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We investigate the stability of a spherically-symmetrical system of masses rotating along circular 
trajectories. The stability is analyzed with the aid of the collisionless Boltzmann-Vlasov kinetic 
equation. A method of solving this equation, similar to the known method of integration along the 
trajectories in plasma physics, is described. The stability of the system under consideration against 
arbitrary perturbations, which is proved in the article, may possibly explain the experimental fact 
that the age of globular star clusters is large compared with the age of spiral galaxies. 

1. INTRODUCTION 

MANY processes in the physics of hot plasma became 
understood when methods were developed for solving 
the Boltzmann-Vlasov kinetic equation. It is known, 
however, that this equation describes not only a system 
of electrically charged particles (electrons and ions), 
but any other system of particles with Coulomb inter­
action. Therefore the use of plasma methods may also 
be fruitful in the study of other systems with Coulomb 
interaction. 

We demonstrate in this paper that plasma methods 
are effective in the dynamics of a gravitating medium. 
The need for a kinetic analysis of a gravitating system 
arises in the case when the motion of the particles of 
this system relative to one another becomes important. 
An example of such a system is the model proposed by 
Einstein [ll of a globular cluster of stars rotating on cir­
cular trajectories about a common mass center. The 
equilibrium state of the gravitating medium is then 
characterized by a distribution function that depends 
on the modulus of the velocity v 1, which is tangent to 
the radius in accordance with the law f0 ~ o (v 1 - v 0), 

where v 0 is a certain function of the radius r and differs 
from zero at all r * 0. Such a distribution is of the 
"conical" type investigated in plasma theory. [2 • 31 A 
plasma with such a distribution function is unstable 
against a large class of perturbations. This raises the 
natural question of whether an instability of such a type 
can develop in Einstein's system of gravitating particles. 
This question is investigated in the present article. We 
consider the simplest case of a system of particles with 
uniform density and show that neither "conical" nor any 
other instabilities can develop in such a system. The 
stability deduced by us for the Einstein model may pos­
sibly explain the fact, known from observations, that the 
age of globular star clusters is large compared with the 
age of stars in the spiral arms of galaxies. 

The larger the number of particles contained in a 
sphere of arbitrary radius, which in this case can be 
regarded as a Debye sphere, [4l the less the potential of 
the system under consideration deviates from spheric­
ally-symmetrical. If the number of particles in the 
Debye sphere is large, then we can neglect the paired 
interaction of the particles with one another. [41 Indeed, 
if only gravitational interaction takes place between the 
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N particles in the system, then the pairwise interaction 
in the equilibrium system is, roughly speaking, weaker 
by a factor N (more accurately, N/ln N) than the collec­
tive interaction. Consequently, the problem reduces in 
the first approximation to the motion of particles in a 
collective self-consistent gravitational field.u A colli­
sionless motion of the particles is described by the ki­
netic Boltzmann-Vlasov equation. In Sec. 2 we describe 
a method of solving the kinetic equation, analogous to 
the well-known method of integration over the trajecto­
ries in plasma physics. [sJ In Sec. 3 we give the spec­
trum of the natural frequencies of the system, which 
constitutes a discrete set of real numbers. A general 
discussion of the results is given in Sec. 4. 

2. DERIVATION OF THE EQUATION FOR THE 
NATURAL OSCILLATIONS 

Assume that in a unit interval of coordinate-velocity 
space there are f (r, v, t) particles. The function f sat­
isfies the kinetic equation 

of of of -+v-- V<D-·- =c 0, ot or ov 
(1) 

where <I> is the gravitational potential. The latter is con­
nected in turn with the Poisson equation 

1'1Cll=4:rtGn, (2) 

in which 
n= J fdv, (3) 

and G is the gravitational constant. 
We use spherical coordinates r, 8, and cp and char­

acterize the velocity by the quanties Vr and v 1 
= (ve +v~)112, where a= tan-1 (vcp/ve)· In terms of 
these variables, Eq. (1) takes the form 

Lf + V, (_!!__- !.=_.!!___) -- ( V.c'- o<lJ) _!!_- V .L <lJ .!!___ = 0, (4) 
ar r iJu.L r ar au, av.L 

where 

~ d V.c [ o sin a o o ] 
L=-+- cosa - .. -+----sinactg8- (5 ) ot r ae sin 8 drp da , 

