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We consider a method for constructing a thermodynamically-complete equation of state of optically 
dense media and of a plasma from the results of experiments with shock waves. An equation of state 
in the form E = E (P, V) is constructed on the basis of the conservation laws in the front of the shock 
wave and from the results of measurements of the shock-compression parameters. This equation is 
used to determine the temperature T = T (P, V) by integrating the differential equation representing 
the second law of thermodynamics. The accuracy is estimated by the Monte Carlo method with a com­
puter. The method is verified with the model problem of determining the equation of state of a dense 
cesium plasma with a thermodynamic behavior described by the Debye theory in the grand canonical 
ensemble. 

1. INTRODUCTION 

ONE of the important present-day problems of plasma 
physics is the investigation of the thermodynamic prop­
erties of a nonideal plasma, in which the effects of inter­
action between the charged particles play the decisive 
role (see, for example, [ll). It is known that the devel­
opment of a consistent statistical theory of such a sys­
tem encounters considerable mathematical difficulties, 
connected with the need of calculating the partition func­
tion in general form. In the case of a weakly-nonideal 
plasma the ratio of the Coulomb energy of the interaction 
between the charged particles to their thermal energy is 
a small parameter, and the thermodynamic functions of 
such a system are calculated in the form of the first few 
terms of the expansion in this parameter. [2J If the plasma 
is strongly nonideal, the approach to the solution of this 
problem should apparently be the same as for ordinary 
liquids, namely, the construction of model theories and 
their verification with the aid of the experimental data. 1 > 

However, many difficulties, due to the need of producing 
high pressures and temperatures, arise in the develop­
ment of the required experimental technique. In addi­
tion, with increasing density, the effects of the nonideal 
behavior increase, but on the other hand the radiation 
free path decreases, and the medium becomes optically 
opaque, making it impossible to use the well-developed 
optical diagnostics methods. The number of experi­
ments on nonideal plasmas is therefore quite limited. 
In addition, in the interpretation of the existing experi­
mental data it is necessary to introduce various theoret­
ical assumptions, which in final analysis makes it diffi­
cult to separate the influence of the nonideal behavior on 
the thermodynamic functions. 

Krasnikov and Lomakin[4J proposed a method of ob­
taining a nonideal plasma by compressing and heating 
cesium vapor in the front of a shock wave. Calculations 
show[5J that this results in sufficiently large values of 

!)Progress has recently been made in developing machine methods 
for investigation of nonideal media (see, for example, [3 ] ). 

the plasma nonideality parameter r = e 2/kTpD (pD is 
the Debye screening radius). 

Measurements of the velocity of the shock wave front 
and of the plasma density make it possible to determine, 
with the aid of the conservation laws, the equation of 
state in the form of the dependence of the internal en­
ergy E on the pressure P and on the specific volume V. 
However, the equation of state in this form is incom­
plete, since it does not contain the temperature, an im­
portant thermodynamic parameter. The latter cannot 
be measured at the given plasma densities by the tra­
ditional optical methods, owing to the small free path 
of the optical radiation. 

In the present paper, using an idea proposed by 
Zel'dovich, [&J we consider a method of determining the 
equation of state of a plasma from experiments with 
shock waves, without limiting assumptions concerning 
the form of this equation. Particular attention is paid 
to the practical use of computers in this method. The 
exposition is presented in general form, which admits 
of direct application to investigations of matter with 
the aid of shock and detonation waves in condensed and 
gaseous media. The accuracy estimate is by the Monte 
Carlo method, with the probabilistic structure of the 
measurement process simulated with a computer. We 
consider the problem of determining the equation of 
state of a nonideal plasma with a thermodynamic be­
havior described by the Debye theory in the grand 
canonical ensemble of statistical mechanics. [4 l 

2. FORMULATION OF PROBLEM 

We consider a medium whose state is determined 
completely by specifying two thermodynamic param­
eters such that any other parameter is a single-valued 
function of the chosen pair of variables. The form of 
this dependence (the equation of state) cannot be ob­
tained on the basis of thermodynamic reasoning alone, 
and is determined either by the methods of statistical 
physics or experimentally. Since dense media do not 
lend themselves to a rigorous theoretical analysis, the 
decisive role is played in this case by experimental in-
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vestigations. In particular, shock waves are used exten­
sively for the experimental determination of the equa­
tion of state. (7 J 

