3.7) 

Calculating this integral with allowance for the inequal
ity w « qvF, we obtain 

a= 3nnoe' / 4qp,. (3.8) 

7) It is actually necessary to add to Maxwell's equations also the con
dition for the electroneutrality of the metal, divj = 0, but this condition 
is satisfied automatically in the case of transverse sound. To explain the 
connection with the results of [ 3 ) and [ 16), we note that in our case 

where the bar denotes averaging over the Fermi surface. 
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Since (3.4) has the same form as the equation for the 
correction that must be introduced in the equilibrium 
distribution function to allow for the field Eeff, the ex
pression for the sound absorption coefficient can ob
viously be represented in the form of the ratio of the 
Joule loss in this field to the energy flux density of the 
sound wave wUs: 

1 r = --Re aiE•ffl'· (3.9) 
2wU, 

Substituting in (3.2) the expression for the current den
sity (3.6), we obtain 

.. [ ( m,) w.']( 4niwa)-• 
eE•ff==-mu C+ C-- - 1--- , 

m c'q' c'q' 
(3.10) 

where wP. = (41Tnoe 2/m)112 is the Langmuir frequency. 
Substituting (3.10) in (3.9), we obtain the transverse

sound absorption coefficient 

4n,wp .. ( m, w' c' )'( 16w'v..'c')-• r=-- C--+C-- 1+ . (311) 
3npw' m w.' w' 9n'w.'w' ' 

This expression depends on two dimensionless param
eters. The first of them 

c'q' I 4naw = 4w'v.,c' I 3nw.'w' (3.12) 

is the square of the ratio of the depth of the skin layer 
(in the case of the anomalous skin effect, characterized 
by expression (3.8) for the conductivity) to the length of 
the sound wave. This parameter assumes a value on the 
order of unity at a frequency 

oo 1 ~ (oo.w/c)"Yw/v.,, 

which amounts to approximately 109 sec-1 for typical 
metals. The second parameter is 

(wc/w.w)'. (3.13) 

It assumes a value on the order of unity at a frequency 
w2 RJ wpw/ c which lies for typical metals in the interval 
between 1010 and 1011 sec-1 • 

When w « w1 , the absorption of sound is due ex
clusively to the solenoidal fields produced by the propa
gation of the sound. The transverse- sound absorption 
coefficient is proportional to w and is equal in order of 
magnitude to the longitudinal- sound absorption coeffi
cient. By measuring the absorption we can determine 
the difference C- m0 /m. For free electrons C = 0 and 
m0 /m = 1, so that when w « w1 , formula (3.11) goes 
over into the expression obtained by Pippardr2 (see 
also Blount's paperreJ , which contains more general 
assumptions concerning the electron spectrum). 

When W2 >> w » w1 , the collisionless absorption is 
determined as before by the solenoidal field. However, 
the field intensity decreases with increasing frequency, 
and with it also the absorption coefficient, which in this 
region is proportional to w -3• 

Finally, when w >> w2, the pure deformational colli
sionless sound absorption comes into play. The absorp
tion coefficient, which in this frequency interval is again 
proportional to w, satisfies formula (2.26) obtained in 
the preceding section. 

Such a frequency dependence of the collisionless ab
sorption of transverse sound was in essence established 
earlier by BlountLeJ. Our result, however, differs from 
Blount's in the coefficient preceding w in the region of 
the high- frequency linear section. The difference re-

duces to the fact that (in our notation) this coefficient 
is proportional in our case to C2 as against (C- m0 /m} 2 

in Blount's case; the difference is due to allowance for 
the Stewart-Tolman effect. We recall that for free elec
trons, C2 = 0 whereas (C- mo/m) 2 = 1. In the low
frequency linear section, the sound absorption coeffi
cient is proportional to (C- m 0 /m) 2 • For free electrons 
this means, physically, that they interact only with the 
macroscopic fields produced by the lattice current 
-noeu. 

It should be noted that the last (high-frequency) sec
tion of the r(w} plot (3.11) is difficult to observe, since 
it is necessary to satisfy very stringent conditions in 
order to be able to neglect the influence of the collisions 
on the sound absorption in this region. The correspond
ing inequality is of the form w/ IJ » vF/w and is ob
tained by comparing our results with the corresponding 
formulas of Pippard and Blount. 

