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The propagation in conductors of high-frequency sound whose wavelength is much smaller than the 
mean free path of the conduction electrons is considered. By a method of iterations with respect to 
the amplitude of the wave, developed in the present article, it is shown that the most important mech
anisms of nonlinearity are heating of the electron gas by the effective field of the sound wave, and also 
the strong distortion of the distribution function of the electrons which are moving in phase with the 
wave. Estimates show that at the present stage of development of experimental techniques, the non
linear effects under consideration are quite accessible to experimental investigation. A theory is de
veloped for the propagation of a wave of finite amplitude in the case when the dominant nonlinear 
mechanism is distortion of the distribution function of the electrons moving in phase with the wave. 

RECENTLY it has become possible to investigate the 
propagation in conductors of high-frequency sound whose 
wavelength 21rjq is much smaller than the mean free 
path l of the electrons, 

ql :>1. (1} 

The propagation of such a sound wave of small ampli
tude has been well investigated theoretically[ll and ex
perimentally. [2-sJ The object of the present work is an 
investigation of nonlinear effects, which have been in
sufficiently studied in detail. The absorption of a beam 
of waves having a sufficiently broad spectrum 

!o.q p 1 
->--q hq ql 

{2) 

(D.q is the width of the spectrum of the beam of waves, 
p is the characteristic momentum of an electron) is con
sidered in the interesting article by Zil'berman[eJ which 
appeared recently. We shall consider the opposite lim
iting case-nonlinear effects associated with the propa
gation of a monochromatic wave. 

If the wavelength of the sound is much larger than 
the mean free path of the electrons (ql « 1 ), one can 
regard the sound wave as an external field, slowly vary
ing in time and space, which acts on the conduction elec
trons. The interaction of such a wave with the electrons 
may be described in the hydrodynamical approximation, 
where the basic mechanism is concentration. [7l The 
concentration mechanism of nonlinearity consists in the 
capture of a portion of the conduction electrons by the 
potential wells of the effective periodic field associated 
with the sound wave. A decrease in the concentration of 
free electrons in turn has an effect on the electrical con
ductivity of the substance and changes the absorption and 
velocity of sound. It is obvious that the parameter which 
determines the effectiveness of such a nonlinear mecha
nism is the quantity ecp0 /'E, where cp0 is the amplitude of 
the potential of the effective field associated with the 
wave and f. is the characteristic electron energy. 

If ql » 1, the sound wave effectively interacts only 
with the electrons which are moving in phase with the 
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wave, for which 
qv ~ w {3) 

(w is the frequency of the sound}. This leads to a sub
stantial distortion of the electron distribution function 
in the region of velocities satisfying condition {3}. The 
amount of nonlinearity is determined by this distortion, 
which depends both on the intensity of the sound wave 
and on the relaxation processes of the electron's mo
mentum, which tend to make the electron distribution 
function isotorpic. 

Another nonlinear mechanism is heating of the elec
tron gas by the field of the sound wave, which arises in 
the case when the energy transferred to the electrons 
from the sound wave during the energy relaxation time 
T E is of the order of the average energy of an electron 
(compare with [81 }. 

We see that the indicated nonlinear mechanisms are 
basic, where in a number of cases the first mechanism, 
which has not been considered in the existing literature, 
dominates. In this connection in the case ql » 1 the non
linear effects appear at very much smaller intensities of 
the sound than the concentration nonlinearity in the case 
of small values of ql.u 

1. CORRECTIONS TO THE ABSORPTION AND VELOC
ITY OF SOUND 

In this section we develop a method of iterations in 
the amplitude of the sound wave in order to determine 
the nonlinear corrections to the absorption and veloc
ity of sound, and also in order to compare the effective
ness of the various nonlinear mechanisms. For defi
niteness, let us assume that the interaction of the elec
trons with sound is piezoelectric in nature. For sim
plicity let us consider the case of the simplest geom
etry, when the transverse or longitudinal sound wave 

1l As a rule the nonlinear effects of lattice origin in conductors begin 
at much larger sound intensities than the nonlinear effects of electronic 
origin. [ 9] 
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is propagating along an axis of symmetry of not lower 
than third order (the x axis). Here we shall assume the 
energy spectrum of the electrons to be quadratic and 
isotropic; however, in order of magnitude the obtained 
results are valid for an arbitrary energy spectrum. The 
necessary generalizations to the case of a deformation 
potential and also to the case of many-valley conductors 
do not present any difficulties and will be carried out 
below. 