I) This estimate does not hold if there are direct inelastic collisions 
between stars. We shall henceforth consider systems in which the in­
elastic collisions are so rare that they (as well as the elastic ones) can 
be neglected. 
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iJ 1 ( i}IJ) sin a o<I> ) a 
V.clll-=- cosa,-+--- -

OV.c r ·ae sine i)cp iJv.c 

1( a<I> cosea<I>)a 
- --;:;;; sin a aa - sine a;p &;:-. (6) 

We linearize Eqs. (2)-(4), marking the equilibrium 
quantities by the index 0 and the non-equilibrium quan­
tities by the index 1. We assume that in the equilibrium 
state the potential depends only on the radius, <1> 0 = cl> 0(r), 
the particles have no radial velocity, and the number at 
each point of the sphere of arbitrary radius r does not 
depend on fJ and cp, and is symmetrical with respect to 
a, f0 = o(vr) F(r, v 1). For the function F we obtain from 
(4) 

( v.c'- oi!J, )F=O. 
r or (7) 

This means that F has a o-function dependence on v 1 . 
We obtain the normalization coefficient with the aid of 
(3) 

F=~ll(v.c-Vo), 
2:rtvo (8) 

where v0 = (rac1>0 jar)112, and n0 is the equilibrium den­
sity. We regard the latter as independent of the radius; 
this, in accord with (2), is justified if the radial depen­
cence of <1> 0 is given by 

Ill,= 'f,(J.'r' + const, 

where 
Q' = 4:rrGn, I 3, 

With v0 =Or. 
In the linear approximation we obtain from ( 4) 

- (of, v.c of,) ( v.L' iJI!J,) of, 
Lf,+v, ii;--r OV.c + -r--Tr av, 

(9) 

(10) 

= oi!J, iJf, + ~ (cos a o<I>, +sin a a<I>,) of, . (11) 
or i)v, r oS sin 8 ocp OV.c 

Recognizing that f 0 ~ o(vr) o(v 1- v0), we find that (11) 
is satisfied if f1 is of the form 

f, = ll(v,) [A6(v.L- v,) + Bll'(v.L- v,)]- Cll'(v,)ll(v.c- v0), (12) 

where the prime denotes the derivative with respect to 
the argument. From (11) we find that the functions A, 
B, and C satisfy the equations 

- 1 (- a ) 1 a L'A-- L'-- B+--(rC)=O, 
rQ ot ror 

- no (- iJ} L0B- 2QC = -- L•-- Ill,, 
2:rtQ'r' iJt 

- n. ai!J, 
L'C+2r.!B=- Z:rtQr Tr' 

(13) 

(14} 

(15) 

The operator L0 differs from Lin that v 1 /r is replaced 
by n. According to (3), if fl is of the form (12), the den­
sity perturbation is equal to .. 

n,=£ (QrA-B)da. (16) 
0 

The method of solving Eqs. (13)-(15) and finding n1 

is as follows. Multiplying both halves of (14) by the op­
erator L0 and expressing L°C in terms of B and <1> 1 with 
the aid of (15), we obtain 

(i! + 2ir.l) (f)- 2tQ)B 

= _n_. [ (i•- _!_) i•I!J + 2Q' ai!J, ) 
2:rtQ'r' at l r iJr . (17) 

Hence 

B = ~<i•- 2iQ) -• (i• + 2iQ) -• [ (i•- _!_) i•I!J + 2Q'r ai!J, ] 
2:rtr.l'ru at t or 

(18) 
where the exponent - 1 denotes the inverse operator, 
the action of which will be explained somewhat later. 

The function A is expressed in terms of B and <1> 1 

with the aid of (13} and (15 ): 

A =-1 (L•)-• [(£<-_!_) B-_!_~(rL'B) 
rr.l at 2or 

+ ~ (i·- -.!.) ~ (~)] 4:rtr.l' at or r . 

We substitute this result in (16): 

••{ a - , [ no a (Ill, ) ] n,=- J -L.- B+-- -
• at 4:rtr.l' iJr r 

1 a ( n. Ill, ) } +-- rB--- da. 
2 or 2:rtr Q' 

(19) 

(20) 

Equation (20) together with (18) gives the sought connec­
tion between n1 and <1> 1 ; this connection is necessary for 
a self-consistent description of the perturbations by 
means of the equation 

a<I>, = 4:rtGn,(I!J,). (21) 

We now present the form of the operator (L0f 1 • Let 
the function X= X(t, fJ, cp, a) satisfy the equation 

i!X=a, (22) 

where a is a certain known function of the variables 
t, B, cp, a, and vanishes at t = - oo. The operator L0 can 
be represented in the form 

-a aea acpa daa 
L· =--at+"dt'oo+Tta;p+Ttaa' (23) 

where the derivatives d (fJ, cp, a)/dt denote the rates of 
change of the angles fJ, cp, and a of a particle moving 
over a sphere of radius r with velocity v 1 = rn, 

ae 
-= Qcosa, 

dt 
da . - = -Qsmactga (24) dt . 