When a steady-state shock discontinuity propagates 
through a medium, the initial states (labeled with the 
index zero) and the final states are connected by the 
Rankine-Hugoniot conditions 

DV = V,(D- u), V,(P- P,) = Du, 

E-E, = 'f,(P +Po) (V,- V). 
(1) 

Here Vis the specific volume, P the pressure, E the in­
ternal energy, D the velocity of the shock-wave front in 
the laboratory frame, and u the jump of the mass veloc­
ity on the discontinuity. 

The relations (1) written in this form are expressions 
of the general laws of the conservation of mass, momen­
tum, and energy, and imply no assumptions whatever 
concerning the properties of the matter in question. The 
state of the medium behind the front of the shock wave 
is characterized by the quantities V, P, D, E, and u. By 
measuring any two of them and assuming the initial 
states E0, V0, and P0 to be known, we can determine all 
the necessary hydrodynamic variables with the aid of 
(1). The easiest to measure accurately by standard 
methods is the shock-wave velocity D. The choice of 
the second measured parameter depends on the concrete 
experimental conditions. In the case of a cesium shock 
tube, it is possible to determine the specific volume V 
of the plasma from the absorption of soft x-radiation. 
In dynamic experiments with condensed media, the sec­
ond parameter is usually the mass velocity u (for details 
see [7l). This makes it possible to obtain the value of the 
internal energy E = E (P, V) in each experiment. Per­
forming similar measurements at different initial condi­
tions and shock-wave intensities, we can determine the 
function E = E (P, V) in the P-V space region covered 
by the Hugoniot adiabats. However, the internal energy 
is not the thermodynamic potential with respect to the 
variables P and V and, consequently, it is impossible 
in this case to develop the complete thermodynamics of 
the investigated system. Characteristically, a dynamic 
experiment based on the registration of mechanical 
quantities yields direct information on the equation of 
state only in the incomplete caloric form E = E (P, V). 
The construction of the complete thermodynamics of 
the system is possible if, besides E = E (P, V), we know 
the temperature T = T (P, V). 

In principle, such a connection can be established ex­
perimentally by measuring the temperature together 
with other hydrodynamic variables in each individual 
experiment. In most cases, however, a direct measure­
ment of the temperature density entails fundamental dif­
ficulties. For example, for a dense cesium plasma, such 
measurements cannot be carried out because of the op­
tical opacity and because of the screening of the emerg­
ing radiation by the molecular cesium vapor, which has 
an anomalously large cross section for the absorption 
of optical radiation. 

A similar situation obtains in the investigation of con­
densed media with the aid of strong shock waves, [7 • 8 J 

where the equation of state is determined from the shock­
compression parameters. To find the temperature in 
these experiments it is necessary to use various semi­
empirical models of the equation of state. 

Ya. B. Zel'dovich [6J proposed the idea of determining 
the temperature of condensed media from shock-wave 
experiments and measurements of the states in adiabatic 
relaxation. Similar proposals were advanced in (gJ as 
applied to the equation of state of detonation products. 
The gist of these considerations can be formulated as 
follows. By starting from the second law of thermody­
namics and the experimentally known E = E (P, V) de­
pendence, we readily obtain 

[p ({)E) 1.!!__ [(DE) ]!!.-r + av p aP aP v av - · (2) 

The solution of this linear inhomogeneous partial differ­
ential equation is the function T = T (P, V) of interest to 
us. 

The solution (2) is constructed from the solution of 
the characteristic system of equations 

dP 
-;w=-

dT 

P +(oE/oV)P 
(oE/oP) v 

T 
dV =- (iJE/oP)v 

f,(P,V), (3) 

f,(P, V). (4) 

It is easily seen that the characteristic equations coin­
cide with the relations for the isentropes. In the case 
of a monatomic ideal gas, E = ~2 PV, and Eqs. (3) and 
(4) can be integrated: 

!'_= (~)-'/•' !_= (~)-''·, 
P, V, T, V, 

which, naturally, coincides with the Poisson adiabats 
with exponent k = % . 