Under the indicated assumptions, the complete sys
tem of equations for the electrons and for the sound 
wave has the form 

iJ'u iJ'u iJ'<p 
P--af=c ox'-~ iJx'' 

iJ'<p iJ'u 
- e, iJ:i'- 4n~ iJx' = 4nen, 

ilf ilf iJ<p ilf A 

-+v.--e--+1!=0. 
iJt iJx iJx iJp, 

(4) 

(5) 

(6) 

Here u is the lattice displacement, f3 is the piezoelectric 
modulus, e:0 is the dielectric constant, p is the density 
of the crystal, c is the modulus of elasticity, n is the ex
cess concentration of electrons, f is the distribution func
tion of the electrons, cp is the potential of the electric 
field associated with the sound wave, and I is the colli
sion operator of the electrons. 

The conduction electrons are described by Boltz
mann's kinetic equation (6). Such a classical descrip
tion, as one can easily show, is possible upon fulfilment 
of the condition 

n'q' I m < tt 1 -r •. (7) 

Condition (7) indicates the smallness of the corrections 
caused by taking the finiteness of the phonon's momen
tum into consideration in the law of energy conservation 
associated with an elementary interaction event in com
parison with the uncertainty of the electron's energy. 

In the linear approximation, assuming u ~ 
exp i(qx- wt), from Eqs. (4)-(6) we have the following 
dispersion equation: 

q.'-q' [1- 4116' K'(ro)]= 
q' e,q' • x, (8) 

where q0 = w/w0, w0 = ..fCTP, and x = 4rr{32 /e:0c is the 
electromechanical coupling constant. The function ~(w) 
is defined by the relation 

n(q, ro) = e<p(q, ro)K.'(ro) (9) 

and is calculated from the kinetic equation (6). 
In general Eq. (8) has four solutions corresponding 

to two sound waves (forward and backward) and two elec
tron density "waves" which are attenuated over dis
tances of the order of the Debye radius. Since we are 
interested in the absorption and amplification of sound, 
let us assume that a periodic displacement having a 
frequency w is created at the boundary of the crystal 
and there are no reflected waves. Neglecting the nar
row region near the crystal's boundary, one can also 
disregard the electron density "wave". Equation (8) 
determines the wave vector of the sound wave, whose 
imaginary part describes the absorption of sound, and 
the difference between the real part and the value of q0 

is equal to the change in the velocity of sound due to the 
interaction with the electrons. 

The iterations are carried out in the following way. 
The equilibrium distribution function F 0 is used to the 
lowest order in the amplitude of the sound wave in the 
term - e(ilcp/ilx)(of/O!Jx) of Eq. (6). This gives 

1 iJF, 
j<'> = ~ eqJ<'lq-. (10) 

qv-w-il iJp 

By virtue of condition (1) the function fu' is large 
only in a narrow range of values of v (q. v ~ w ). There
fore, in connection with the action of the collision oper
ator on it, in this region only the part If <ll = vp f Ul is 
essential, where Vp = :0 Wpp' and Wpp' is the probabil-

p' 
ity for an electron transition from the state p to p'. For 
~ (w) we have the expression [1J 

K '( ) _ 2 J d' 1 iJF, 
q {J) --(2 li)' p . q-i)-, n qv- w- lv, p (11) 

which one can easily evaluate: 

4ne'K.'(w) x' ( . w) 
- =- t+,s- . 

e,q' q' v (12) 

Here v is the characteristic electron velocity (v = 
v'2T/m for Boltzmann statistics and v = vF for Fermi 
statistics), K is a quantity which is the reciprocal of the 
Debye radius, ~ = rr for Fermi statistics, and ~ = 2/i 
for Boltzmann statistics. It is clear that expression (12) 
does not depend on the collision time; collisions only in
fluence the corrections of order (qZr1• This is the case 
of so-called collisionless absorption, which is analogous 
to Landau damping in a plasma. [1oJ By virtue of the 
smallness of the coupling constant x for conductors, in 
contrast to a plasma, the situation when 1m ql « 1 is 
typical. We shall assume that this condition is satisfied. 