We change over in (22) from the variables fJ, cp, 0! to 
the variables fJ 0, cp0 , a 0, which are connected with fJ, cp, 
a, t by the relations 

l 

a. = a - g J cos a dt, .. 
J' sina 

q>o = <p- Q -.-dt, 
,, sm a 

I 

a 0 =a+Q Jsinactg8dt. 
•• 

(25) 

The quantities fJ 0, cp0 and 0!0 denote the angles fJ(t0}, 

cp(t0), and a(t0} assumed at t = t0 by a particle having at 
the instant t the angles fJ(t) = fJ, cp(t) = cp, a(t) = a. In 
terms of the new variables, Eq. (22) takes the form 

( ~:)a., q>o, ao = a[t, O(t, e., q>o, ao), cp(t, a,,cp., a.).a(t, a., q>o, a.)]. (26) 

Hence 
I 

X= Ja[t',a(t'),q>(t'),a(t')]dt'. (27) -· 
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Returning in this equation again to the variables IJ, cp, 
a and recalling that X = (f.0r1a, we obtain the form of 
the inverse operator 

' 
(i')-•a =sa {t', 8[t', 8o(t, 8, rp, a), ... ] ... } dt', (28) 

where the multiple dots stand for cp0 and a 0 expressed 
in terms oft, IJ, cp, and a. Analogously, we obtain 

' 
(f} ± 2iQ) -• a= J e'~'""<'-''la(t') dt'. (29) 

We now describe the concrete way of calculating in­
tegrals of the type of (28) and ~29). Let the perturbation 
of the potential be of the form 2 

<D, = x,(r)<D.'(t, 8, rp), (30) 

where 
<D.'= e-'•'Y ,.' (<p, 8), 

Ym'(rp, 8) == e-'m(•I•-•JP,.o'(cosS), (31) 

pl (cos IJ) are functions that coincide, apart from co­
eltl~ients, with the Legendre polynomials (see Vilenkin's 
bookreJ). All the normalization coefficients are included 
in xz(r). 

At a equal to the right-hand side of (31), Eqs. (28) 
and (29) are written in the form .. 

(1} + iqQ) -•a = e-•·•J e'<•-•"l'Y ,.'[ q>(t- ,;) , 8(t- -r)] d-r, (32) 
0 

q=O, ±2, 

The integration variable t' is replaced by T = t - t'. 
From the equations of motion (24) we get 

where 

cos8(t) = cosysin1jl(t), 
tg (ljio- <p(t)) = ctg 1jJ(t) I sin y, 

ctga(t) = -ctgycos1jl(t), 

1jl(t) =1jl,-/-Q(t-to). 

(33) 

(34) 
We have introduced here the constants ';p0 , l/! 0 , andy, 
which can be expressed in terms of IJ0, cp0 , and 0! 0 by 
considering (33) at t = t 0 • 

Applying (33) and the addition theorem, we present 
Yfn as a sum of triply indexed functions:rsJ 

I 

Ym' = [8(t- ,;, ljio, y, 'i'o); rp(t- T, ljio, y, 'i'o)] = .E T,.,' [ ~ -q;,, 
'=-l 

y-.!:.,.!:._ll'(t)]P.o'(O). (35 ) 
2 2 

Here the function 

T m.' [; - rp,, 9, ~ - rp,] = exp { imrp, + isrp,- i; (m- s) }P,..'(c~;:~· 

With the aid of (36) we transform the right-hand side 
of (32): 

(L' + iq&W'a = e-'•' .E T ,..'[ ~ -q;0, y- ~ , n2 - 'IJ(t)] P.o'(O) --· 
00 

X f ei[m-(q+•)O]'f dt. 
0 

(37) 

The integral with respect to T is calculated by using the 
Landau circuiting rule (w - w + i~, ~ > 0): 

2l The idea of using spherical harmonics is due to A. Z. Patashinskii. 