Equations (3) and (4) are supplemented by the follow­
ing boundary conditions: the temperature must be spe­
cified in a region where it can either be experimentally 
measured or reliably calculated by the methods of sta­
tistical physics. 

If the position of the isentrope in the P-V plane is 
known theoretically or experimentally, then (4) is inte­
grated along the is en trope: 

v iJE _, 
T = T, exp{"- J, ( wl dV }· 

From the solution (3) and (4) we determine T 
= T (P, V), which, together with the relation E = E (P, V) 
completes the problem of constructing the thermody­
namically-complete equation of state of a substance from 
shock-wave experiments in optically dense media. 

3. CONSTRUCTION OF THE ENERGY SURFACE 
E = E (P, V) 

Disregarding the concrete experimental procedure 
for determining the parameters of the medium in shock 
compression, we shall assume that there is a certain 
number N of experimental points {Ei, Vi, Pi} ~1 , arbi­
trarily distributed in the P-V plane. To construct the 
analytic function E = E (P, V) from these data, it is nec­
essary to solve the problem of regression analysis for 
a function of two independent variables. For the usual 
considerations we use the least-squares method for the 
construction of the regression surface (see the Appen­
dix). 

Considering the case of a two-dimensional parabolic 
approximation, we construct the equation of state in the 
form 
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E(P, V)= .E ~e.,V'P'. (5) mining the quality and reliability of complicated systems 
etc. u 51 ' 

The degree q of the polynomial should satisfy the condi­
tion i(q + 1)(q + 2) :::: N. To find the coefficients ekz of the 
polynomial, it is necessary to solve the system of nor­
mal equations (A.3). This raises the difficulties that are 
well known from the one-dimensional analog of the prob­
lem and connected with the poor validity of the matrix of 
the system of normal equations at large values of N and 
q. [101 In this case there are no effective numerical meth­
ods of solving the system of linear equations with a near­
zero determinant, since the rounding-off errors in com­
puter calculations greatly distort the results, and the 
obtained solution of (A.3) is highly inaccurate. 

These difficulties can be avoided by changing over to 
Chebyshev orthogonal polynomials [lll (see the Appendix) 
by regrouping the terms in (5) in such a way, that the ' 
condition of orthogonality between the individual groups 
is satisfied. The matrix of the normal system is trans­
formed into a diagonal matrix and can be easily and 
rapidly inverted without great loss of accuracy. The 
calculation of the approximating polynomial in accord­
ance with this algorithm reduces to multiple taking of 
the scalar product with subsequent reduction of similar 
terms, yielding the solution in the form (5). 

The degree q of the polynomial is chosen by analyzing 
the experimental data. An increase of the degree of the 
approximated polynomial leads to a decrease of the best­
approximation element (A.2), but at the expense of in­
creasing the variance of this polynomial. [121 It is nec­
essary to increase consecutively the degree q, re-esti­
mating each time the newly appearing terms in accord­
ance with the Fisher statistical significance criteria. [121 

This is particularly conveniently done for orthogonal 
polynomials because of their property of inclusion with 
respect to the degrees, according to which a polynomial 
of degree q can be calculated by using the results ob­
tained in the preceding step for q- 1. 

By constructing the equation of state in the form (5) 
in this manner from the experimental data, it is possible 
to calculate the right-hand sides of the system (3) and 
(4) and to integrate it in accordance with some explicit 
numerical scheme. 

In the present paper, the system (3) and (4) was inte­
grated by the Adams scheme; the initial sections of the 
isentropes were calculated by the Runge-Kutta method. 

4. ESTIMATE OF THE ACCURACY BY THE MONTE 
CARLO METHOD 

The decisive question in the use of this method is that 
of the accuracy with which the temperature can be deter­
mined from the experimentally known relation E 
= E(P, V). 