To second order in the amplitude of the wave, due to 
the term 

iJ<p('l [ iJj<') ] • 
-2Ree-- --

iJx iJp. 

of Eq. (6) there arises a correction to the part 
(~exp (- I'x), r =1m q) of the distribution function 
F = F 0 + ~F which is slowly changing in space. Correct 
to terms proportional to (ecp0 ) 2 the kinetic equation for 
~F has the form 

iJ \1 iJF A 

-2[etp,]'e-'"•q • q--• +It.F=O 
iJp ( qv- w)' + v.' iJp ' (13) 

where ';f0 is the amplitude of the potential at the boundary 
of the crystal. 

The function ~F(p) is an extremely anisotropic func
tion of p. Its average over a surface of constant energy 
determines the transfer of energy from the sound wave 
to the electrons, giving rise to heating of the electron 
gas. Averaging (13) over a surface of constant energy 
and taking into consideration that I~F ~ ~F /T E' one can 
easily obtain the parameter characterizing the heating 
of the electrons, which determines the nonlinear cor
rections to the absorption and velocity of sound. For the 
corrections to the function KQ(w) we have 

(14) 
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Expression (14) is valid for Boltzmann statistics. 
For Fermi statistics, as one can easily verify, the cor
rection is quadratic with respect to the parameter ap
pearing on the right-hand side of (14). Within the frame
work of the iteration method, such a correction would be 
taken into account directly. 

Just as on f u>, the effect of the collision operator on 
the anisotropic part aF reduces to multiplication by Vp· 
Therefore, by determining the anisotropic part aF from 
Eq. (13) and calculating aKq(w) with its aid, we have 

!:J.K {ro)=[em ]'e-•r• {2m)'''Je-'1• dF, de 
• To 2n'li' de 

X j (:& - .!!!_ - _!_) -• ( :& - .!!!_ + _!_) -• d:&. 
-· v ql v ql 

(15) 

If collisions are neglected expression (15) tends to 
infinity, which is a consequence of the interaction of the 
sound wave with the electrons moving in phase with it. 
In the case of Fermi statistics, and also for Boltzmann 
statistics, if s > - 1/s (Tp(e:) = Tp(T)(e:/T)S), the lower 
limit on the integration over the energy is unimportant. 
Evaluation of expression (15) gives 

!:J.K,{ro) _ [ elj5o ]' -•r• , [ 1 . w] (16) 
IK,'{ro)i-n -!!- e [ql{s)] 'V•q~+''V• iJ ; 

y 1 = y 2 = 1 for Fermi statistics; however in the case of 
Boltzmann statistics y 1 = r(3s + 1 )/re /z), r 2 

= r(4s + 1)/r(Yz). If s < -% (scattering by acoustic 
phonons) one can show that the region of small ener
gies also gives a small contribution, and expression 
(16) is valid in order of magnitude. 

Now let us compare corrections (14) and (16). 
A. In the case of Fermi statistics the corrections 

(16) are fundamental: 

(17) 

(18) 

B. In the case of Boltzmann statistics the following 
alternatives are possible: 

1) wwTp /V » 1. Here expressions (17) and (18) are 
valid. 

2) wwTp/v « 1, T e:/Tp > (qZ)4• Here the heating of 
the electrons plays the major role: 

(19) 

One can qualitatively explain this dependence in the fol
lowing way: for q << K the interaction is strongly 
screened; consequently an increase of the average 
electron energy, leading to a decrease in the screening, 
in turn leads to an increase in the coefficient of absorp
tion. For q > K the screening is unimportant, but the 
number of electrons interacting with the wave decreases 
as a consequence of the increase of the average energy, 
thus leading to a decrease of the absorption. For the 
correction to the velocity of sound we have 

!:J.(w- Wo) [ elj5, ]' -•r• 'to x• 
- -- e ---w - Wo I! "t, q' + x' ' 

(20) 

The increase in the velocity of sound is also related to 
the decrease of the screening. 