4. INTERACTION OF ELECTRONS WITH SOUND IN A 
MAGNETIC FIELD 

The quantum-mechanical part of the problem in the 
presence of a magnetic field H is not much more com
plicated than the corresponding problem at H = 0. We 
therefore confine ourselves to a discussion of the differ
ences, avoiding duplication of cumbersome derivations. 

The Hamiltonian of the electron in a magnetic field 
is obtained from (2.2) by making the substitution 

A A e 
p-+p--A(r) 

c 
(4.1) 

(A is the vector potential of the external constant mag
netic field H). 

A A similar substitution must be made in the operator 
T (2.9) of the quantum-mechanical canonical trans
formation. As a result of the canonical transformation 
of the initial Hamiltonian, we obtain expression (2.11), 
but with the substitution 

A A e e 
p-+p --A(r)+-(uH]. 

c c 
(4.2) 

The last term in this expression is the result of the 
non-commutativity of the different components of the 
operator p- eA/ c. This term can be regarded as an 
increment ll.A to the vector potential in the new coordin
ate frame. It describes the inductive field produced in 
this coordinate frame: 

1 BAA 1 . 
E<~=---=-[uH]. (4.3) 

c 8t c 

We confine ourselves further to a classical magnetic 
field. To change over to the classical treatment it is 
necessary to make a substitution of the type (4.2) in the 
classical Hamiltonian in the co-moving coordinate sys
tem, i.e., it is necessary to replace the canonical mo
mentum p1 by the combination 

PI eA 1 e -- (r )+-[uH]. 
c c 

(4.4) 

It is easy to verify that this leads to the appearance of 
the following additional terms in the left- hand side of 
the kinetic equation ( 2 .12) : 

e · 8F1 e [ 8e1 
] 8F1 

~[uH] 8p' +;;- 8p' H 8p' . 
(4.5) 
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Here p', as in the preceding section, denotes the quasi
momentum of the electron, which no longer coincides 
with the canonical momentum p' if a magnetic field is 
present. Expression (2.18) for the current density re
mains the same. 

The presence of an inductive term-the first term in 
(4.5)-in the kinetic equation was in fact the reason why 
one of usl9J introduced the concept of two different 
mechanisms of collisionless sound absorption-inductive 
and deformation. This distinction between the absorption 
mechanisms was subsequently used in a number of pa
pers. It is therefore useful to discuss the extent to 
which such a distinction is unique and is meaningful in 
general. 

We start with the remark that the classical variables 
can be subjected to a canonical transformation similar 
to (2.28) corresponding to a transition to the laboratory 
frame. As a result we obtain a Hamiltonian in the form 
(2.29), in which the momentum p should be replaced by 
P- eA/ c, where P is the canonical momentum. The 
kinetic equation in terms of the variables p = P - eA/ c 
and r is 

.!!..+~!!..-~~+ eE oF +..!.. [~nJ !!_ ot op or or op op c op op 
2n ~ · · +it .l...liV•••l'(F, -F,,)6(e, -pu- e,, + p1u) = 0 

(4.6) 

•• 
This equation, which does not contain the inductive term 
explicitly, coincides with the corresponding equation of 
KontorovichusJ. We can go over from (2.12) with the 
additional terms (4.5) directly to (4.6) by making the 
substitution (2.32). 

Finally, it would also be possible to carry out a 
canonical transformation of the type (2.35), signifying a 
transition to a coordinate system moving together with 
the electrons dragged by the lattice (which is equivalent 
to the substitution (2.40)). In the left side of the kinetic 
equation (2.38) there appear terms of the form 

_:_[L\vH] ~F +_:_[ 0~ n] ~. 
c op c ap op (4.7) 

We thus verify that the concrete form of the inductive 
term in the kinetic equation depends on the choice of the 
coordinate system. In particular, the inductive term 
does not appear explicitly at all in an equation of the 
form (4.6). This means, in particular, that when colli
sionless sound absorption (of the Landau-damping type) 
is considered, it is meaningless to consider the induc
tive absorption separately from the deformation ab
sorption, since the inductive effects cannot exceed the 
deformation effects in order of magnitude8>. This is 
illustrated by the example in the next section. 