.. 
J exp{i[w- (q + s) Q]-r}d-r = il[w- (q + s)Q]. (38) 
0 

Then, using the transformation (which, like (35 ), is a con­
sequence of the addition theorem) 

'[n n n ] T,., 2-ljio,y-2'2-\jl(t) 

(39) 

and relations (25 ), we change over from the variables 
cp0, y, l/! 0 to the variables IJ, cp, a. This completes the 
calculation of the function B. 

We substitute the result in (20), integrate with re­
spect to the angle a, and obtain an expression for the 
perturbed density: 

n 1 =e-'•'Ym'(rp,8) ~0,{[~:,'+2:r ~ 1t IP.o'(O)I' 
8=::::~-l 

Q' Xz ~ 2wQ' + sQw(sQ- w) } 
X (w-s~)'-4Q'+-;:z"'-..IP,,'(O)I' (sQ-w)[{w-sQ)'-4Q'] ' 

8=:o-l 

(40) 
where 

IP.o'(O)I'={l+s)l{l-s)! /[( l~s) t( l-,/) !2']'. (41) 

We transform the right-hand side of (40), expanding 
the functions of the frequency w in partial fractions. 
The Poisson equation (21) is reduced thereby to the form 

Here 

(i+a,)~x,(r) =0. (42) 

~ = a• I ar' + (2 I r) a I ar- I (l + 1) I r'; 
3Q' ( w' - 3Q') 3Q' 

(w'- 4Q') ' a,= (w'- Q') (w'- 9Q') ' 

3Q'(w'- 7Q') 
a,= (w' -16Q') (w'- 4Q') ; 

I+Z 

(43) 

(44) 

a,= .E a,'j(; -s), l=3,4,5,.... (45) 
8=-(1+2) 

The summation is overs in (45) under the condition that 
the number (Z + s) be even 

a.'= '/,{IP!_,(O) I'- IP!+z(O) I'}, lsi~ l- 2, 

a~,=+'/, IP:_,(O) I', 

a'±<Z+•J=+'/, IP/(0) I'. 

(46) 

Equation (42) is satisfied for an arbitrary radial de­
pendence of <I>l' provided that 

1+a,=0. (47) 

This is the sought dispersion equation for the natural 
oscillations of a homogeneous sphere. The case ~Xz 
= 0 corresponds to the absence of perturbations. 

3. FREQUENCIES OF THE NATURAL OSCILLATIONS 

Let us consider the consequences of the dispersion 
equation (47) at different orbital numbers l. The per­
turbations l = 0, corresponding to radial displacements 
of the sphere, have a frequency 

w' = Q'. (48) 
The case l = 1, corresponding to dipole perturbation, 
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is singled out in the sense that it requires an additional 
condition, namely the conservation of the total momen­
tum of the system3> 

R 

J p,r'dr= 0. 
0 

(49) 

The condition (49), as can be readily shown, is equiv­
alent to ax = 0 (only at l = 1), i.e., to the absence of per­
turbations p 1 = 0. 

Stability takes place at all other l. In the case l = 2, 
the squares of the natural frequencies are 

ro~., = '/,(17 ± l'117)Q'. (50) 

At l = 3 we get from (45) 

3Q'(ro'- 13Q')ro' 
(51) a, 

(ro'- Q') (ro'- 9Q') (ro'- 25Q') 

Taking this into account, we get from (47) the natural 
frequencies 

ro.' = 1,24 Q'; ro,' = 8.1 Q'; ro,' = 22.7 Q'. (52) 

With increasing l, the coefficients a; in (45) de­
crease like ljl. They are numerically small already at 
l = 4. Consequently, for l ? 4 we can assume that 

(53) 

where Is I :s l + 2 and s + l is even. The use of (53) at 
l = 3 leads to a result close to (52). 

4. DISCUSSION OF RESULTS 

We have thus investigated the influence of small per­
turbations on the stability of a spherically-symmetrical 
system of rotating particles, assuming that the particles 
move on circles, and that their average mass density 
does not depend on the radius. Under these assumptions 
we have shown, first, that there is a certain spectrum 
of natural oscillations in the gravitating medium, and, 
second, that all oscillations of this spectrum have real 
frequencies. Neither of the results is self-evident, al­
though, as shown by the following considerations, they 
are perfectly reasonable from the physical point of view. 