3) (qZ)2 < Te:/Tp < (qZ)4• In this connection the change 
in the velocity of sound is described by expression (20), 
and the absorption of sound is described by formula (17). 

4) T e: /1p < (qZ)2, wwTp/v « 1. Here formulas (17) 
and (18) are valid. 

Together with the correction to the slowly varying 
part of the distribution function in second order with 
respect to ecp0 there appears an induced wave of the 
second harmonic, ecp121 ~ exp 2i(qx- wt), which is caused 
by the term -e(acpu>;ax)(a£ 111/apx) of Eq. (6), and also 
a free wave of doubled frequency which is the solution 
of the linearized system of Eqs. (4)-(6). Its amplitude 
is determined from the boundary condition-the sum of 
the free and induced waves of doubled frequency should 
be equal to zero on the crystal boundary. Therefore, the 
amplitudes of these waves are of the same order of 
magnitude, and in order to determine the nonlinear cor
rections below we consider only the induced wave. 

The generated second-harmonic wave creates a wave 
of variable concentration 

(21) 

where 

K,'{ro)= {2:rt~)' J d'p8-'(2q,2ro)q 8: [ 8-'{q,ro)q 8~•], (22) 

8{q,ro)=qv-(JJ-iv,. (23) 

The first term in Eq. (21) represents a linear redis
tribution of the concentration of electrons in the second
harmonic wave, and the second term is a consequence 
of the nonlinearity of the kinetic equation. From Eqs. 
(21) and (6) we have 

<•> _ [ ...t'>]' K,'{ro) 
eq> - e'l'. 4K,'{ro)-Kz.'{2ro) (24) 

In third order with respect to the amplitude of the 
sound, the generated second-harmonic wave, interacting 
with the fundamental wave (the term- e(acp 121 ;ax) 
x [afu1/apx)*,, gives rise to a wave having the frequency 
of the fundamental harmonic (secular terms). The secu
lar terms renormalize the wave vector of the fundamen
tal wave, which can be taken into account by calculating 
the nonlinear corrections to KQ_(w). We have 

!:J.K,(ro)=[elji,]'e-•r. {2:/i)'Jd'pS-'{q,ro)q ~ 

x{s-'{2q,2ro) [q~S-'{q,ro)+ 2K,'(ro) ] 
8p 4K.'{oo)- Kz.'{2ro) (25) 

2K,'(ro) 8 _, •} 8F0 

- 4K.'{ro)-K,,'(2ro) q 8p [S {q,oo)] qap. 

The third term inside the curly brackets in (25) gives 
the largest contribution, since upon integration over the 
cosine of the angle between q and v only in it do the poles 
turn out to be in different half-planes. An estimate tives 

!:J.K,(oo) - [ elj5o ]' e-•r•(ql)' (1 + ~). (26) 
IK.'{ro) I s v 

We note that the correction due to generation of the 
second harmonic is (qZ) times smaller than the correc
tion due to distortion of the slowly varying part of the 
distribution function. This is the essential difference 
from the hydrodynamical situation, where all of the 
corrections are of the same order (ecpof"E). 
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In the case of a deformation potential the system of 
equations for the electrons and for the sound wave can 
be obtained from Eqs. (4)-(6) by taking {3 = 0 and also 
by adding the terms - Aan/ax in Eq. (4) and A(a~/ax2) 
x (af/apx) in Eq. (6) (A is the deformation-potential con
stant). The dispersion equation takes the form 

q0'- q' [ 4:n:e• ] -• 
--,-=1JK0 (ro) 1---, K 0 (ro) , 

q e,q 

where 7J = A2/c. 