5. CALCULATION OF THE ABSORPTION COEFFICIENT 
OF TRANSVERSE SOUND IN A ME TAL IN A 
MAGNETIC FIELD 

Let us calculate the coefficient of collisionless ab
sorption of transverse sound in a strong magnetic field, 

8>one of us [9] has stated that situations where the inductive ab
sorption predominates are possible. We wish to note that this statement 
is not valid for cases when the solenoidal fields can be neglected. 

for an isotropic quadratic electron spectrum £0(p) 
= p2/2m. We assume that the magnetic field H is direc
ted along the z axis, the wave vector q of the sound lies 
in the yz plane, and the sound polarization makes an 
angle x with this plane. 

We seek the solution of the kinetic equation ( 4.6) in 
the form (3.3). We obtain the following equation for the 
function f1 as v - 0: 

e of, cciJF, 
(-tro+iqv)f,+-[vH]~+eE" -=0. (5.1) 

c ap ap 

It coincides with the equation for the non- equilibrium 
addition to the electron distribution function in an ex
ternal electric field 

E•ff = E + E<'>, 

( m,)f. m·· 
E<'>= C+1-- -[uH]-C-u. 

m c e 

By analogy with (3.9), we obtain for the absorption 
coefficient 

1 E effo eff r = 2--Re a.,.E, E, • 
wU, .. 

The electric field E is determined from Maxwell's 
equations (3.1), which reduce to 

4niro . 
rot rotE= --;.-1• 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

and the electroneutrality condition, which can be written 
in the form 

d.ivj = 0. (5.6) 

Here j is the total current density (3.6). 
It is then convenient to calculate the effective field 

Eeff directly. We choose a coordinate system ~, 11, l;, 
with the ~ axis directed along x, the l; axis along q, and 
the 11 axis in the plane of z and q. Solving Eqs. (5.5) 
and (5.6), we obtain 

Eeff _ [( 'E(I)+ 4niro .(1)) ( 2 4niro ) 
• - q , -;.-h q -"Ts"" 

4niro ( 'E <•>+ 4niro .<•>)] [ ( 2 4niro ) +--cz-sl, q " i'h q -"Tsll (5.7) 

( 4niro ) ( 4nro )' ]-1 

X q' ----;;> s"" + i' s'"s•l , 

where 

sw = crw- O'~,crw I a,,, j<'> = (C- m, I m)n,eli., 

and f3 and {3' run through the values of ~ and 11· The ex
pression for E~ff is obtained from (5.7) by making the 
substitution ~ ~ 1J, and 

E eff _ cr,l E eff cr,, Eeff 
t ---- I --- " • 

Ott Oct 
(5.8) 

To interpret (5.4), we use the general expressions 
for the components of the tensor ai}t(w, q, H), given in 
the review of Kaner and Skobov (l17 , p. 634, formula 
(122)). As a result we find that when leiH/mc > w 
+ JqzlvF the value of the absorption coefficient r is 

1 3nn,e' ' -- eff f=-.---J J-i"f1-,N,(x)E. (5.9) pwJuJ' 2m _1 

+ JJ.lo(x)E;rr I' 6(ro- q,V,JJ.)dJJ., 
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where 

(5.10) 

Jo(K) and J 1(K) are Bessel functions. 
Let us consider further the case of strong magnetic 

fields, when 
qR<ii; 1, 

(5.11) 

where R = PFclleiH is the Larmor radius of the elec
tron. We can confine ourselves here to the lowest terms 
in the expansion of the Bessel function in the argument 
K. Furthermore, we assume that the contribution of the 
solenoidal fields to the sound absorption can be neglec
ted. This is permissible if 

4n I o,, I w I c'q' = 4nn, I e I w I H cq'l cos e I <ii; 1. (5.12) 

The condition (5.12) is satisfied at the frequencies 

(J) ~4nno I ej w' I He Ieos e I· (5.13) 

(Here e is the angle between the vectors q and H.) Then 

E,eff =E~'l, E:rr =E~'l. (5.14) 

Determining E'ff from formula (5.8) and calculating the 
integral in (5.9), we get 

3nn,m ( m, )' r = sp;;- qvF c + 1--;;;- cos' xsin' e Ieos Sl. (5.15) 

We have neglected here small terms of the order wlvF. 
The Stewart- Tolman effect, as can be readily verified, 
makes no contribution to the absorption in this approxi
mation. 