In view of the complicated dependence of the solution 
of (2) on the experimental data (the approximation (5) 
~n~ the solution of the characteristic system (3) and (4)), 
1t 1s advantageous to use the Monte Carlo method for an 
estimate of the accuracy. (It should be noted that the es­
timate '_'bY the maximum" would be too high, since the 
errors m computer calculations are random and cancel 
out in part [101 .) Essentially similar considerations are 
used in the calculation of queueing systems, in deter-

Each measurement result is influenced by a large 
number of unaccounted-for random facts that act inde­
pendently. The result itself is therefore a random quan­
tity which, as is well known, can be described by a cor­
responding distribution specified on a set of realizations. 
Using the usual considerations based on the Lyapunov 
theorem, we arrive at a normal law for the error dis­
tribution density. 

According to the principles of mathematical statis-
t . [14] h ak' 1cs, w en spe mg of experimental data it is neces-
sary not only to consider the results obtained in the 
given experiment for a certain combination of random 
factors, but also to bear in mind the entire aggregate of 
possible results, which could be obtained for a different 
combination of causes of random errors. It is custom­
ary to regard the results of the first experiment as a 
sample (realization) out of the general aggregate of all 
possible results at a fixed complex of external condi­
tions. 

In the case under consideration, the Monte Carlo 
method consists of simulating the probability structure 
of the measurement process by reviewing the possible 
combinations of random factors that lead to the experi­
mental error, and determining the influence of this er­
ror on the solution in question with the aid of a com­
puter. A specified experimental file {E· V· Pi}~ . 1• 1• 1=1 
1~ set in correspondence with a "statistical file" 
{Et. Vt. Pt}~1, where Ei are random quantities with 
a normal distribution density f (Ei) having a mean value 
Ei and a variance ai = ~i /3 (99.9% confidence probabil­
ity, ~i is the error of the i-th experiment): 

/(E,) = .....,;_exp{ -~(E_,_-_E_,,)_'} 
l"2na, 2al · (6) 

Such a rearrangement of the files is effected by a gener­
ator of pseudorandom numbers distributed in accord­
ance with the law (6). 

{Et. Vt. Pt}~1 is used to construct the equation of 
state in the form (5 ), which is used in turn to solve the 
system of characteristic ,3quat!ons (3) anj. (4);.._, The re­
sul.ts are the isentropes Ps = Pg(V) and Ts = Tg(V), 
wh1ch are also random quantities with a certain distri­
bution function. The mean value IJ.t;(V) and the variance 
a~;(V) are calculated in accordance with the formulas 
(I;= P, T) 

If the number of realizations a used to estimate the 
sought quantities is sufficiently large, then by virtue of 
the law of large numbers the estimates (7) acquare a 
statistical stability (the order of magnitude of the vari­
ance of (7) is 1/a). 

As a result of the calculations we obtain the relations 

ltP,T = Cli.(V, L\,, {E,, V,,P,}!.,), 

O"p, T = II>.(V, L\,, {E., v,, P,}!,,)' 

which describe the influence of the experimental errors 
on the accuracy with which the temperature is deter­
mined along the isentrope. We note that the solution is 
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FIG. I. P-V state diagram of a cesium plasma produced behind the 
front of a shock wave. The heavy solid curves correspond to a constant 
value of r = e2 /kTpo (Po is the Debye radius); dashed curves-Hugoniot 
adiabats (the initial temperatures are indicated alongside); the light solid 
curves correspond to a constant pressure of the propelling gas; the dash­
dot curves are the isentrope characteristics; 0-points of the file {Ej, 
Vi, Pj}r= 1 N = 15. In the inset we have the value of the nonideality 
parameter along the characteristics. 

influenced not only by the experimental errors them­
selves, but also by the distribution of the experimental 
points in the P-V plane. This method of estimating 
makes it possible to determine the accuracy of the so­
lution for an arbitrary set of errors ~i> and for an ar­
bitrary character of distribution of the experimental 
points in the P-V plane. 

5. DETERMINATION OF THE EQUATION OF STATE 
OF A DEBYE PLASMA 

Using the parameters of a real shock tube intended 
for the production and investigation of a dense cesium 
plasma (for details see [151 ), let us consider the model 
problem of determining the equation of state of a non­
ideal plasma produced behind the front of the shock 
wave in experiments with the aid of the setup. The non­
ideality of the cesium plasma is taken into account with­
in the framework of the Debye theory in the grand canon­
ical ensemble. In considering this problem, we can carry 
out an exhaustive verification of the method, since we 
are able in this case to compare the results with the re­
lation T = T (P, V) known from the Debye theory. For the 
present analysis, it is important to establish whether the 
characteristics lie entirely in that region of the P-V 
plane which is covered by the experiment. 