(27) 

If the spectrum consists of j nonintersecting ellip
soids and the time for intravalley relaxation is much 
smaller than the time for intervalley relaxation pro
cesses, then instead of Eq. (27) one can easily obtain 
(by a method analogous to the one discussed in [lll) 

2 2 1 ( [ 4:n:e2 
] -•) ~=-~ K0i(ro)N N-A+A 1--, K,(ro) , (28) 

if c~ ~ 
' 

where 

K,(ro) = ~K,J(ro), 
j 

and j denotes the number of the ellipsoid. For q « K 

from (28) we have 

q.'-q' =~~Kl(ro)IN-AI'. (29) 
q' c J 

Thus, as a consequence of the redistribution of the elec
trons between the valleys, the screening is unimportant 
in many-valley conductors, and the corre_ctions are de
termined by only the imaginary part of ~(w). 

Let us present estimates of the possibility of observ
ing nonlinear effects. In the piezoelectric semiconductor 
n-InSb at T = 77°K, n = 1014 em-\ J1. = 6 x 105 cm2/V·sec, 
f = 1500 MHz, and ql ~ 8. Since T E /r ~ 104, the most 
important nonlinearity is that due to Ceating, which be
gins to manifest itself when the sound intensity is of the 
order of 10-4 wattsjcm2 • In the many-valley semi-metal 
bismuth at liquid helium temperatures and for q ~ 104 

em-\ the quantity ql ~ 102, and the nonlinearity of type 
(17) is most important. It begins to manifest itself 
starting with intensities of the order of 10-6 to 10-5 

wattsjcm2• Consequently, for ql > 1 nonlinear effects 
are quite accessible to experimental observation. 

2. THE ROLE OF AN EXTERNAL ELECTRIC FIELD 

It is easy to verify that for not too strong electric 
fields (vdr ~ w « v, Vdr = L,vF is the average drift 

p 
velocity of the electrons), taking account of an external 
field reduces to replacing the equilibrium distribution 
function F 0 by the function F which is the solution of the 
equation 

oF A 

eE-+IF=O. op (30) 

Expressing the antisymmetric part of the function F in 
terms of its symmetric part F + and discarding the terms 
of order mw2/€, we have 

( oF+ o A_, oF+ ) ( "• ) oF+ q ---1 eE- =q v--vdr --, op op op or. oe (31) 

where 

(2m)'" J ( oF+) ;;. = 3;n;'li'no -r.(e) --a;: e'l•de. (32) 

From Eq. (31) it is clear that one can take the effect of 
an external electric field into account by changing the 
velocity of sound w to w - Atv dr in the expressions, 
leading to corrections to r and ~ w. The coefficients 
At ~ 1 depend on the scattering mechanisms. One can 
represent them in the form 

A,= { ;;. J deg,(e)) -• J de-r.(e)g,(e), (33) 

where g0 = aF +/ a€ appears in the expression for r 0, for 
a nonlinearity of the type (17) g1 = E-2(ql)3 aF +/aE, but 
for the heating type of nonlinearity g2 = a~F +jaE, where 
.6.F + is the correction to the symmetric part of the dis
tribution function due to heating. It is easy to follow the 
way in which for Aov dr > w the absorption of sound 
changes into its amplification, and here the nonlinear 
effects are determined by the same parameters as for 
absorption. 

3. WAVE OF FINITE AMPLITUDE 

Let us consider the case when the generation of higher 
harmonics and the heating of the electrons by sound is 
unimportant; however the nonlinearity due to distortion 
of the distribution function is arbitrary.21 We have 

( B!po ) -e- ql~1. 

The parameter ecp0(ql)2/E has a clear physical mean
ing. In fact it is equal to (w 0Tp)2 where w0 = ..J2ecp0 jm q 
is the frequency of the electron oscillations in the po
tential well created by the field of the sound wave. If 
this parameter is large, there is a group of electrons, 
"captured" by the wave, and these electrons are able 
to undergo many oscillations in the wave during the time 
between collisions. The distortion of the distribution 
function near vx = w is a reflection of the creation of a 
group of captured electrons. 