The quantity C + 1- m0 lm in (5.15) has the meaning 
of a dimensionless constant for the coupling of the elec
trons with the transverse sound. At H = 0 this role was 
played by the quantity C (see formula (2.26)). If it is 
desired to separate the inductive effects, it is most 
natural to relate their contribution to the difference 
between these constants. This corresponds to an ex
pression for the inductive field in the form 

c1 ( 1 - :• ) [ UH]. 

Incidentally, this concrete example likewise shows that 
the contribution from the inductive effects does not ex
ceed, in order of magnitude, the contribution from the 
deformation effects, and must be taken into account 
together with the latter. 
, The authors are deeply grateful to L. E. Gurevich, 

E. A. Kaner, 0. V. Konstantinov, and V. G. Skobov for 
interesting discussions. 

APPENDIX 1 

DERIVATION OF AN EXPRESSION FOR THE SOUND 
ABSORPTION COEFFICIENT 

Let us consider an acoustic wave packet occupying a 
bounded region of space, and let us calculate the acous
tic energy dissipated per unit time as a result of the 
interaction with the conduction electrons As is well 
known, this energy is equal to TS, where. 

S =- s d'r' s F./In F./ d-r: •. (A.1.1) 

is the electron entropy and T is the temperature. 
P"l~tting F 1 = F o( E') + f ', we can write the expression for 
TS in the form 

TS = J d'r' J ( e:,- ~. + aF:j:E' )t./ d-r.,. (A.l.2) 

We first transform the integral of ( Ep1 
1 - t 0)"F 1 

1. To . p 
this end, we express Fp1 with the aid of the kinetic 
equation (2.12). After straightforward but rather cum
bersome transformations, it reduces to the form 

J j 1E d'r. (A.1.3) 

In calculating the i~tegral. of f~~ F~~ ( IJ F 0 I IJ E 'r\ we should 
substitute (llFolllE)E' for F~~. Adding this integral to 
the quantity (A.1.3), averaging over the period of the 
sound, and dividing by the sound energy % jP lul 2d3r 
and by the speed of sound w, we obtain the following 
final expression for the absorption coefficient: 

r = - 1- Re (i~'E + J ;.f I d ) 2wU, 8 "' Tp, • (A.1.4) 

APPENDIX 2 

Let us investigate the role of the Stewart- Tolman 
effects in collisionless absorption of longitudinal sound. 
Let the sound propagate along the symmetry axis of the 
crystal, so that there are no transverse electric fields. 
The longitudinal electric field E differs from zero in 
this case, and it is therefore necessary to add in the 
left-hand side of (2.12) the term eEilF 1IIlp1

• To facili
tate comparison with the results of earlier investiga
tions, we replace Aikin (2.12) by Aik = Aik- :Xik• where 
the bar denotes averaging over the Fermi surface. This 
substitution makes it possible to separate the part of 
the macroscopic field corresponding to the static 
deformation. The field E is determined from the neu
trality condition 

s Fl (p1 ) dTp' = 0. (A.2.1) 

We seek a solution in the form F' = F 0(E1) + f 1 and ob
tain 

f' = _ aF, A,.zi,. + eE,v 
DE' i(-w+qv)+v' (A.2.2) 

where E1 = E- (mol e)ii, and v- 0. From (A.2.1) we 
obtain the following expression with which to determine 
the field E1: 

S aF, A,.zi., + eE,v 
_::_:.:__:___:._d-r:,. = 0. 

ae' -iw + iqv+v 
(A.2.3) 

From this, with allowance for the condition div j 1 - 0 
and formula (2.20), we obtain for the absorption coeffi
cient 

n J aF, 
f=- 2wU, ~IA,.zi,.+eE,vl'6(w-qv)d-r:, .. (A.2. 4) 

This expression coincides with that obtained inl 3 J. 

Actually, the longitudinal field E1 is determined from 
Eq. (A.2.3), which does not contain terms proportional 
to mo. This means that allowance for the Stewart
Tolman effect does not change the absorption coefficient 
of the longitudinal sound. The reason lies in t'he fact 
that the longitudinal Stewart- Tolman field is cancelled 
out by part of the macroscopic field. 
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On going over to the limit of free electrons, when 

(A.2.5) 

we are left in (A.2.4)) with only the contribution from 
the macroscopic electric field E + X"ikauik/ar, the 
interaction with which is indeed the cause of sound ab
sorption in this case. 
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