To construct the regions of interest to us, we under­
took the calculation of the propagation of shock waves in 
cesium vapor under conditions characteristic of a pneu­
matic shock tube with external heating [51 2 >. Figure 1 
shows the results of these calculations in the P-V plane. 
The dashed lines denote the shock adiabats character­
ized by the heater temperature Tc, which determines 
the pressure of the saturated cesium vapor (the state 
ahead of the shock-wave front). The turning-back of 
these curves is connected with processes of cesium 
ionization behind the shock-wave front. [BJ The heavy 
lines correspond to a constant value of the nonideality 

Z) Experiments performed in the region of small nonidealities con­
firm the results of these calculations. 

parameter r. The light curves correspond to a constant 
value of the initial pressure Pc of the propelling gas 
(He), which is necessary to attain a given state behind 
the front of the shock wave. Assuming the maximum 
permissible pressures Pc = 1000 atm for shock tubes 
of the diaphragm type, we obtain an upper limit of the 
experimentally attainable region. The lower limit is 
determined by processes of radiative cooling of the 
stopper and apparently corresponds to a cesium pres­
sure ~ 1 atm. [leJ 

By varying the initial heating T c (by changing the 
initial conditions) we are able to change over from one 
shock adiabat to another. On the other hand, by chang­
ing the initial pressures of the propelling gas Pc (by 
varying the intensity of the shock wave), we move along 
a fixed adiabat. Thus, on the diagram of states of the 
cesium plasma there is a coordinate grid Tc, Pc such 
that any state from the experimentally attainable region 
can be obtained by a suitable choice of the parameters 
of the experimental setup. 

By using the relation E = E (P, V) determined from 
the Debye theory in a grand ensemble from the system 
(3) and (4), we draw the characteristics Sc, which hence­
forth are regarded as "standard," since the represen­
tation (5) was not used for their construction. 

It is seen from Fig. 1 that the isentropes lie entirely 
in the experimental region, so that the proposed method 
can be used to determine the equation of state of a non­
ideal plasma from experiments with shock waves in 
cesium vapor. 

The initial data were chosen for r ~ 1. In this region, 
the initial data were specified in accordance with the 
Debye theory in the grand ensemble, bearing in mind 
the results of model calculations by the method of mo­
lecular dynamics[171 and the fact that the terms ~n2 ln n 
in the expansion of the thermodynamic potential for a 
singly ionized plasma vanish by virtue of the charge 
symmetry. The characteristics were drawn from this 
region into the strongly nonideal region, and the right­
hand sides of the system (3) and (4) were calculated 
from the known relation E = E (P, V). We note that, un­
like the Hugoniot adiabats, the parameter r increases 
monotonically along the characteristic (Fig. 1, inset). 
The solution at the end of the isentrope at the point a 
was compared with the Debye P-V-T dependence. In 
essence, this served to verify the correctness of the 
method in the case when the E (P, V) dependence is 
unknown. The very slight difference ( ~ 0.3% in T) can 
be attributed to errors in the numerical integration of 
(3) and to inaccuracies of the iterations in the program 
for calculating the Debye relation E = E (P, V). 

In order to reveal the nonideality effects most rap­
idly in the experiment, it is natural to place the experi­
mental points in the vicinity of the proposed isentrope. 
The Pe-Te coordinate grid makes it possible to choose 
in suitable fashion the parameters of the experimental 
setup. 