It is easy to verify that in the case we are interested 
in the problem can be reduced to a one-dimensional 
problem. In fact, in the absorption of sound the elec
trons moving in phase with the wave, for which vx ~ 
w « v, give a contribution. Therefore one can regard 
the frequency of collisions vp, which depends on the total 
energy of an electron to within terms of order mw2/E, 
as being independent of Vx· Therefore Eq. (13) can be 
reduced to the form 

d 1 dF 
- -:;:::-,--, -d + F = F,, 

uw :z: +a :z: (34) 

where x = (vx- w)/v, v = ..j2eq;bjm, a= vp/qv 
= 1/w 0rp, considering that F and a depend on Py and Pz 
as on parameters. 

2l A strong nonlinearity of the heating type associated with the 
presence of electron temperature is considered in article [ 12). In the 
absence of an electron temperature, the interaction of the wave with 
the electrons in the resonance region is treated incorrectly in this arti
cle. 
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Let us introduce the function <I> = (x2 +a2r 1 dF /dx; 
then 

K.(w) ~ J dp,dp, J (x + ia)!lldx. 

We obtain the following equation for <I> 

d'!ll 2 2 dFo 
---x!ll=aiD---

dx' dx 

{35) 

{36) 

and the boundary conditions <I> - 0 as x - ± oo • We seek 
the solution of Eq. {36) satisfying the boundary condi
tions in the form 

In the case of Fermi statistics all the results differ 
by the replacement of the temperature T by the Fermi 
energy EF· 

It is easiest of all to take the influence of an external 
electric field into account for w T p « 1. In this case it 
is only necessary to replace the equilibrium distribution 
function F 0 by the solution of Eq. {30). Thus, the elec
tronic part of the sound absorption in an external elec
tric field with e <[J0{ql)2 /€ » 1 is determined by the ex
pression 

___£=[<a>_ Vdr (a-r(ej_)) ]-1- '\1 (2k) I 
r, w 1: 2-yiT:~ 2"(k!)'(4k+1) · 

• 
{41) 

Ill= _Eill.(p.,p,)ljl.(x), {37) We note that in the case being considered of a strong 

where 
n-~t. 

.p.(x) = -=-.e-x'J' H.(x), 
l'2" n! 

and Hn{x) are the Hermite polynomials. 
We have 

{38) 

where the Cn{py, pz) are the coefficients of the expan
sion of the function dF 0 /dx in terms of the function IJ!n· 
In the case of Boltzmann statistics we obtain 

K (w)=- z•!,n ,E~e-•••o.JT[2'"(2k-F1) 
• T • 2"(k!)' 

{39) 

X ( e;• ) •;, < 4k +~+a' )+ i ; < 4k +~+a' ) ] ' 
(/)""' (S dp,dp,Folx~o) -IS dp,dp,f(p.,p,)Foix~o· 

In the expression for 1m Kq (w) values of k ~ a 2 « 
TjeqJ0 are essential. Therefore one cannot neglect the 
factor exp (- 4ke<fJ0 /T). For large values of a, by using 
the asymptotic behavior of IJ!k{x), one can follow the tran
sition to the linear theory. For small values of a one 
can neglect a 2 in the denominator of Eq. {39), and then 

r 1 ~ (2k) 1 r.= 2l'n fa) ~2"(k!)'(4k+1) · (40) 
k=O 

In the expression for Re KQ (w) we need to take account 
of the factors exp (- 4ke<P0 lT) notwithstanding the small
ness of eqJ0 jT. In fact, for large values of k the factor 
{2k) !j22k(k! )2 ~ 1/Yk, and without taking these factors 
into consideration the series diverges. This means that 
values of k ~ T/e<Po >> a 2 are essential; therefore one 
can neglect the quantity a 2 in the denominator and replace 
the summation by an integral. In this connection, in order 
of magnitude we obtain the same result as in the linear 
theory. This result is quite natural since, in contrast 
to absorption, all of the electrons give a contribution 
to the screening. 

nonlinearity, without taking the lattice absorption into 
account the electronic processes do not lead to the ap
pearance of a stationary wave. However, the nonlinear 
effects reduce the amplification coefficient by a factor 
of ./e<[J0 j€.ql » 1 times; therefore taking account of the 
small lattice absorption rz « r 0 might lead to a station
ary wave. 

In conclusion we take this opportunity to express our 
gratitude to V. L. Gurevich and B. D. Lalkhtman for 
helpful discussions. 
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