The absence of a radial velocity component of the 
equilibrium motion of the particles makes it possible to 
regard the radial perturbed motion of our medium as 
that of a "cold" medium. Therefore the question of the 
natural oscillations of the gravitating system can be set 
in correspondence with the question that arises in the 
investigation of the oscillations of a cold plasma. It is 
known that the natural oscillations of the cold plasma 
exist only when its density is homogeneous. Otherwise 
it is impossible to construct any initial perturbation 
whose amplitude would satisfy after the lapse of a cer­
tain time the relation exp (- iwt) with a real or complex 
frequency. 

All perturbations of a cold inhomogeneous plasma 
are subject to non-exponential (power-law) damping. In 
our example of a gravitating medium, not all the sta­
tionary parameters are spatially homogeneous: the par­
ticle velocities and the potential depend on the radius. 
In the final differential equation for the perturbed po-

3lFor all the remaining I, the conservation of the total momentum 
is automatically satisfied by the angular dependence of p 1 (0). 

tential, however, the coefficients of the equation are 
constants proportional to the particle angular rotation 
frequency n = const. Owing to the homogeneity of the 
density and of the angular velocity, the problem of the 
initial perturbations reduces to a problem of natural 
oscillations and of finding the spectrum of the natural 
frequencies. On the basis of the analogy with plasma 
problems, we can expect that in the case of an inhomo­
geneous density there will be no spectrum of the natural 
oscillations of the gravitational medium. 

We now estimate qualitatively the stability of our 
system against different types of perturbations. We 
start with a discussion of the case of radial perturba­
tions (l = 0). Such perturbations can also be investigated 
with the aid of the energy principle developed for rotat­
ing gravitational systems in [71 , as was indeed done in 
[sJ. It turns out here that the radial perturbations of a 
homogeneous medium lead to an increase of the poten­
tial energy of the system; this, as is well known, is 
evidence of stability. 

Perturbations with l * 0, in which an important role 
is played by the relative motion of the particles along 
y and e, are analogous to cyclotron oscillations of a 
magnetized plasma with a li-function particle-velocity 
distribution. The problem of plasma oscillations in­
volves two characteristic frequencies -cyclotron and 
plasma. The so-called cone instability occurs if the 
plasma frequency greatly exceeds the cyclotron fre­
quency. The analog of the plasma frequency in the prob­
lem of a gravitational medium is the Jeans frequency 
w0 == /3""n, and the role of the cyclotron frequency wB 
is played by the angular frequency of particle rotation 
n. The quantities w0 and n are of the same order, so 
that on the basis of the analogy with the plasma it is 
natural to expect the absence of instability; this is in 
accord with the calculation presented above. 

Finally, it is necessary to explain one more result, 
which is paradoxical at first glance, namely the absence 
of an instability connected with the fact that the square 
of the "Langmuir" frequency wi_. == w~ is negative. (In 
plasma physics an instability of this type is known as 
the negative-mass instability, and in astrophysics it is 
known as the Jeans instability that leads to collapse.) 
Such an instability is suppressed as a result of the suf­
ficiently intense rotational motion of the particles. This 
is simplest to explain with perturbations with l = 0 as an 
example. Let us write down the dispersion equation of 
such perturbations in a form corresponding to cyclotron 
oscillations of the plasma in a magnetic field: 

(54) 

For I wi_. I » Q 2 this would lead to w2 < 0, meaning in­
stability. However, the equilibrium condition leads to 
wi_. = - 3Q2 (wB == 4n2), so that w2 > 0. 

Let us discuss now the extent to which our results 
can have a bearing on observable objects. In really ob­
served globular clusters, the density always decreases 
towards the edge quite sharply, in proportion to 1/r 2-

1/r3. Energy estimates permit us to assume that sys­
tems analogous to that considered here, with a density 
decreasing towards the edge, have a large stability 
margin compared with a homogeneous mass. It is also 
reasonable to assume that the case of non-circular or-
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bits will not change the conclusion that the system is 
stable. 

It is shown in [7 ' 9 J that the evolution of stellar sys­
tems of a more complicated type, containing two or 
more subsystems, leads to the formation of spiral arms. 
Our conclusion that a globular cluster of stars is stable, 
together with the results of [7• 9J, favors Oort's hypothe­
sis [10J of galaxy evolution. Oort's hypothesis, unlike 
Hubble's, regards different forms of galaxies not as 
successive stages of evolution, but as a result of dif­
ferences in the initial conditions of their occurrence 
(depending on the total angular momentum of the system, 
etc.). 

The authors are deeply grateful to Ya. B. Zel'dovich 
for constant interest in the work and for valuable advice. 
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