To verify the procedure described above for con­
structing the equation of state and to estimate the ex­
pected error, we used points {Ei> Vi> Pdi~1 randomly 
distributed over the P-V plane (Fig. 1), chosen on the 
basis of the assumption that the Debye theory is valid 
in the entire region under consideration. By specifying 
these points in accordance with the exact Debye rela-
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tions and comparing the results of the calculation with 
the "standard" characteristics, we determine the er­
rors resulting from the approximation (5). We shall de­
termine the influence of the experimental errors on the 
solution by the Monte Carlo method (Sec. 4). The normal 
character of the distribution of Ps and Ts on the end of 
the isentrope at the point a was verified with the "prob­
ability plot" (Figs. 2 and 3). We see that the distribution 
of Ps and T s is close to normal, so that to determine 
the numerical characteristics of the random quantities 
it suffices to use the estimates (7). A comparison of the 
mathematical expectations with the "standard" values 
shows that the estimate (7) is not biased, so that the 
method does not introduce any noticeable systematic 
errors. Figure 4 shows plots of the errors at the point 
a against the errors of the file of the initial data, as­
suming equal-accuracy measurements. The influence 
of the errors in the initial data is shown in Fig. 5. 

Let us estimate the order of magnitude of the ex­
pected error. By measuring the front velocity D with 
photomultipliers, accurate to ~0.5%, and the specific 
volume V by transmission of soft x-rays, accurate to 
~0.5%, we obtain from (1)[183 

The term in the parentheses is of the order of the de­
gree of compression in the shock wave, and in our con­
ditions has a value 17 - 1/ 8 • Therefore E is determined 
with accuracy on the order of 1-1.5%, corresponding 
to a contribution of "'" 2% or less to the solution if the 
number of experimental points is sufficiently large. 
This accuracy is fully adequate to reveal the influence 
of the nonideality effects of interest to us on the ther­
modynamic functions of the plasma. 

We note that the described method is universal: it 
can be used to construct the equation of state of any 
medium from shock-wave experiments. The equations -
of state of condensed media obtained by this method are 
presently being readied for publication. 

The authors consider it their pleasant duty to thank 
Yu. V. Kondrat'ev and B. N. Lomakin for help with the 
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APPENDIX 

TWO-DIMENSIONAL APPROXIMATION 

Knowing the set {ft. Xi> Yi }f~, 1 with accuracy deter­
mined by the weights Pi = 1/ai (ai is the absolute error), 
let us consider a model that is linear in the parameters: 

P,. = .t C,cp,(z, y), (A.1) 
•=• 

{ (/lk (x, y)}~ 1 is a certain chosen system of linearly in­
dependent functions. The system of conditional equations 
takes the form 

S, = /;- P,.(x, y), i= 1, 2, ... , N. 

Let us estimate the parameters Ck in (A.l). To this 
end, we require that the best-approximation element 

(A.2) 

be minimal with respect to the variables Ck· The con­
dition for this is as; ack = 0, and leads to the system of 
normal equations: 

[iJ>., qJ,]C, + [qJ,, ii',JC, + ... + [<p., iJ>,.]C,.- (qJ,, /] = 0, 
..................... (A.3) 

[ipm, <p,]C, + [ipm, <pz]C, + • • • + [<pm, !jlm]C,.- [q>m, /] = 0, 

N 
where [ (// k• (/IZ] = L; Pi qJ k(xi> Yi) (/ll (xi> Yi) denotes the 

i=1 
scalar product of the functions (/lk and cpz on the set N. 
The solution of (A.3) is the sought set of quantities Ck 
in (A.l). In view of its symmetry, the system (A.3) is 
solved with a computer by the square-root method. The 
Gram determinant of (A.3) differs from zero because 
the CfJk (x, y) are linearly independent. 

We chose for (/lk the power-law functions: 

il'• = 1, (jlz = x, (jl• = y, q>, = x', ... ; 
C, =Coo, C, = C,., C, =C.,, C, = C,, ... , 

which leads to (5 ). 
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To change over to orthogonal polynomials we consider 
besides { cp k (x, y)}~1 their linear combinations 

"' 
II>• = .E a<IJ>1(z, y). (A.4) 

l-1 

We seek the solution of the problem in the form 

"' 
P,.(z,y)= ,Eb,lj11(z,y), (A.5) .... 

which leads to the system (A.3). The functions lJ!i are 
chosen to be mutually orthogonal: 

(A.6) 

where 6j is the Kronecker symbol and Aij is a nonnega­
tive number. The system (A.3) will have a diagonal 
matrix 

~"'12 ••••••••••• 0 

~"'·' 
0 ......... ·~t~J,.• 

Expression (A.5) takes the form 

p ( } - ~ (ljl;,/] oh ( } 
,. z,y - .t...l [tiJ,,Ijl,] "'' z,y. 

To find the connection between lJ!i and CfJi we use (A.6), 
defining <l'ij by means of the formula 

{ 1, i =i 
a,1 = 0, i>j 

We obtain the recurrence relation 

·-· II>• = rp, + .E a,;tiJ•, 
;l=t 

Thus, all the coefficients of (A.4) have been determined. 
The foregoing algorithms were used to compile com­

puter programs with which to find the coefficients eij of 
(5) for specified { fh Xi. Yd f! 1 • The maximum degree of 
the polynomial was determined by the capacity of the op­
erating memory of the computer, and amounts to q = 10 
(66 coefficients) for computers of the M-20 and BESM-4 
types. 

1 A. A. Vedenov and A. I. Larkin, Zh. Eksp. Teor. 
Fiz. 36, 1133 (1959) [Sov. Phys.-JETP 9, 806 (1959)]; 
Yu. G. Krasnikov, ibid. 53, 2223 (1967) [26, 0000 (1968)]; 
G. E. Norman and A. I. Starostin, Teplofiz. vys. temp. 8, 
413 (1970); K. I. Seryakov, Dissertation, High Tempera­
ture Institute, 1968. 

2 W. T. Grundy, Brasilian Academie de' Siance, 
Anairs, 39, 65 (1967). 

3 S. G. Brush, H. L. Sahlin, and E. Teller, J. Chern. 
Phys. 45, 2102 (1966); G. E. Norman and V. S. Filinov, 
Teplofiz. vys. temp. 7, 233 (1969). 

4 Yu. G. Krasnikov and B. N. Lomakin, Voprosy fiziki 
nizkotemperaturno1 plazmy (Problems of Low Tempera­
ture Plasma), Nauka i Tekhnika, 1970. 

5 B. N. Lomakin, V. E. Fortov, and 0. E. Shchekotov, 
Teplofiz. vys. temp. 8, 154 (1970). 

6 Ya. B. Zel'dovich, Zh. Eksp. Teor. Fiz. 32, 1577 
(1957) [Sov. Phys.-JETP 5, 1287 (1967)]. 

7 L. V. Al'tshuler, Usp. Fiz. Nauk 85,197 (1965) [Sov. 
Phys.-Usp. 8, 52 (1965)]. 

8 Ya. B. Zel'dovich and Yu. P. Ra1zer, Fizika udarnykh 
voln (Shock Wave Physics), Nauka, 1966. 

99 H. M. Peek and Z. Salsburg, J. Chern. Phys. 20, 763 
(1952). 

10 R. W. Hamming, Numerical Methods for Scientists 
and Engineers, McGraw, 1962. 

11 1. S. Berezin and N. P. Zhidov, Metody vychislenil' 
(Calculation Methods), Fizmatigiz, 1959. 

12 D. Hudson, Statistics for Physicists (Russ. trans!.), 
Mir, 1967. 

13 N. P. Buslenko, Modelirovanie slozhnykh sistem 
(Modeling of Complex Systems), Nauka, 1968. 

14 B. M. Shchigolev, Matematicheskaya obrabotka 
izmerenil (Mathematical Reduction of Measurements), 
Nauka, 1969. 

15 B. N. Lomakin, V. E. Fortov, and 0. E. Shchekotov, 
Voprosy fiziki nizkotemperaturno1 plazmy, Nauka i 
Tekhnika, 1970. 

16 K. I. Seryakov, MGD-generatory (MHD Generators), 
v. 1, 119, Institute of Scientific Information of the USSR 
Academy of Sciences, 1967. 

17 L. D. Pichakhchi, Zh. Eksp. Teor. Fiz. 53, 1461 
(1967) [Sov. Phys. JETP 26, 845 (1968)]. 

18 A. Ferri, ed., Fundamental Data Obtained from 
Shock-tube Experiments, (AGARD), Pergamon, 1961. 

Translated by J. G. Adashko 
189 


